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Abstract

This paper presents a Bayesian nonparametric formulation of deep learning that is
based on the Indian Chefs Process (ICP), a Bayesian nonparametric prior on the
joint space of infinite directed acyclic graphs (DAGs) and orders. The distribution
relies on a latent Beta process controlling both the orders and outgoing connection
probabilities of the units, making the graph sparse and infinite. In the experiments,
we demonstrate the usefulness of the ICP on learning deep generative models.

1 Formalizing the Bayesian Nonparametric Deep Generative Model

We consider a layerless formulation of neural networks where connections are not constrained by
layers and units can connect to any units below them with some probability. In particular, we use the
Nonlinear Gaussian Belief Network (NLGBN) as our generative model [4]. In this model, the output
of a unit ui depends on a weighted sum of its parents, where Wki represents the weight of parent unit
uk, Zki indicates whether uk is a parent of ui and bi is a bias. Afterwards, this sum is corrupted by
zero mean Gaussian noise with precision ρi, so that ai ∼ N (bi +

∑
k ZkiWkiuk, 1/ρi). The noisy

preactivation ai is then passed through a sigmoid function, producing the output value of unit ui.

1.1 Probability Model on Finite DAGs

We define G = (V,Z) as the DAG structure of a neural net where V = {1, . . . ,K} is the set of units
and Z is the K ×K adjacency matrix of connections. We define an ordering θ on the units so that
the direction of a connection is determined by comparing the order value of each unit. One can see θ
as a continuous layer index, making the structure infinitely layered. Thus, we impose the constraint
that a connection Zki is only allowed between units when θk > θi.

We assume that both the adjacency matrix Z and the ordering θ are random variables and develop a
Bayesian framework reflecting our uncertainty. Accordingly, we assign a popularity parameter πk
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and an order value θk to every node k in G based on the following probability model:

θk ∼ U(0, 1), (1)

πk | α, γ, φ,K ∼ Beta
(αγ
K

+ φI(k ∈ O), α− αγ

K

)
(2)

Zki | πk, θk, θi ∼ Bernoulli (πkI(θk > θi)) . (3)

Here, I denotes the indicator function, U(a, b) denotes the uniform distribution on interval [a, b] and
O ⊆ V is the set of observed nodes. In this model, the popularities reflected by π control the outgoing
connection probability of the nodes while respecting the total order imposed by θ. Moreover, the
Beta prior parametrization in Eq. (2) is motivated by the Beta process construction of [10], where
Eq. (1) becomes the base distribution, and is convenient when evaluating the limit of section 1.2.
Also, α and γ correspond to the usual parameters defining a Beta process and the purpose of the new
parameter φ is to control the popularity of the observable nodes and ensure a non-zero connection
probability when required.

Under this model, the conditional probability of the adjacency matrix Z given the popularities
π = {πk}Kk=1 and order values θ = {θk}Kk=1 is:

p(Z | π,θ) =
K∏
k=1

K∏
i=1

p(Zki|πk, θk, θi) . (4)

The adjacency matrix Z may contain connections for nodes that are not of interest. As an example,
when learning a neural network with hidden neurons, we are only interested in the observable neurons
and their ancestors. Formally, we define A ⊆ V as the set of active nodes, containing all observable
nodes O and the ones having a directed path ending at an observable node.

When solely considering connections fromA toA, i.e. the adjacency submatrixZAA of theA-induced
subgraph of G, Eq. (4) simplifies:

p(ZAA | π,↓,θ) =
∏
k∈A

πmk

k (1− πk)↓k−mk , (5)

wheremk =
∑
i∈A Zki denotes the number of outgoing connections from node k to any active nodes,

↓k=
∑
j∈A I(θj < θk) denotes the number of active nodes having an order value strictly lower than

θk and ↓= {↓k}Kk=1. At this point, we marginalize out the popularity vector π in Eq. (5) with respect
to the prior by using the conjugacy of the Beta and Binomial distributions, leading to the following
equation:

p(ZAA | α, γ, φ,↓,θ) =
∏
k∈H

[αγK ]mk [α− αγ
K ]↓k−mk

α↓k

∏
k∈O

[αγK + φ]mk [α− αγ
K ]↓k−mk

[α+ φ]↓k
, (6)

where xn = x(x+ 1) . . . (x+ n− 1) is the Pochhammer symbol denoting the rising factorial and
H = A \O is the set of active hidden nodes.

The set of active node A contains all observable nodes as well as their ancestors, which means it is
disconnected from the other parts of the graph G. Let us denote by I = V \ A the set of inactive
nodes. Considering that the A-induced subgraph is effectively maximal, then this subgraph must
be properly isolated by some envelope of no-connections ZIA containing only zeros. The joint
probability of these submatrices is:

p(ZAA, ZIA | α, γ, φ,↓,θ) = p(ZAA | α, γ, φ,↓,θ) ·
∏
k∈I

[α− αγ
K ]↓k

α↓k
(7)

where the number of negative Bernoulli trials ↓k depends on θk itself and θA. Notice that since
the submatrices ZAI and ZII contain uninteresting and unobserved binary events, they are trivially
marginalized out of p(Z).

One way to simplify Eq. (7) is to marginalize out the order values θI of the inactive nodes with
respect to (1). To do so, we first sort the active node orders ascendingly in vector θ↗A and augment it
with extrema θ↗0 = 0 and θ↗K++1 = 1. We slightly abuse notation here since these extrema do not
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refer to any nodes and are only used to compute interval lengths. This provides us with all relevant
interval boundaries, including the absolute boundaries implied by Eq. (1). We refer to the jth smallest
value of this vector as θ↗j . Based on the previous notation, the probability for an inactive nodes to lie
between two active nodes is simply θ↗j+1 − θ

↗
j . Using this notation, we have the following marginal

probability:

p(Z↗AA, ZIA,θ
↗
A | α, γ, φ) =

(K −D)K
+−D

K+!

K+∑
j=0

(θ↗j+1 − θ
↗
j )

[α(1− γ
K )]j

αj

K−

∏
k∈H

[αγK ]mk [α− αγ
K ]↓k−mk

α↓k

∏
k∈O

[αγK + φ]mk [α− αγ
K ]↓k−mk

[α+ φ]↓k
, (8)

where we introduce K+ = |A| to denote the number of active nodes, K− = |I| to denote the
number of inactive nodes and xn = x(x− 1) . . . (x− n+ 1) symbolizes the falling factorial. Due
to the exchangeability of our model, the joint probability on both the adjacency matrix and active
order values can cause problems regarding the index k of the nodes. One way to simplify this is to
reorder the adjacency matrix according to θ↗A , which we denote Z↗AA. By using this many-to-one
transformation, we obtain a probability distribution on an equivalence class of DAGs that is analog
to the lof function used by [7]. The number of permutation mapping to this sorted representation is

accounted for by the normalization constant (K−D)K
+−D

K+! .

1.2 From Finite to Infinite DAGs

An elegant way to construct Bayesian nonparametric models is to consider the infinite limit of finite
parametric Bayesian models [9]. Following this idea, we revisit the model of section 1.1 so that G
now contains infinitely many nodes. To this end, we evaluate the limit as K →∞ of Eq. (8), yielding
the following probability distribution:

p(Z↗AA, ZIA,θ
↗
A |α, γ, φ,O) =

1

K+!
exp

−αγ K+∑
j=1

(θ↗j+1 − θ
↗
j )
[
ψ(α+ j)− ψ(α)

]
∏
k∈H

αγ
(mk − 1)!

(α+ ↓k −mk)mk

∏
k∈O

φmkα↓k−mk

[α+ φ]↓k
, (9)

where ψ is the digamma function. Eq. (9) is the proposed marginal probability distribution on the
joint space of infinite DAGs and continuous orders, which allows to define infinite dimensional and
arbitrarily deep networks.

1.3 The Indian Chefs Process

Sampling random DAGs from probability distribution (9) can be done with the Indian chefs process
(ICP). In the ICP metaphor, chefs draw inspiration from other chefs, based on their popularity and
reputation, to create the menu of their respective restaurant. This creates inspiration maps repre-
sentable with directed acyclic graphs. ICP defines two types of chefs: 1) star chefs (corresponding
to observable nodes) which are introduced iteratively and 2) regular chefs (corresponding to hidden
nodes) which appear only when another chef selects them as a source of inspiration.

The ICP starts with an empty inspiration map as its initial state. The infinitely many chefs can be
thought of as lying on a unit interval of reputations. Every chef has a fraction of the infinitely many
chefs above him and this fraction is determined by the chef’s own reputation.

The general procedure at iteration t is to introduce a new star chef, denoted i, within a fully specified
map of inspiration representing the connections of the previously processed chefs. The very first
step is to draw a reputation value from θi ∼ U(0, 1) to determine the position of the star chef on the
reputation interval. Once chef i is added, sampling the new inspiration connections is done in three
steps.
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Backward proposal Step one consists in proposing star chef i as an inspiration to all the ↓i chefs
having a lower reputation than chef i. To this end, we can first sample the total number of inspiration
connections with:

qi ∼ Binomial
(
↓i,

φ

α+ φ

)
, (10)

and then uniformly pick one of the
(↓i
qi

)
possible configurations of inspiration connections.

Selecting existing chefs In step two, chef i considers any already introduced chefs of higher
reputation. The probability for candidate chef k to become an inspiration for i is:

Zki ∼ Bernoulli
(

mk + φI(k ∈ star chefs)
α+ ↓k −1 + φI(k ∈ star chefs)

)
, (11)

where ↓k includes the currently processed chef i.

Selecting new chefs The third step allows chef i to consider completely new regular chefs as
inspirations in every single interval above i. The number of new regular chefs Knew

j to add in the jth

reputation interval above i follows probability distribution:

Knew
j ∼ Poisson

(
(θ↗j+1 − θ

↗
j )αγ

α+ ↓j −1

)
, (12)

where the new regular chefs are independently assigned a random reputation drawn from U(θ↗j , θ
↗
j+1).

The regular chefs introduced during this step will be processed one by one using step two and three.
Once all newly introduced regular chefs have been processed, the next iteration t+ 1 can begin with
step one, a step reserved to star chefs only.

1.4 Connection to the Indian Buffet Process

There exists a close connection between the Indian chefs process (ICP) and the Indian buffet process
(IBP). In fact, our model can be seen as a generalization of the IBP. Firstly, all realizations of the IBP
receive a positive probability under the ICP. Secondly, the two-parameter IBP is recovered, at least
conceptually, when altering the prior on order values (see Eq. (1)) so that all observed nodes are set
to θ = 0 and all hidden nodes are set to θ = 1. This way, connections are prohibited between hidden
nodes and between observable nodes, while hidden-to-observable connections are still permitted.

2 Markov Chain Monte Carlo Inference for the Indian Chefs Process

We propose a reversible jump MCMC algorithm producing random walks on Eq. (9) [6]. This
algorithm works in three phases: the first resamples graph connections without adding or removing
any nodes, the second phase is a birth-death process on nodes and the third one only involves the
order.

The algorithm itself uses the notion of singleton and orphan nodes. A node is a singleton when it
only has a unique active child. Thus, removing its unique connection would disconnect the node from
the active subgraph. Moreover, a node is said to be an orphan if it does not have any parents.

Within model moves on adjacency matrix: We begin by uniformly selecting a node i from the
active subgraph. The set of potential parents for i comprises all non-singleton active nodes having an
order value greater than θi. This set includes both current parents and candidate parents. Then, for
each potential parent k, we Gibbs sample the connections using the following conditional probability:

p(Z↗ki = 1|Z
↗¬ki
AA ,θA) =

m¬ik + φI(k ∈ O)

α+ ↓k −1 + φI(k ∈ O)
, (13)

where m¬ik is the number of outgoing connections of node k excluding connections going to node i
and Z

↗¬ki
AA has element ki removed. Also, all connections not respecting the order are prohibited

and therefore have an occurrence probability of 0.
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Trans-dimensional moves on adjacency matrix: We begin with a random uniform selection of
node i in the active subgraph. Next, with equal probability, we either propose a birth move or a death
move.

In the birth case, we activate node k by connecting it to node i. Its order θk is determined by uniformly
selecting an insertion interval above θi. Assuming node i is also the ith element in θ↗A , we have
↑i= K+ − i+ 1 possible intervals, including zero-length intervals. Let us assume that j and j + 1
are the two nodes between which k is to be inserted. Then, we obtain the candidate order value of the
new node by sampling θk ∼ U(θ↗j , θ

↗
j+1). The Metropolis-Hastings acceptance ratio for this move

is:

abirth = min

{
1,
p(Z ′

↗
A′A′ , Z

′
I′A′ ,θ

′↗
A′ |α, γ, φ,O)

p(Z↗AA, ZIA,θ
↗
A |α, γ, φ,O)

·
(θ↗j+1 − θ

↗
j )(↑i +1)K+

K∗i + 1

}
, (14)

where K∗i is the number of singleton-orphan parents of i and ↑i=
∑
j∈A I(θj > θi) is the number of

active nodes above i.

In the death case, we uniformly select one of the K∗i singleton-orphan parents of i if K∗i > 0
and simply do nothing in case there exists no such node. Let k be the parent to disconnect and
consequently deactivate. The Metropolis-Hastings acceptance ratio for this move is:

adeath = min

{
1,
p(Z ′

↗
A′A′ , Z

′
I′A′ ,θ

′↗
A′ |α, γ, φ,O)

p(Z↗AA, ZIA,θ
↗
A |α, γ, φ,O)

· K∗i

(θ↗j+1 − θ
↗
j )(K+ − 1) ↑i

}
. (15)

If accepted, node k is removed from the active subgraph.

Moves on order values: We resample the order value of randomly picked node i. This operation
is done by finding the lowest order valued parent of i along with its highest order valued children,
which we respectively denote l and h. Next, the candidate order value is sampled according to
θi ∼ U(θl, θh) and accepted with Metropolis-Hasting ratio:

aorder = min

{
1,
p(Z↗AA, ZIA,θ

′↗
A |α, γ, φ,O)

p(Z↗AA, ZIA,θ
↗
A |α, γ, φ,O)

}
. (16)

This operation proposes a new total order θ respecting the partial order imposed by the rest of the
current directed acyclic graph structure.

3 Experiments on Density Estimation

The ICP prior in equation (9) can be used to learn the structure of deep DAG-based models. One
can force specific structures by fixing the order values of some observed units. Feedforwards neural
nets for instance can be modelled by fixing θk = 1 for all input units and θk = 0 for the output
units. Fully generative models can be designed by fixing all observed units to θk = 0, preventing
interconnections between them and forcing the above generative units to explain the data. The present
experiments are based on this last specification of the ICP prior over structures.

To complete the prior, we specify ρk ∼ Gamma(0.5, 0.5), bk ∼ N (0, 1), Wki ∼ N (0, 1),
γ ∼ Gamma(0.5, 0.5), 1/α ∼ Gamma(0.5, 0.5) and φ ∼ Gamma(0.5, 0.5). It turns out that
the density function of the NLGBN random output can be represented in closed-form, a property
used to form the likelihood function given the data. The inference is done through Gibbs sampling,
Metropolis-Hastings and reversible jump Markov Chain Monte Carlo. The Markov chain explores
the space of structures by creating and the killing units, which means that posterior samples are of
varying size and shape, while remaining infinitely layered due to θk ∈ [0, 1]. We also add the random
activations uk into the chain.

The following density estimation experiments aims at reproducing the generative process of a data
source with a marginalized network using Bayesian model averaging. In practice, this is done by
generating a fantasy data set from the marginalized network and comparing the result with a test set.
More precisely, generating the fantasy dataset is done by first sampling several random posterior
networks and then sampling a unique data point from each network.

The comparison metric used in the experiments is the Hellinger distance (HD), a function quantifying
the similarity between two probability densities. It is symmetric, returns 0 for identical measures and
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Figure 1: Fantasy datasets produced from the ICP posterior.

Table 1: Estimated Hellinger distance between fantasy datasets generated by the learned models
and the test set. The baseline row shows the Hellinger distance between the training and test sets,
representing the best achievable Hellinger distance.

Baseline ICP CIBP ECIBP

Ring (2) 0.0312 0.0402 0.0493 0.0419
Two Moons (2) 0.0138 0.0342 0.0469 0.0450
Pinwheel (2) 0.0436 0.0547 0.0692 0.0685
Geyser (2) 0.0234 0.0734 0.1246 0.1171
Iris (4) 0.1930 0.2666 0.2667 0.2662
Yeast (8) 0.3059 0.3817 0.4056 0.3840
Abalone (9) 0.1079 0.1379 0.1502 0.1470
Cloud (10) 0.1299 0.1495 0.1713 0.1501
Wine (12) 0.3387 0.3629 0.4079 0.3855

1 for complete dissimilarity. When dealing with data samples instead of probability densities, we
can only approximate the HD between the two sets of data points. This can be done by using kernel
density estimation to create a density function and then use Monte carlo sampling to compute the
Bhattacharyya coefficient [2].

To compare the ICP with other Bayesian nonparametric models, we also evaluated how the cascading
Indian buffet process (CIBP) [1] and the extended CIBP [3] perform when learning deep NLGBNs.
The inference for these models was done with an MCMC algorithm similar to the one used for the
ICP and we used similar priors for the parameters to ensure a fair comparison. In Table 1, we can see
that models learned with the ICP prior outperformed the ones learned with CIBP and ECIBP most of
the time. Moreover, the table includes the baseline distance between the training set and the test set.
Since both of them are generated by the true source of data, this measure provides an intuition about
the difficulty of capturing the generative model of a particular source. This also gives, for each data
set, an idea of what to expect as the best achievable performance in terms of Hellinger distance.

4 Conclusion and Future Work

We have presented a closed-form probability distribution on the joint space of infinite directed acyclic
graphs and orders allowing a novel Bayesian nonparametric formulation of deep learning models.
We are currently investigating inference methods for the Indian chefs process and exploring potential
connections between the dropout approach to Bayesian deep learning [5] and the birth-death process
involved in our reversible jump MCMC inference. Improvements on the inference procedure could
be made by using stochastic gradient MCMC [8] for the parameters of the model.
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