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Abstract

For deep neural networks, it is important to quantify the uncertainty in its predic-
tions. So a probabilistic neural network with a Gaussian assumption was widely
used. However, in real data especially image data, the Gaussian assumption typi-
cally cannot hold. We are interested in modeling a more general distribution, e.g.
multi-modal or asymmetric distribution. Therefore, a kernel density neural network
is proposed. We adopt state-of-the-art neural network architecture and propose a
new loss function based on maximizing the conditional log likelihood. And we
show its application in face alignment. The proposed loss function achieves compa-
rable or better performance than state-of-the-art end-to-end trainable deep learning
based methods in terms of both the predicted labels and uncertainty in predictions.
Moreover, it can be generally extended to many other regression problems such as
Action Unit intensity estimation and face age estimation.

1 Introduction

It is very often that we have discrete labels in regression problems, e.g. face alignment, human
body pose estimation, facial Action Unit intensity estimation and facial age estimation. For such
problems, people either use regression framework and then discretize the continuous prediction or
directly treat each discrete label as one class and use classification framework as adopted in facial
age estimation [9)]. The benefit of a regression framework is that it takes the relative value of the
labels into consideration and naturally makes the labels with close values more difficult to distinguish
from each other. While the benefit of classification framework is that it aims to find the class with the
highest response, which can often be achieved without fully connected layers in convolutional neural
networks thus reducing the number of parameters in the model. And a softmax cross entropy loss
puts the problem into a probabilistic framework thus is able to provide uncertainty estimation.

The goal of our work is to combine the advantage of fully convolutional network [6] in specific
regression problems like face alignment and the advantage of a probabilistic neural network which
not only gives label prediction but also quantifies the uncertainty of the prediction. Our proposed
method only change the loss function of current heatmap regression based deep learning method
for face alignment. Therefore it is compatible with state-of-the-art heatmap regression based deep
learning architecture for face alignment.

2 Related work

Probabilistic neural networks can be used to provide predictive uncertainty. To formulate data
uncertainty, also known as aleatoric uncertainty, authors in [8, 5] proposed to model the label as a
random variable or random vector and parameterize it with the neural network output. For regression
tasks, it is usually assumed that the output follows Gaussian distribution [8, 5, 3]]. However, in some
real-world problems, the target distribution may be asymmetric or multi-modal, which the Gaussian
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distribution cannot model. Therefore, we propose a Kernel Density Network (KDN) and apply it to
face alignment.

Face alignment is to localize facial key points in a face image. Most recent deep learning based
methods for face alignment [2} [12] follows the architecture of Stacked Hourglass, first proposed by
[7] to solve human body pose estimation. The loss function is typically an L-2 distance between
the predicted heatmap and the ground truth heatmap, specified by putting a Gaussian distribution
with fixed variance around the ground truth labels [[L1]. This loss function can be interpreted as a
deterministic softlabel regression or as minimizing the L-2 distance between a Gaussian distribution
with fixed variance and the predicted distribution. Therefore the network cannot provide good
uncertainty estimation for its predictions.

3 The Proposed Method

We assume target y is a random vector that follows p(y | x; ®), where x is the input and © is
the neural network parameter. In this way we put the problem in a probabilistic neural network
framework such that p(y | x; ©) is parameterized by the neural network output.

3.1 Kernel Density Network

Inspired by Kernel Density Estimation [10]], we use a probabilistic neural network with an infinite
mixture of Gaussian distribution assumption for regression problems [4]. Under this assumption, the
target distribution is expressed as

Py | %;©) = / p(y | 1 S)p(pe | x; ©)dps (1)

where p(y | u; ) = N(u, X) is a Gaussian distribution with fixed covariance matrix ¥ and mean
 in the same space as y. For landmark detection, p € [1,m] x [1,n], where m, n are the height and
width of the image.

However, this integration is difficult to compute analytically. In Kernel Density Esitmation, we
sample p; from p(p | x; ®) and use summation to approximate the integration by p(y | x; @) =

Zi\il p(y | 1), b; ~ p(pe | x; ©). Here we approximate the integration with a discrete summation
as shown in Equation (2)), which is different from existing work of Variational Autoencoder [4].

ply | x;0) = ZZpyluW p(p; | %;©) )
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where Hi; = [i»j]T and 221 Z?:1 p(lh‘j |%,0)=1
Therefore Equation (2)) can be further written as

m n
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It is worth noting that the form of p(y | x; ®) depends on our choice of the kernel density function. If
we choose a uniform kernel with range 1, it is equivalent to a likelihood for a categorical distribution
where each category is the discrete regression label.

And p(p;; | x; ©) is the output heatmap of the neural network. In this way, we only change the loss
function of the neural network for face alignment problem without modifying the network structure.
The goal is to maximize the conditional likelihood without assuming any specific distribution of the
target, unlike widely practiced loss function which puts a fixed Gaussian heatmap around the ground
truth label as the ground truth heatmap and minimize the L-2 distance between the ground truth
heatmap and the predicted one. The loss function is defined as the negative log conditional likelihood.
Given training data D = {xy,y% | k = 1,2,..., N}, we minimize the loss function to get @™ as



shown in Eq. (@).

N
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3.2 Predictive uncertainty

The proposed target distribution in Eq.(T) is composed of a mixture of Gaussian distributions, thus its
covariance matrix can be computed as

Covly | x;0] = ZZ (B — p) (2 — .“ij)Tp(Hij | x;©) )

where 1 = >0 D70 pyip(pij | x; ©).

The uncertainty of the prediction is quantified by the square root of the determinant of the covariance
matrix | Cov[y | x; ©]|z.

4 Experiment and Discussion

For training, we follow the same procedure as in [2] to make a fair comparison with the performance
with the same structure and training data but different loss function.

4.1 Metrics

Normalized Mean Error (NME) Same as in [2], the NME is defined as the average point-to-
point Euclidean distance between the ground truth (y ;) and predicted (y,,eq) landmark locations
normalized by the ground truth facial bounding box size d = v/ Wppoz * Pppor- 7 denotes the n-th
testing sample.

1Yo — Yol
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Area under the Curve (AUC) Based on the NME in the test dataset, we can draw a Cumulative
Error Distribution Curve with NME as the horizontal axis and percentage of test images as the vertical
axis. Then the AUC is computed as the area under that curve for each test dataset.

4.2 Prediction Accuracy

We perform tests on 300W test dataset and Menpo Challenge dataset. The result of the softlabel is
from [2]. While the paper did not provide the NME, we compute it from the trained model provided
by the author [1]. For the Gaussian assumption, since it is not directly compatible with heatmap
regression based method, we use ResNet-50 with two outputs, mean and variance. The results are
shown in Table[I] where KDN-Uniform refers to the KDN using a uniform kernel, which is equivalent
to softmax cross entropy. And KDN-Gaussian refers to the KDN using a Gaussian kernel.

Comparison of different loss

Compared to the probabilistic neural network that predicts mean and covariance for Gaussian
distribution, we are able to predict a more flexible distribution including multi-mode and asymmetric
distributions. And rather than providing a variance for uncertainty quantization, the probability map
from our algorithm is able to give more information such as the boundary of the face, and the regions
that are supposed to be other landmarks.

Compared to the softlabel loss which puts a 2D Gaussian with fixed covariance and use the L-2
distance for the training, the effect is that they will approximate a Gaussian distribution with different



Table 1: Prediction accuracy on 300W Test and Menpo Challenge dataset

Method 300W Test Menpo Challenge
NME (%) AUC (%) NME (%) AUC (%)
Gaussian 2.92 57.6 2.67 59.4
Softlabel[2]] 2.56 66.9 2.32 67.5
KDN-Uniform 2.57 66.3 2.33 67.3
KDN-Gaussian  2.49 67.3 2.26 68.2

means but the same covariance, so that the heatmap predictions hardly give any information on their
uncertainty, neither in the level of landmarks nor samples.

Compared to the KDN-uniform loss, which is equivalent to the cross entropy loss in classification to
find the most possible pixel location. And this method eliminates the spatial correlation information
given by the pixel location value but treat each class as independent. This method can only learn the
spatial relationship of each class from the data.

4.3 Uncertainty Quantification

In Fig[l], we plot the estimated uncertainty versus the prediction error for each landmark point rather
than average error over all landmarks in a sample image which better illustrates uncertainty prediction
for each landmark. We can see that the predicted uncertainty is highly correlated with the prediction
error. While the softlabel loss is not designed for uncertainty estimation, the heatmap it predicts still
to some extent reflects prediction uncertainty. Compare to the softlabel loss, our method gives a
better uncertainty estimation.
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Figure 1: Predicted uncertainty v.s. prediction error on 300W testset

Visualization

Fig. 2] demonstrates that the proposed method can distinguish between occluded uncertain landmarks
and non-occluded landmarks based on the predicted heatmap. For occluded landmarks, the predicted
heatmap usually has a flatter shape than the non-occluded ones. While the traditional softlabel
regression methods can hardly demonstrate the predictive uncertainty in occluded landmarks.

Fig. 3| demonstrates that the proposed method can capture distribution with a more flexible shape.
For landmarks lie on the facial boundary, the predicted heatmap usually has a shape along the local
edge of the face. While the traditional softlabel regression method still predicts a circular shape that
represents a standard 2D Gaussian.



Figure 2: Sample heatmaps generated from two methods for occluded landmarks (better viewed in
color). The 1st row is the proposed kernel density method, the 2nd row is the softlabel method. The
displayed landmarks are subsets of the 68 points, the first 7 columns show point 1,5,9,13,17 and the
last 3 columns show point 31,46,37,49,55.

Figure 3: Sample heatmaps generated from two methods with flexible distribution shape (better
viewed in color). The Ist row is the proposed kernel density method, the 2nd row is the softlabel
method. The displayed landmarks are subsets of the 68 points, the first 8§ columns show point
1,5,9,13,17 and the last 2 columns show point 31,46,37,49,55.

4.4 Sensitivity to Bandwidth

Similar as in Kernel Density Estimation, the choice of bandwidth 3 will affect the smoothness of the
final predicted distribution. Larger 3 gives smoother predicted distribution.

In this work, we choose 3 = oI. And we analyze the sensitivity to the choice of ¢ in Table 2} Based
on our observation, the prediction accuracy is not very sensitive to the choice of o when o is larger
than 1, but the convergence speed is affected. Larger o takes more time to converge. Too small o
converges faster but has a more similar behavior with KDN-Uniform that has a larger error and the
predicted distribution is more centered. For face alignment we choose a small value o = 1. But for
other tasks such as human body pose estimation, the optimal choice for o may be different. It is
possible to model o dependent on the input x and we leave it for future research.

Table 2: Sensitivity to bandwidth on 300W Test dataset
o NME (%) AUC (%)

0.1 2.56 66.3
03 254 66.7
1 2.49 67.3
3 2.49 67.2
10 2.50 66.9

5 Conclusion

In this work, aiming at quantifying uncertainty for neural network predictions with asymmetric or
multi-modal distribution, we propose a kernel density network inspired from kernel density estimation.
By changing the loss function to maximize the conditional log likelihood, it achieves comparable or
slightly improved performance on the testing dataset. Moreover, the predicted probability map is able
to quantify predition uncertainty as well as capture more general distributions than Gaussian.



Besides that, the KDN with Gaussian kernel is able to avoid or reduce the downsampling error
comparing to the softlabel loss or the KDN with a uniform kernel. Because often the heatmap is 4
times smaller compared to both the width and height of the original input image. This will lead to the
downsampling error which makes it difficult to distinguish between the locations of two very close
but different landmarks. Our method constructs a continuous mixture of 2D Gaussian distribution
from the predicted heatmap. Therefore during testing, we are able to find the mode of the continuous
distribution even if it lies between two pixels.

Future work will focus on making use of the probability map in other tasks such as occlusion detection
and boundary detection. It would also be interesting to apply this method to other regression tasks
such as facial age estimation and facial Action Unit intensity estimation.
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Appendix

A Implementation Details

Since the difference between the softlabel, softmax and KDE method is only the loss function, to make a fair
comparison, we set the random seed to be the same for each method and train each of them until convergence.
We follow the implementation of [2]. We set the initial learning rate to 10~ and kept it for 15 epochs and used
a minibatch of 10. Then we dropped the learning rate to 10~ and to 10~° after another 15, training for a total
of 40 epochs. We also applied random augmentation: flipping, rotation (from —50° to 50°), color jittering, scale
noise (from 0.8 to 1.2) and random occlusion.

B Equations

B.1 Gradient of the proposed loss function

To demonstrate the benefits of the proposed loss function, we compute the gradient of the loss w.r.t. the layer
before softmax. To simplify the notation, let wi;; = p(yr | Hijs 33). Denote the layer before softmax for
the sample k as fx;;, and the layer after softmax as pr.j, pri; = softmax(fri;). The derivative of the loss
contributed by a training sample {xx, yx } can be computed as

OLossy, _ Prij (wkij - > wkabpkab)
0 fkij 1> b1 WkabDkab
where wy;; > 0 measures the similarity between each pixel location in the heatmap and the ground

truth landmark location. The closer the pixel location [, j]T is to the ground truth y, the higher wg;;.
D ome 1 D p—1 WkabPkab 15 the expectation of the similarity over discrete probability distribution p(g;; | x; ©).

@)

During training, if wy;; > Z:;l Z:zl WkabPkab, 1.€. the similarity at location [4, j]T is larger than the average
similarity, fx;; will increase. Therefore in the beginning, all the pixel locations near the ground truth (similarity
greater than the average similarity threshold) will have their probability p;; increased, and pixels far away
(similarity smaller than the average similarity threshold) will have their probability decreased. Then the average
similarity Z’::l 22;1 WkabPrab Will also increase. With the increasing average similarity, fewer pixels will
have their associated probability increased. Then the heatmap will become more concentrated near the ground
truth as the training process goes on.

Compared to the softmax cross entropy loss for classification, this loss takes into account the spatial location
of each pixel, unlike the softmax loss that treats all the negative classes equally when performing the gradient
update. More importantly, in the beginning of the training process, pixels near the ground truth will have their
associated probability increased which allows for exploration around the ground truth and prevents overfitting to
the ground truth.
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