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Abstract

We consider setups in which variational objectives for Bayesian neural networks
can be computed in closed form. In particular we focus on single-layer networks
in which the activation function is piecewise polynomial (e.g. ReLU). In this
case we show that for a Normal likelihood and structured Normal variational
distributions one can compute a variational lower bound in closed form. In addition
we compute the predictive mean and variance in closed form. Finally, we also show
how to compute approximate lower bounds for other likelihoods (e.g. softmax
classification). In experiments we show how the resulting variational objectives
can help improve training and provide fast test time predictions.

1 Introduction

In recent years significant effort has gone into developing flexible probabilistic models for the
supervised setting. These include, among others, deep gaussian processes [5] as well as various
approaches to Bayesian neural networks [21, 18, 10, 7, 3, 9]. While neural networks promise
considerable flexibility, scalable learning algorithms for Bayesian neural networks that can deliver
robust uncertainty estimates remain elusive. While some of the difficulty stems from the inadequate
(weight-space) priors that are typically used, much of the challenge can be traced to the difficulty
of the inference problem itself. In the variational inference setting, this manifests itself in at least
two ways. First, the need to restrict the variational family to a tractable class limits the fidelity of the
approximate learned posterior. Second, nested non-linearities necessitate sampling methods during
training, which can make for a challenging stochastic optimization problem, especially for wide, deep
networks. In this work our goal is to make the stochastic optimization problem (somewhat) easier by
integrating out some of the weights analytically. In the next section we focus on the regression case,
leaving a discussion of other cases to the appendix.1

2 Regression Setup

Consider a dataset {xi,yi} of size N with inputs xi and outputs yi. To simplify the notation, we
consider the case where x is D-dimensional and y is 1-dimensional. We consider a neural network
with a single hidden layer defined by the following computational flow:2

x→ Ax→ g(Ax)→ Bg(Ax) (1)
Here g(·) is the non-linearity, A is of size H ×D and B is of size 1×H , where H is the number of
hidden units. We choose a Normal likelihood with precision β and standard Normal priors for the
weights. Thus the marginal likelihood of the observed data is:

p(Y|X) =

∫
dAdB p(A)p(B)

∏
i

p(yi|Bg(Axi), β) (2)

1Please refer to the appendix for a more detailed discussion of related work.
2We handle bias terms by augmenting inputs to each neural network layer with an element equal to 1.
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3 Variational Bound

We consider a variational distribution of the form

q(A,B) = q(B)

H∏
h=1

q(ah) with q(ah) = N (ah|a0h,Σah) and q(B) = N (B|B0,ΣB)

(3)
where each component distribution is Normal. Since we treat each row of A independently, the
activations {g(Ax)h} are conditionally independent given an input x. With these assumptions we
can write down the following variational bound:

log p(Y|X) ≥ Eq(A)q(B)

[∑
i

log p(yi|xi,A,B)

]
−KL(q(A)|p(A))−KL(q(B)|p(B)) (4)

The KL divergences are readily computed. We now show that we can compute closed form expressions
for the first term in Eqn. 4 (i.e. the expected log likelihood) for certain non-linearities g(·). For
concreteness we consider the ReLU activation function, i.e. g(x) = max(0, x) = 1

2 (x+ |x|). The
expected log likelihood (ELL) for a single datapoint is given by

ELL = −β
2

Eq(A)q(B)

[
(y −Bg(Ax))2

]
+

1

2
(log β − log 2π) (5)

The expectation in Eqn. 5 becomes

Eq(A)q(B)

[
y2 − yB1h

(
aT
hx + |aT

hx|
)

+ 1
4Σh,h̃B1hB1h̃

(
aT
hx + |aT

hx|
) (

aT
h̃
x + |aT

h̃
x|
) ]

(6)

Massaging terms, the expected log likelihood for the full dataset is given by

ELL = −β
2

∑
i

[
(yi − ŷi(xi))

2 + varAB(xi)
]

+
N

2
(log β − log 2π) (7)

Here we have introduced the mean function ŷ(x) = B0 ·Φ as well as the corresponding variance:

varAB(x) = diag(ΞB) · (Υ−Φ�Φ) + ΦTΣBΦ (8)

Note that ŷ(x) and varAB(x) can be used at test time to yield fast predictive means and variances.
We have also defined the matrix ΞB = ΣB + B0B

T
0 and the H-dimensional vectors Φ and Υ:

Φh = Eq(A) [g(Ax)h] Υh = Eq(A)

[
g(Ax)2h

]
(9)

The key quantities are the expectations in Eqn. 9. As we show in the appendix, these can be computed
in closed form for piecewise polynomial activation functions. The resulting expressions involve
nothing more exotic than the error function.

4 Experiments

We present a few experiments that demonstrate how our approach can be folded into larger probabilis-
tic models. Note that our focus here is on how (partial) analytic control can help training (Sec. 4.1-4.2)
and prediction (Sec. 4.3) and not the suitability of Bayesian neural networks for particular tasks or
datasets. Please refer to the appendix for details on experimental setups.

4.1 Variance Reduction

We train a Bayesian neural network with two hidden layers on a regression task and compute the
gradient variance during training. As can be seen from Table 1, Rao-Blackwellizing the two weight
matrices closest to the outputs reduces the variance, especially for the covariance parameters. As
the weight matrices we integrate out get larger, this variance reduction becomes more pronounced.
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Upon initialization Late in training
First Layer Second Layer Final Layer First Layer Second Layer Final Layer

Analytic 8.6 / 6×10−4 3.2 / 2×10−6 227 / 1×10−5 1.75 / 1×10−4 0.2 / 2×10−6 259 / 3×10−8

Sampling 19.7 / 7×10−4 10.1 / 2×10−4 704 / 0.03 2.6 / 1×10−4 0.4 / 1×10−4 518 / 3×10−3

Table 1: Mean gradient variances for the network in Sec. 4.1. The first number in each cell corresponds
to gradients w.r.t. weight means and the second to gradients w.r.t. (log root) variances.
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Figure 1: We compare the performance of a Monte Carlo estimate of classification accuracy to a
deterministic approximation. Left: Top-1 accuracy. Right: Top-5 accuracy. See Sec. 4.3 for details.

4.2 VAE with a Bayesian Decoder

We train a VAE [15, 22] with a Normal likelihood on a continuous-valued dataset. For the decoder
we use a Bayesian neural network with a single hidden layer.3 We train three model and inference
variants and report test log likelihoods in Table 2. Apart from the first variant (V1), all variants make
use of a Bayesian neural network as the decoder. Variants V2 and V3 differ in which weights are
sampled during training.4 In V2 the weights before the non-linearity are sampled, while in V3 no
weights are sampled. While the test log likelihoods in Table 2 do not differ dramatically, we see
evidence that: i) a Bayesian decoder can be useful in this setting; and ii) integrating out weights can
help us train a better model.

V1 V2 V3 (this work)
Bayesian Decoder No Yes Yes

Sampling z only z and some weights z only
Test LL -107.16 -107.20 -107.10

Table 2: Test log likelihoods for the VAE experiment in Sec. 4.2. Higher is better.

4.3 Fast Prediction

We train a Bayesian neural network on ImageNet [24].5 Specifically we place a prior on the two
weight matrices closest to the softmax output. We then compute classification accuracies on the test
set using two methods: i) Monte Carlo; and ii) a deterministic approximation using the analytic results
described above (see Appendix for details). As can be seen from Fig. 1, a large number of samples
must be drawn before the MC estimator reaches the performance of the deterministic approximation.
Indeed even with 512 samples the deterministic approximation outperforms MC on top-5 accuracy.

5 Discussion

The approach developed here is expected to be most useful when integrated into larger Bayesian
neural networks setups. It would be of particular interest to combine this approach with the class of
priors described in [12], the deterministic approximations in [26], or Normal variational distributions
with flexible conditional dependence like those in [17]. Finally, our analytic results could be useful in
the context of other classes of non-linear probabilistic models.

3Alternatively, we can think of this as the neural network analog of the deep latent variable model in ref. [4].
4More precisely, we always use the ‘local reparameterization trick’ [14] and never sample weights directly.
5While our analytic results can be used to form approximate variational objectives (or, alternatively, control

variates) in the classification setting (see Appendix) here we sample the weights during training.
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6 Appendix

The main goal of this appendix is to show how to compute the necessary expectations in Eqn. 9
for piecewise polynomial non-linearities. Instead of presenting a (unwieldy) master formula for
the general case, we proceed step by step and show how the computation is done in a few cases of
increasing complexity. We begin with a basic ReLU integral.

6.1 ReLU Mean Function

We first consider the mean function for the ReLU activation function g(x) = max(0, x) = 1
2 (x+ |x|),

i.e. we would like to compute the following expectation:

Eq(a)
[
aTx + |aTx|

]
= Eq(a)

[
aTx

]
+ Eq(a)

[
|aTx|

]
(10)

where q(a) = N (a|a0,Σa). The first expectation in Eqn. 10 is elementary. For the second
expectation note that, since aTx ∼ N (aT

0 x,x
TΣax), the expectation can be transformed to a

one-dimensional integral

Eq(a)
[
|aTx|

]
= Ey∼N (aT

0 x,xTΣax) [|y|] (11)

that can readily be computed in terms of the error function. We do not do so here, however, because
in subsequent derivations we will find an alternative strategy—namely to make use of a particular
integral representation for the absolute value function—to be more convenient. Thus before we give
an explicit formula for Eqn. 10 we collect a few useful identities.

6.2 Useful Integrals

First we define the following (scalar) quantities, which we will make extensive use of throughout the
appendix:

ξ2 ≡ xTΣax γ ≡ aT
0 x (12)

We then have

Eq(a)
[
exp(iaTxt)

]
= exp(− 1

2ξ
2t2 + iγt) (13)

and
Eq(a)

[
aTx exp(iaTxt)

]
=
(
iξ2t+ γ

)
exp(− 1

2ξ
2t2 + iγt) (14)

as well as
Eq(a)

[
(aTx)2

]
= ξ2 + γ2 (15)
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The integral identity we make use of is:6

|z| = 2

π

∫ ∞
0

dt

t2
(1− cos(zt)) =

2

π

∫ ∞
0

dt

t2

(
1− exp(izt) + exp(−izt)

2

)
(16)

For reference we note that this identity can easily be derived by integrating by parts and making use
of the well-known sine integral:7 ∫ ∞

0

sin(t)

t
dt = 1

2π (17)

6.3 ReLU Part II

Combining the above identities we get:

Eq(a)
[
|aTx|

]
=

2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)

=

√
2

π
ξe
− 1

2
γ2

ξ2 + γerf

(
γ√
2ξ

)
≡ Ω(ξ, γ)

(18)

and

Eq(a)
[
(aTx)|aTx|

]
=

2

π

∫ ∞
0

dt

t2

(
γ − γe−

1
2 ξ

2t2 cos(γt) + ξ2te−
1
2 ξ

2t2 sin(γt)
)

= γ

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

+ ξ2
∂

∂γ

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

= γ

{√
2

π
ξe
− 1

2
γ2

ξ2 + γerf

(
γ√
2ξ

)}
+ ξ2

∂

∂γ

{√
2

π
ξe
− 1

2
γ2

ξ2 + γerf

(
γ√
2ξ

)}

=

√
2

π
γξe
− 1

2
γ2

ξ2 + (ξ2 + γ2)erf

(
γ√
2ξ

)
≡ Ψ(ξ, γ)

(19)

Thus we have all the ingredients to compute the expectations in Eqn. 9:

Φh = Eq(A) [g(Ax)h] = 1
2 (γh + Ωh)

Υh = Eq(A)

[
g(Ax)2h

]
= 1

2 (ξ2h + γ2h + ψh)
(20)

As stated in the main text, these expectations involve nothing more exotic than the error function.
Note that as γh/ξh →∞ only a small portion of probability mass is propagated through the constant
portion of the ReLU activation function. As such, in this limit we expect Φh → γh and Υh → γ2h+ξ2h.
It is easy to verify that this is indeed the case. Similarly, as γh/ξh → −∞, we have Φh,Υh → 0.

6.4 Other Non-linearities

6.4.1 Leaky ReLU

We consider the ‘leaky’ ReLU, which we define to be given by

gε(x) = max(εx, x) = 1
2 ((1 + ε)x+ (1− ε)|x|) (21)

for some ε > 0. In this case one finds:

Φh = Eq(A) [gε(Ax)h] = 1
2 ((1 + ε)γh + (1− ε)Ωh)

Υh = Eq(A)

[
gε(Ax)2h

]
= 1

2 ((1 + ε2)(ξ2h + γ2h) + (1− ε2)ψh)
(22)

6Note that this identity is also used in [16] to compute a related class of Gaussian integrals.
7The absolute value in Eqn. 16 is an immediate consequence of cos(zt) = cos(−zt).
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6.4.2 Hard Sigmoid

We consider the ‘hard sigmoid’ non-linearity, which we define to be given by

gα(x) = 1
2 (|x+ α| − |x− α|) (23)

for a given constant α. The identity in Eqn. 16 can immediately be generalized to

|z + z0| =
2

π

∫ ∞
0

dt

t2

(
1− cos(zt) cos(z0t) + sin(zt) sin(z0t)

)
=

2

π

∫ ∞
0

dt

t2

(
1− 1

2
[exp(izt+ iz0t) + exp(−izt− iz0t))]

) (24)

Proceeding as before we compute

Eq(a)
[
|aTx + α|

]
=

2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos((γ + α)t)
)

= Ω(ξ, γ + α)

(25)

and (for α+, α− > 0)

Eq(a)
[
|aTx + α+||aTx− α−|

]
=√

2

π
ξ
{

(γ + α+)e
− 1

2
(γ−α−)2

ξ2 − (γ − α−)e
− 1

2
(γ+α+)2

ξ2

}
+{

ξ2 + (γ + α+)(γ − α−)
}{

1− erf

(
γ + α+√

2ξ

)
+ erf

(
γ − α−√

2ξ

)}
≡ χ(ξ, γ, α+, α−)

(26)

Using these identities we find:

Φh = Eq(A) [gα(Ax)h] = 1
2 (Ω(ξh, γh + α)− Ω(ξh, γh − α))

Υh = Eq(A)

[
gα(Ax)2h

]
= 1

2 (ξ2h + γ2h − χh + α2) with χh ≡ χ(ξh, γh, α, α)
(27)

As α→∞, we have gα(x)→ x, i.e. the hard sigmoid non-linearity approaches the identity function.
It is easy to verify that in this limit the expectations in Eqn. 27 approach the correct limit.

6.4.3 ReLU Squared

We consider the ‘ReLU squared’ non-linearity, which we define to be given by

g(x) = ReLU(x)2 =
(

1
2 (x+ |x|)

)2
= 1

2 (x2 + x|x|) (28)

This is the first non-linearity we have considered that contains a piecewise quadratic portion. Using
previous results as well as the higher moments computed in the next section we find:

Φh = Eq(A) [g(Ax)h] = 1
2 (γ2h + ξ2h + Ψh)

Υh = Eq(A)

[
g(Ax)2h

]
= 1

2 (γ4h + 6γ2hξ
2
h + 3ξ4h + ρh)

(29)

6.5 Higher Moments

We can also compute higher moments of activation functions. We start with the integral identities

Eq(a)
[
(aTx)2 exp(iaTxt)

]
=
(
ξ2 + (iξ2t+ γ)2

)
exp(− 1

2ξ
2t2 + iγt) (30)

and

Eq(a)
[
(aTx)3 exp(iaTxt)

]
=
{

3ξ2(iξ2t+ γ) + (iξ2t+ γ)3
}

exp(− 1
2ξ

2t2 + iγt) (31)

and
Eq(a)

[
(aTx)3

]
= γ3 + 3γξ2 (32)
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We then have

Eq(a)
[
(aTx)2|aTx|

]
=

2

π

∫ ∞
0

dt

t2

(
ξ2 + γ2 − (ξ2 + γ2 − ξ4t2)e−

1
2 ξ

2t2 cos(γt) + 2ξ2γte−
1
2 ξ

2t2 sin(γt)
)

= (ξ2 + γ2)

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

+
2ξ4

π

∫ ∞
0

dte−
1
2 ξ

2t2 cos(γt)

+ 2ξ2γ
∂

∂γ

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

= (ξ2 + γ2)

{√
2

π
ξe
− 1

2
γ2

ξ2 + γerf

(
γ√
2ξ

)}
+

√
2

π
ξ3e
− 1

2
γ2

ξ2

+ 2ξ2γ
∂

∂γ

{√
2

π
ξe
− 1

2
γ2

ξ2 + γerf

(
γ√
2ξ

)}

=

√
2

π
(2ξ3 + γ2ξ)e

− 1
2
γ2

ξ2 + (3γξ2 + γ3)erf

(
γ√
2ξ

)
≡ ζ(ξ, γ)

(33)

as well as

Eq(a)
[
(aTx)3|aTx|

]
=

2

π

∫ ∞
0

dt

t2

(
γ3 + 3γξ2 − (γ3 + 3γξ2 − 3γξ4t2)e−

1
2 ξ

2t2 cos(γt)

+ (3ξ4t+ 3γ2ξ2t+ ξ6t3)e−
1
2 ξ

2t2 sin(γt)
)

= (γ3 + 3γξ2)

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

+
6γξ4

π

∫ ∞
0

dte−
1
2 ξ

2t2 cos(γt)

+ (3ξ4 + 3γ2ξ2)
∂

∂γ

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

− 2ξ6
∂

∂ξ2
∂

∂γ

{
2

π

∫ ∞
0

dt

t2

(
1− e−

1
2 ξ

2t2 cos(γt)
)}

=

√
2

π
(γ3ξ + 7γξ3)e

− 1
2
γ2

ξ2 + (γ4 + 6γ2ξ2 + 3ξ4)erf

(
γ√
2ξ

)
≡ ρ(ξ, γ)

(34)

6.6 Piecewise Polynomial Activation Functions

Piecewise polynomial functions in x can be represented by composing polynomials in x with the
absolute value function. Thus in order to compute Eqn. 9 for general piecewise polynomial activation
functions we need to be able to compute expectations of the form

Eq(a)

[
p0(aTx)

∏
i

|pi(aTx)|

]
(35)

where the pi(·) are polynomials. We have shown how this computation can be done in a number of
cases. For any specific case the recipe we have used to do the computation remains applicable. In
particular one can compute any needed ‘base’ integrals by doing the computation in one dimension as
in Eqn. 11. One can then make use of the integral identity in Eqn. 16 and differentiation to compute
higher order moments via purely algebraic operations (c.f. the manipulations in Sec. 6.5).

6.7 Other likelihoods

In the main text we showed how to compute exact closed form expressions for the ELBO variational
objective in the regression case. For other likelihoods, the required expectations are generally
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intractable. Nevertheless we can still compute closed form variational objectives at the price of some
approximation. Alternatively, if we are worried about the bias introduced by our approximations, we
can use our approximations as control variates in the Monte Carlo sampling setting. In this section
we briefly describe how this goes in the case of softmax classification.

6.7.1 Softmax Categorical Likelihood

Using familiar bounds8 we have:

Eq(A)q(B) [log p(y = k|A,B,x)] = Eq(A)q(B)

[
log

eyk∑
j e

yj

]
≥ Eq(A)q(B) [yk]− log

∑
j

Eq(A)q(B) [eyj ]

(36)

We do a second-order Taylor expansion of yj around its expectation ŷj to obtain

Eq(A)q(B) [eyj ] ≈ eŷjEq(A)q(B)

[
1 + (yj − ŷj) +

1

2
(yj − ŷj)

2

]
= eŷj

(
1 + 1

2var(yj)
) (37)

so that our approximate lower bound to the expected log likelihood becomes

Eq(A)q(B) [log p(y = k|A,B,x)] ' ŷk − log
∑
j

eŷj
(

1 + 1
2var(yj)

)
(38)

We can then use the closed form expressions for the mean function and variance given in the main
text to form a deterministic approximation to the expected log likelihood.

6.7.2 Logistic Bernoulli Likelihood

For the case with two classes with y ∈ {0, 1} and where we have a single logit ŷ the approximation
in Eqn. 38 reduces to

Eq(A)q(B) [log p(y|A,B,x)] ' yŷ − log
(

1 + eŷ
[
1 + 1

2var(ŷ)
] )

(39)

6.7.3 Control Variates

To reduce bias to zero one can construct a control variate [23] version of the variational objective in
Eqn. 38:

Eq(A)q(B) [log p(y = k|A,B,x)] =

ŷk − log
∑
j

eŷj
(

1 + 1
2var(yj)

)
− Eq(A)q(B)

log
∑
j

eyj

+

log
(∑

j

eŷjEq(A)q(B)

[
1 + (yj − ŷj) +

1

2
(yj − ŷj)

2

]) (40)

The expectations in Eqn. 40 are then estimated with Monte Carlo, while the rest is available in closed
form. Alternatively, we can use the following estimator:

Eq(A)q(B) [log p(y = k|A,B,x)] = ŷk − Eq(A)q(B)

log
∑
j

eyj

 (41)

That is, we use the analytic result for the numerator in the softmax likelihood and sample the
troublesome denominator.

8See e.g. http://www.columbia.edu/~jwp2128/Teaching/E6720/Fall2016/papers/twobounds.pdf
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6.7.4 Fast Approximate Prediction

To make fast test time predictions we can simply use the analytic mean function ŷ, i.e. use

pred(x) = argmaxkŷk(x) (42)

effectively ignoring the normalizing term in the softmax likelihood. As can be seen in Fig. 1, this
approximation can be quite effective in practice.

6.8 Experimental Details

All the experiments described in this work were implemented in the Pyro probabilistic programming
language [2], which is built on top of PyTorch [20]. As noted in the main text, whenever sampling
a weight matrix we make use of the ‘local reparameterization trick’ [14], i.e. we sample in pre-
activation space and not in weight space. This can lead to substantial variance reduction as compared
to sampling in weight space directly.

6.8.1 Variance Reduction

We use the 90-dimensional ‘YearPredictionMSD’ dataset from the UCI repository [6]. This dataset
is a subset of the Million Song Dataset [1]. The architecture of our neural network is given by
90− 200− 200− 1, where all layers are fully connected and both non-linearities are ReLU. We use
mean field (Normal) variational distributions for all weight matrices. To compute gradient variances
of variational parameters with respect to the variational objective, we fix a random mini-batch
of training data with 500 elements. We then compute 104 samples and report empirical gradient
variances averaged over the elements of each tensor. We report gradient variances computed before
any training as well as after 50 epochs. For the (partially) analytic result, only the weight matrix
closest to the inputs is sampled, while for the sampling result all weight matrices are sampled.

6.8.2 VAE with a Bayesian Decoder

We use the same dataset as for the variance reduction experiment above (with the difference that in
this unsupervised setting we only use the input features). This dataset has N = 515345 data points.
We split the data into training, test, and validation sets in the proportion 7 : 2 : 1. For the encoder we
use a fully connected (non-Bayesian) neural network with 500 hidden units in each of the two hidden
layers. For the decoder we use a neural network with a single hidden layer with 500 hidden units.
All non-linearities are ReLU. We use the Adam optimizer [13] and mini-batches of size 2000 during
training. We use mean field (Normal) variational distributions for all weight matrices in the decoder.
We do a grid search over the hyperparameters of the optimizer and use the validation set to choose
the number of epochs to train. For all three model variants this procedure resulted in the following
choices: default Adam hyperparameters and 1500 epochs of training. We use a latent dimension of
30. We report test log likelihoods that make use of an importance weighted estimator that draws 500
× 100 samples per data point (100 samples inside the log averaged over 500 trials).

6.8.3 Fast Prediction

We take a ResNet50 [8] that is pre-trained9 on ImageNet [24] and then lop off the final layer and
replace it with the following neural network architecture: 2048− 1000− 1000− 1000. Here the first
two dashes represent ReLU non-linearities and the final layer of outputs represents softmax logits.
We learn the first weight matrix (2048 - 1000) using MLE and are Bayesian about the subsequent
weight matrices (we use mean field variational distributions). We do not fine-tune the weight matrices
inherited from the pre-trained ResNet50. Our test set and validation set consist of 40k and 10k
images, respectively. We train10 for up to 120 epochs and use the validation set to fix optimization
hyperparameters and determine how many epochs to train. In contrast to the typical approach taken in
deep learning, we used a fixed size/crop for training images, i.e. we do not do any data augmentation.

9https://pytorch.org/docs/stable/torchvision/models.html
10Note that we also trained our network using the approximations and control variates described in Sec. 6.7,

but we do not report those results here.

10



Fig. 1 is generated as follows. For the MC estimate of the predicted class probabilities, we draw a
total of 4096 samples per datapoint. These samples are then combined via the following allocation:

Ninner ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] and Nouter = 4096/Ninner (43)

Here Ninner, which represents the number of samples inside the log, is the quantity plotted on the
horizontal axis of Fig. 1. To form the deterministic approximation we follow Sec. 6.7.4.

6.9 Related Work

The approach most closely related to ours is probably the deterministic approximations in ref. [26]
(indeed they compute some of the same ReLU integrals that we do). While we focus on single-layer
neural networks, the distinct advantage of their approximation scheme is that it can be applied
to networks of arbitrary depth. Thus some of our results are potentially complementary to theirs.
Reference [11] also constructs deterministic variational objectives for the specific case of the ReLU
activation function. Reference [19] considers quadratic piecewise linear bounds for the logistic-log-
partion function in the context of Bernoulli-logistic latent Gaussian models. Finally, approaches for
variance reduction in the stochastic variational inference setting include [14] and [25].

6.10 Assorted Remarks

1. The factorization assumption in Eqn. 3 can probably be weakened at the cost of dealing with
special functions more exotic than the error function.

2. Note that the expression for the full (predictive) variance, which decomposes into three
readily identified components, is given by:

var(x) = diag(ΞB) · (Υ−Φ�Φ)︸ ︷︷ ︸
variance from A

+ ΦTΣBΦ︸ ︷︷ ︸
variance from B

+ β−1︸︷︷︸
observation noise

(44)

3. Although we do not do so here, it would probably be straightforward to compute an all orders
formula for the moments of the ReLU activation function, for which the main computational
ingredient is the expectation

Eq(a)
[
(aTx)n|aTx|

]
(45)
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