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Abstract

Deep learning models are known to be overconfident in their predictions on out
of distribution inputs. There have been several pieces of work to address this
issue, including a number of approaches for building Bayesian neural networks, as
well as closely related work on detection of out of distribution samples. Recently,
there has been work on building classifiers that are robust to out of distribution
samples by adding a regularization term that maximizes the entropy of the classifier
output on out of distribution data. To approximate out of distribution samples
(which are not known apriori), a GAN was used for generation of samples at
the edges of the training distribution. In this paper, we introduce an alternative
GAN based approach for building a robust classifier, where the idea is to use
the GAN to explicitly generate out of distribution samples that the classifier is
confident on (low entropy), and have the classifier maximize the entropy for these
samples. We showcase the effectiveness of our approach relative to state-of-the-art
on hand-written characters as well as on a variety of natural image datasets.

1 Introduction

Deep learning approaches have been shown to be susceptible to being overly confident on unseen
instances that are outside of the training distribution. To address this problem, there have been a
number of recently proposed techniques. This body of work can be divided into two broad categories:
(i) methods that analyze the output of networks trained in a standard fashion to detect out of sample
distributions, and (ii) methods that build robust neural networks through modified loss functions
including work on Bayesian networks as well as regularized networks. We note that techniques from
(i) and (ii) are independent of each other in that techniques from (i) can be combined with techniques
from (ii) to produce more effective results.

The work on using the maximum probability of the classifier [4], its modification to use temperature
based scaling [[12], and the work on using the underlying feature representations in combination with
the Mahalanobis distance [10] belong to category (i). Methods under category (ii) include Bayesian
neural networks based on placing prior over weights of the network [5]], using dropout as a Bayesian
approximation [11], ensemble based approaches [7] and adding a regularization term to explicitly
maximize entropy of out of distribution samples [9].

Our focus in this work is on the later category. In particular, we build on the recent, state-of-the-art
work by Lee et.al. [9] on generating robust classifiers that don’t overfit on out of distribution samples
by explicitly maximizing the uncertainty of a classifier over out of distribution samples. This work in
[9] uses a GAN to generate out-of-distribution samples that are close to training distribution but also
simultaneously have high entropy in terms of classifier output over these samples. Their key intuition
is that by maximizing the uncertainty of the classifier over these out of distribution samples close
to the training distribution, the same effect will be propagated to all samples outside of the training
distribution.
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Contribution In this paper, we use the same idea of maximizing the classifier uncertainty over out of
distribution samples, but take an alternative approach to generating the out of sample distribution.
In particular, we use a GAN to generate samples which are not from the training distribution that
the classifier is confident about (i.e., has low entropy), and then have the classifier maximize the
uncertainty of the predicted labels over these samples in an iterative fashion. This is in direct contrast
to [9], where the GAN is used to generate samples close to the training distribution that the classifier
is not confident about. This difference can be seen clearly by studying the equations (I)) and (2)
below.

This proposed approach leads to improved robust classifiers for out of sample detection because
the GAN is explicitly optimized to generate samples away from the training data that the classifier
is confident about. These samples can span a much larger space beyond the edges of the training
distribution, unlike in [9], where the classifier is restricted to maximizing the uncertainty of samples
close to the edge of the training distribution only. Henceforth, we will refer to the method in [9]] as
BoundaryGAN, and our proposed method as ConfGAN.

2 Training robust classifiers using GANs

We start with the confidence loss proposed by Lee et.al.[9]: L.(0) = Ep, (3.5 [—logPo(y = 7 |
)]+ BEp,,, ) [IXL(U(y) || Po(y | x))] where the first term is the standard cross-entropy loss, and
the second term forces the network (parameterized by ) to generate close to uniform distributions for
out of distribution samples (represented by P,,,;). We note that the proposed loss function corresponds
to a Bayesian classifier under a prior on the weights that corresponds to the classifier producing a
uniform distribution on the network output of class probabilities Py (y | z).

2.1 GAN for generating boundary samples

The confidence loss function is very intuitive, but the key difficulty is in determining P,,,;. In [9],
they take the approach of approximating P,,; by learning to generate ’boundary’ samples at the
edges of the training distribution P;,, using a GAN [3]], with the intuition that if the network learns to
generate labels distributions with high entropy for these boundary samples, then this will propagate to
all out of distribution samples. To generate the boundary out of distribution samples, the generator in
BoundaryGAN is asked to learn samples & close to the training distribution (via standard GAN loss)
which also have low entropy wrt classifier output (via KL divergence loss wrt uniform distribution).
In particular, the overall loss function is given by:
Irbin mén mgx Ep,, 4.9 [—logPo(y =7 | 2)] +5EPZ,7.iOT(z) [KL(Py(y | G(2)) || U(y))]
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Ep,, &) [log D(2)] + Ep,,.,,. () [log(1 — D(G(2))] (1)

C

Here, (A) is the standard cross-entropy loss, and (C) is the standard GAN loss. The term B is
introduced in [9] to both force the generator to generate samples at the boundary of the training
distribution, and to regularize the classifier via these out of distribution samples.

2.2 Proposed method: GAN for generating confident samples

In contrast to [9]], we suggest an alternative approach where instead of forcing the generator to learn a
distribution where the classifier output is close to uniform, we instead ask the generator to identify
samples the classifier is confident about (i.e., low entropy) that are away from the training distribution
P;,,. We simultaneously force the classifier to update its parameters 6 to produce probability outputs
with low entropy for these samples from the GAN. The overall loss function for our proposed
ConfGAN method is given by:

minmaxmax  Ep, .9 [—108Po(y =7 | 2)]+ PEp,.,, o) [KL(Fo(y | G(2)) || U(y))]
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This is similar to the loss function (Eq[T)) for BoundaryGAN with the only difference being that
in BoundaryGAN, the overall loss is minimized with respect to the generator GG instead of being
maximized as in Eq[2] For this reason, in term (b), we use the reverse KL divergence instead of the
forward version used in [9]. In practice, for term (b), we use the reverse KL term for maximization
wrt the generator, and the original forward KL term from [9] for minimization wrt the classifier.
This is because the forward KL terms supplies stronger gradients that push the predicted distribution
Py(y = § | &) towards the uniform distribution.

Asking the generator to maximize the loss function has the effect of forcing the generator to generate
samples the classifier is confident about through term (b), and at the same time, are not from the
training distribution through term (c).

3 Experimental results

While the modification from the original loss in BoundaryGAN to the proposed loss function is
easy to implement, the effect of the modification is significant in terms of the results. We show this
through experimental results on two different data sets - handwritten characters, and natural images.
For measuring out-of-distribution detection accuracy, as in [9]], we use threshold-based detectors [4]
that computes the maximum value of predictive distribution on a test sample and classifies it as
in-distribution if this value is above some threshold.

3.1 Handwritten characters

In the first experiment, we use the hand- [IECR&EEEY '° &
written letters from EMNIST [1] as the in- [RESSI¢i W :
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dataset [16] as the out of sample distribution. ! ’ v0.6

The neural network for the classifier is LeNet-  (a) BoundaryGAN ‘g
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the samples of the generator from Boundary- (b) ConfGAN 00 02 s Positive Rate 1

GAN with ConfGAN. As can be seen from
the figure, BoundaryGAN produces samples
that look like complete characters similar to the actual EMNIST data (similar to Figure 3(d) in [9]),
whereas ConfGAN produces images that look like well-defined, but incomplete parts of characters -
i.e., samples that are not from the training distribution that a classifier is likely to be overconfident
about. Next, we compare the ROC curves measuring detection performance of BoundaryGAN, Conf-
GAN, the standard classifier trained with no regularization (lower bound), and an oracle classifier
that is trained with FashionMNIST as the out of distribution data (upper bound). From Figure[3.2} we
can see that ConfGAN comes close to the performance of the oracle, and significantly outperforms
BoundaryGAN.

3.2 Image datasets using VGG
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The second experiment is on a combination of various datasets: CIFAR [6], SVHN [13], ImageNet [2]],
and LSUN [[17]]. We train VGGNet [[L5] for classifying CIFAR-10, use DCGAN for the generator
and discriminator, with 8 = 0.1, and use datasets from {SVHN, ImageNet, LSUN} as the out of
sample datasets. Under this setup, we measure out of sample detection performance using the same
evaluation metrics in [9] (TNR at 95% TPR, AUROC, Detection accuracy). From Figure@ we see
that the proposed ConfGAN uniformly outperforms BoundaryGAN and other baselines (except oracle
trained and applied on SVHN). The performance improvement of ConfGAN over BoundaryGAN is
especially apparent wrt AUROC (with an average improvement of ~ 12%) across the three datasets.

4 Conclusion

We proposed a new method for building robust classifiers to detect out of distribution samples. The
method is based on using a GAN to generate samples away from the training data that the classifier
is confident about, and have the classifier maximize the uncertainty over these points. Our method
outperforms several baselines in this space on handwritten character and natural image datasets.
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