Stick-Breaking Neural Latent Variable Models

Daniel Flam-Shepherd, Yuxiang Gao, Zhaoyu Guo
University of Toronto
{danielfs, ygao, kenny}@utstat.toronto.edu

Abstract

Neural processes [1] define a class of neural latent variable models. We extend
this class to an infinite dimensional space by imposing a stick-breaking prior
on the latent space. Using Stochastic Gradient Variational Bayes, we perform
posterior inference for the weights of the stick-breaking process and develop the
stick-breaking neural process (SB-NP). SB-NPs are able to learn the dimensionality
of the latent space and have improved posterior uncertainty.

1 Introduction and Motivation: Neural Latent Variable Models

For any neural network-based model that uses latent variables z and data x as inputs : f(x,z) can be
considered a neural latent variable model. For example, Bayesian neural networks (BNN) [2] have
recently been extended with latent variables (LVBNN) [3] to model complex stochastic functions. In
this work, we’ll consider the recently proposed neural processes.

NPs are distributions over functions consisting of an encoder-decoder architecture similar to the
variational autoencoder [4]], where functional uncertainty is driven by a global latent variable z
with fixed dimensionality. However, neural processes have poor uncertainty quality which often
collapses to a point estimate. To get reasonable uncertainty quality, it requires careful tuning of model
architecture and latent dimensionality.

In this work, we extend NPs by using an infinite dimensional latent variable through the use of a
stick-breaking prior, so that the posterior can find the dimensions that are significant to function
uncertainty. Our model, the stick-breaking neural process (SB-NP), learns stick-breaking weights for
every latent dimension so that its uncertainty in functions does not collapse during training.

(a) one data point (b) two data points

Figure 1: Plots of functions sampled from the SB-NP posterior, conditioning on one and two data
points.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

2 Background Information

2.1 Stick-breaking process

A random measure is referred to as a stick-breaking prior (SBP) [5] if it is of the form G(-) =
220:1 Tk its, Where 15, is a dirac measure on d; ~ G and G is a base distribution [5]]. The 7y, are
random weights independent of G, chosen such that 0 < 7, < 1and) x Tk = 1 almost surely. The
weights can be drawn according to the following iterative procedure for k£ > 1:

vy ~ Beta(o, f), m =wvi, T =y H(l—vj) (1
j<k

When vy, ~ Beta(1, ag) this is denoted as w ~ GEM(«y) [6]]. One can obtain stochastic gradients
with respect to the parameters of the Beta distribution using implicit or general reparameterization
gradients [[7]. However, we can use a reparameterizable proxy instead, similar to [8]].

2.2 The Kumaraswamy distribution

The Kumaraswamy distribution [9]] is used in our SB-NP model, as it admits reparameterization
gradients that are easy to compute numerically. It closely resembles the Beta distribution and admits
reparameterizable samples via its closed-form inverse CDF. It has the following density

p(z|a,b) = abz® (1 — 2%)*~! forz € (0,1) and a,b > 0 (2)

Furthermore, the KL divergence between the Kumaraswamy and the Beta distribution has a
closed-form. Let p(vi) have the distribution Beta(c, 5) and let g4 (vy) have the distribution
Kumaraswamy(ae, bg). Then the KL divergence is

- 1
KLlgo(00)lp()] = 4= |5 = W(bg) = 5| +Iogaghs + og B(a.)
= 1 m by —1
+ (B —1)bg mZ:1 mB (%7 b¢) T s 3)

where is Euler’s constant, W is the digamma function, B(a, b) is the beta function. Note that the
RHS of the above equation has no dependency on the index k. This KL divergence contains an
infinite sum but this can be approximated accurately with the first few terms [S8]].

2.3 Neural Processes

NPs, like Gaussian Processes, are able to adapt to new observations and learn complex distributions
of functions. In NPs, the training data D = D, U D, is divided into a target set D, and context set D,
with both sets being disjoint. A variational approximation ¢(z|D) to true posterior p(z|D) is learned
by maximizing the conditional evidence lower bound:

p(Dy,z|D,.) p(Dy,z|D,.)
= — | > —_ 7
log p(D;|D,.) = log Eqy(zp) { 2(2ID) > Eq(zp) |log 4(2ID)
> Ey(g/p)[log p(Di|De, z) + log q(z|D.) — log q(z|D)] 4)

where we have approximated the conditional prior with the approximate posterior ¢(z|D.) ~ p(z|D..).
Neural processes include:

1. an encoder network ¢(z|D) = N (p,(D),0,(D)) where pu,(D),0,(D) = a(hg, (D))
with parameters ¢y, .

2. adecoder network fg, (x,z) that makes predictions with parameters ¢ .

3. an aggregator a(r) = E, (r) which takes the mean over the data in the latent space, with
r; = hg, ((x;,¥;)) and E,, being the empirical average.

Algorithm 1 describes the training procedure of the SB-NP. h is the encoder network and f is the
decoder network. ¢y, ¢ are the parameters of the encoder and decoder networks, respectively.
adam() denotes use of the adam optimization algorithm [10]

1: Initialize ¢ = {¢n, 5}
2: while ¢ not converged do

3: r=hy,(X,y) > output from the encoder
4: a,b = exp(E,[r,]) > aggregate over the data to get the parameters
5: u~U(0,1) > sample from the uniform
6: v=(1-—ul/2)l/p > sample from the Kumaraswamy distribution
7: 7 = (v1,v2(l —v1),...) > get the weights of stick-breaking process
8: Y= fo,X,m) > use the decoder to make a prediction
9: 8¢ — @¢,£D(¢) > estimate gradients of the elbo
10: ¢ < adam(¢, g¢) > update parameters

11: Return ¢*

3 Stick-breaking neural processes (SB-NP)

We incorporate the use of a stick-breaking prior into the neural process architecture. The generative
model of SB-NP is identical to NPs except that the latent variables 7r are drawn from the stochastic
process GEM(«y). This is similar in nature to the stick-breaking variational autoencoder [8]]. The
generative model can be described simply as

7 ~ GEM(ap) y|m ~ p(D|m)

We use Stochastic Gradient Variational Bayes for posterior inference on the weights of a stick-
breaking process. For inference, the encoder outputs the parameters of the Kumaraswamy distribution
which are used for sampling v,. A truncation level of K is set and then the stick segments are
composed as m = (v1,v2(1 —v1),...,[[;< (1 — v;)). In contrast to NP, we can typically select
it to be fairly small (k < 10), in order to obtain meaningful uncertainty. The training procedure of
SB-NPs is described in Algorithm 1. To use a tractable prior, unlike in neural processes, we do not
split the data into a context and target set and optimize the following lower bound:

D, D,
log p(D) = log Eq(x|p) B((ﬂ'm))] > Eyxp) {log];((ﬂ'mH
= Ey(xp) [log p(D|m)] — KL[g(7|D)||p(m)] := Lp(¢) (5)

Using the Kumaraswamy distribution allows us to take stochastic gradients of the objective using
the reparameterization trick. Samples can be drawn via the inverse transform x = (1 — ub) @ where
u ~ Uniform(0, 1). We utilize autograd [[11]] to calculate gradients of the lower bound by back-
propagating through the variational posterior sampling procedure. We use the adam optimization
algorithm [10] to update the parameters.

=0 =0
)]
n n o]

(a) NP (b) SB-NP

Figure 2: On the left, (a) is the graphical model of a NP and b) the graphical model of a SB-NP.

(a) BNN (b) LVBNN (c) NP (d) SB-NP

Figure 3: Plots of the 4 posteriors for data sampled from a cubic function. Different shades of color
correspond to deciles of the predictive density. Note that SB-NP has better posterior uncertainty.

4 Results on toy data

We compare our stick-breaking neural latent variable model (SB-NP) with a bayesian neural net,
a latent variable bayesian neural net and a neural process. Figure 3 displays the posteriors on toy
problem y = f(z) + € where f(x) = 2% and ¢ is gaussian noise.

While uncertainty in neural processes collapses, the SB-NPs uncertainty doesn’t collapse during
training. Furthermore the SB-NP has larger uncertainty bands away from the data than both the BNN
and LVBNN. This demonstrates that stochastic dimensionality in the latent space gives rise to better
posterior uncertainty.

During training on another toy problem we learn a 7 dimensional posterior on 7. We visualize
the latent space in Figure 4, where a) displays the convergence of the sticks during training and b)
displays the distribution of sticks after training.

According to Figure 4: Stick weights 71, T2 on average have the top weighting at the end of training
and are the main factors driving posterior uncertainty. The SB-NP learns a lower dimensional latent
space than a neural process, which usually must be hand tuned to a fixed high dimensional latent
space.

100
— Stick 1 stick 1

Stick 2 stick 2

80 Stick 3 stick 3
—— Stick 4 80 1 stick 4
Stick 5 Stick 5

Stick 6 stick 6

601 Stick 7 stick 7

60 1

404
40 1

ZO-M
20

’ “
- - - . 0 —

0 20 40 60 80 100 0 2‘0 4‘0 6‘0 8‘0 100
Iteration Percentage

(a) Average stick weights with o-bands (b) Histogram of sticks

Figure 4: Behaviour of stick breaking weights during training

5 Conclusion and Future Work

In this work, we proposed the stick-breaking neural latent variable models (SB-NP), which are
distributions of functions that use a global latent variable of stochastic dimensionality. We demonstrate
the expressiveness of SB-NPs in modelling posterior uncertainty in comparison to bayesian neural
nets and neural processes. Placing priors on the decoder network and training SB-NPs on much larger
datasets are future directions of this work.

6 Acknowledgements

We thank Yanbo Tang and Tommy Guo for the helpful feedback and discussions.

References

[1] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali
Eslami, and Yee Whye Teh. Neural processes. arxiv preprint, 2018.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. International Conference on Machine Learning, 2015.

[3] Stefan Depeweg, José Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning.
International Conference on Machine Learning, 2018.

[4] D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. International Conference on
Learning Representations, 2014.

[5] Hemant Ishwaran and Lancelot F James. Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 2001.

[6] Jim Pitman. Combinatorial stochastic processes. UC Berkeley Technical Report, 2002.

[7] Michael Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients.
arxiv preprint, 2018.

[8] Eric Nalisnick and Padhraic Smyth. Stick breaking variational autoencoders. ICLR, 2017.

[9] Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded
random processes. Journal of Hydrology, 1980.

[10] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. International Conference
on Learning Representations, 2015.

[11] Dougal Maclaurin, David Duvenaud, Matthew Johnson, and Ryan P. Adams. Autograd: Reverse-
mode differentiation of native python. 2015.

	Introduction and Motivation: Neural Latent Variable Models
	Background Information
	Stick-breaking process
	The Kumaraswamy distribution
	Neural Processes

	Stick-breaking neural processes (SB-NP)
	Results on toy data
	Conclusion and Future Work
	Acknowledgements

