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1 Introduction

The transmission of video content is responsible for up to 80% of the internet traffic [9]. Improving
compression efficiency is more crucial than ever. Today, a variety of video codecs [25, 23] [20]]
exists that have reached an impressive performance. All of these codecs employ block based hybrid
structure [21]] and remain salient in progress for more than a decade.

Motivated by promosing results from neural image compression [[1, 15, 14, 124} 119]], we propose, to the
best of our knowledge, a first step towards innovating beyond block-based hybrid codecs by framing
video compression in a deep probabilistic context. Our end-to-end neural video compression scheme
is based on sequential variational autoencoders [6, |8, [16] and the approach of Ballé et al. [4] for
discretizing and entropy coding a continuous latent representation. Our approach simultaneously
learns the optimal transform of the video to a low-dimensional representation and a powerful
predictive model that assigns probabilities to video segments, allowing us to efficiently entropy-code
the discretized latent representation into a short code length. We introduce both local latent variables,
which are inferred from a single frame, and a global latent state, inferred from an entire segment, to
efficiently store a video sequence.

As the first step towards a new approach, we focus on small resolution video (64 x 64) and aim to
efficiently capture temporal correlations. Figure|l|shows a test example of the possible performance
improvements using our approach if the model is trained on similar content. One sees that fine
granular details, such as the hands of the cartoon character, are lost in the classical approach due
to artifacts from block motion estimation (low bitrate regime), whereas our deep learning approach
successfully captures these details with less than 10% of the file length.
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Figure 1: Reconstructed Sprite test video (bpp=0.06, PSNR=44.6 dB), H.265 (bpp=0.86, PSNR =
21.1 dB), and VP9 (bpp=0.57, PSNR = 26.0 dB), see SectionE} In contrast to our method, H.265 and
VP9 show artifacts of block motion prediction. Our method uses a fraction of the bit rate.

2 Neural Probabilistic Video Compression

The objective of lossy video compression can be defined as finding the shortest description of a
video while tolerating a certain level of information loss. An end-to-end machine learning approach
to encoding video, however, should simultaneously learn the appropriate predictive model and the
optimal lossy transformation to a discrete lower-dimensional representation. This allows both to
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Figure 2: Operational diagram of our compression codec. A video segment is encoded into per-frame
latent variables (z;) and per-segment global state ( f), which are then quantized and entropy encoded
into binary according to a probabilistic model. To recover an approximation to the original video, the
latent variables are entropy decoded from the binary and passed through the decoder.

transform the video into a low dimensional latent representation and to then use the jointly learned
predictive model to remove the remaining redundancy in the latents by entropy coding them to a
short binary representation [12}[14]. Therefore, we propose to use a temporally-conditioned prior
distribution parameterized by deep neural network to efficiently code the latent variables associated
with each frame. By conditioning on nearby frames in the sequence, the predictive model can be
much more certain about the next frame, thus achieving a smaller entropy and code length. As
detailed below, in addition to using a deep sequential probabilistic model, we propose an architecture
that combines local and global information in the video. A global variable stores information that is
common to the sequence of frames, while a local variable stores additional dynamical content.

In the following paragraphs, we describe our approach (see Fig.[2)) in more detail. We describe the
encoder and decoder models, the objective function, and the interplay between our deep probabilistic
sequential model and entropy coding scheme.

We propose a stochastic recurrent variational autoencoder to transform a sequence of frames ;.7 =
(x1,- - ,xr) into a compressed representation of latent variables z1.7 = (21, - , z7). This model
is refined to additionally include a global state f similar to Li & Mandt [16], resulting in
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where 0 is shorthand for the parameters. Each frame x; at time ¢ depends on the corresponding
latent variables z; and global variables f. The frame likelihood pg(x:|f, z+) for reconstruction is
the Laplace distribution, Laplace(ug (z1, ), )\*11). We employ amortized variational inference
[7,126, [17] to predict a distribution over latent codes given the input video,
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The global variables f are inferred from all video frames in a sequence and may thus contain static
information, while z; is only inferred from a single frame x;.

Two dynamics models are considered to model the sequence z;.7. We propose a LSTM prior
architecture which conditions on all previous frames in a segment: pg (2% | ¢;) = po (2! | z<¢). We
also considered a simpler model with a single frame context: pg(z¢ | z;—1) which is essentially a
deep Kalman filter [13]], and which we compare against. The variational objective is

—E;j:, ,gllogpe(@ir|f, 21r) — BE; 5 [logpe(f, Z1.1)] 3)

where the reconstructed frame Z; = p1g(fy (1), by (T1.7)) and we have introduced a parameter /3
to control the rate-distortion trade-off [2]].

The first term corresponds to the distortion and the second term is the cross entropy between the
approximate posterior and the prior. The latter has the interpretation of the expected code length when
using the prior distribution p( f, z1.7) to entropy code the latent variables. This term is minimized
for p(f, z1.7) = Ex,..[¢(f, z1.7|x1.7)], that is, when the empirical distribution of codes matches
the prior model. For our choice of generative model, the cross entropy separates into two terms
H[Q¢(f|mlT)7p9(f)] and H [q¢(Z1:T|x1:T)ap9(zl:T)] .



3 Experiments

We train separately on three video datasets of increasing complexity with frame size 64 x 64: 1)
Sprites, used in [22, [18] [16], is generated from a script that samples the character action, skin color,
clothing, and eyes from a collection of choices and has an inherently low-dimensional description;
2) BAIR [11] with specialized content consisting of a robot pushing objects on a table, used in
[13, [10L [15]; 3) Kinetics600, a diverse set of YouTube videos depicting human actions, which is
downsampled (removes compression artifacts) and cropped to 64 x 64. Metrics: we evaluate our
method based on the compression rate in bits per pixel (bpp), and peak signal to noise ratio (PSNR).

Comparisons. We compare our proposed local-global architecture with LSTM prior (LSTMP-LG)
with other approaches. To study the effect of the prior model, we show a variation of our method
which utilizes the same local-global representation but with the LSTM prior replaced by a deep
Kalman filter [13] (KFP-LG). For the last variation, we introduce a simpler model which only has
local latent variables with the LSTM predictive model (LSTMP-L). We also provide the performance
of H.264, H.265, and VP9 codecs [25} 23] 20] using the open source FFMPEG in constant rate
mode. Traditional codecs are not optimized for small resolution videos. Unless otherwise stated,
performance is tested on videos with 4:4:4 chroma sampling and on test videos with 7" = 10 frames.
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Figure 3: Rate-distortion curves on three datasets measured in PSNR (higher corresponds to lower
distortion). Legend shared. Solid lines correspond to our models, with LSTMP-LG proposed.

Rate-distortion trade-off. The rate-distortion curves measured in PSNR in Fig. [3|is generated by
varying /3 for our method and trained on three datasets. Higher curves indicate better performance.
From the Sprites and BAIR results, one sees that our method has the ability to drastically outperform
traditional codecs when focusing on specialized content. By training on videos with a fixed content,
the model is able to learn an efficient representation for such content. The results from training on
the more diverse Kinetics videos also outperform or are competitive with standard codecs and better
demonstrate the performance of our method on general content videos.

The LSTM prior outperforms the deep Kalman filter prior in all cases. This is because the LSTM
model has a longer memory, allowing the predictive model to be more certain about the trajectory
of the local latent variables. This, in turn, results in shorter code lengths. Furthermore, fine-grained
motion is not accurately predicted with block motion estimation. The artifacts from our method
are more clearly displayed in Fig. 5 (right) on Appendix [B| Our method tends to produce blurry
video in the low bit-rate regime but does not suffer from the block artifacts present in the H.265/VP9
compressed video.

4 Conclusions

We have proposed a deep probabilistic modeling approach to video compression. Our method
simultaneously learns to transform the original video into a lower-dimensional representation as well
as the temporally-conditioned probabilistic model for entropy coding. The best performing proposed
architecture splits up the latent code into global and local variables and yields competitive results on
low resolution videos. For video sources with specialized content, deep probabilistic video coding
allows for a significant increase coding performance.
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Figure 4: Inference network diagram for the global state f. The features from the video segment are

processed by a bi-directional LSTM (with hidden states g7, h¥) which is used to infer the global
state.

A Model Architecture

The specific implementation details of our model are now described. We describe the two baseline
models, LSTMP-L and KFP-LG, and the best-performing LSTMP-LG model.

LSTMP-L. Our proposed baseline model LSTMP-L, which is introduced to study the efficiency of
the global state for capturing temporal redundancy, contains only local latent variables z; (the global
state f is omitted). The local state for each frame z; is inferred from each frame ;. LSTMP-L
employs the same encoder and decoder architectures from Ballé et al. [4]. The encoder g1, () infers
each z; independently by a five-layer convolutional network. For layer ¢ = 1, the stride is 4, while
a stride of 2 is used for layer ¢ = 2,3,4,5. The padding is 1 and the kernel size is 4 x 4 for all
layers. The number of filters used for the Sprites video, for £ = 1,2, 3,4, 5, are 192, 256, 512, 512
and 1024, respectively. For the more realistic video (BAIR and Kinetics video), the number of filters
used at layer £ = 1,2,3, 4,5 are 192, 256, 512, 1024 and 2048, respectively. The decoder pq(2¢) is
symmetrical to the encoder p 4 (x;). With this architecture, the dimension of the latent state z; is
1024 for Sprites and 2048 for BAIR and Kinetics video. The prior for the latent state corresponding to
the first frame, pg(z1), is parametrized by the same density model defined on Appendix 6.1 of Ballé
et al. [3]. The conditional prior pg(2z: | z<:) is parameterized by a normal distribution convolved
with uniform noise. The means and (diagonal) covariance of the normal distribution are predicted by
an LSTM with hidden state dimension equal to the dimension of the latent state z;.

LSTMP-LG. LSTMP-LG is our proposed model in this paper which uses an efficient latent repre-
sentation by splitting latent states into both global states and local states as well as the use of an
effective LSTM predictive model for entropy coding. Now we describe the inference network. The
two encoders 1, (z1.7) and p, () begin with a convolutional architecture to extract feature infor-
mation. The global state f is inferred from all frames by processing the output of the convolutional
layers over ;.7 with a bi-directional LSTM architecture (note this LSTM is used for inference
not entropy coding), shown diagrammatically in Fig.[d This allows f to depend on features from
the entire segment. For the local state, the individual frame x; is passed through the convolutional
layers of 14 (x;) and a two-layer MLP infers z; from the feature information of the individual
frame. The decoder g (2, f) first combines (z¢, f) with a multilayer perceptron (MLP) and then
upsamples with a deconvolutional network. The prior models pg(f) and pg(z1) are parametrized by
the density model defined in Appendix 6.1 of Ballé et al. [5]. The conditional prior pg(z: | z<¢) in
the LSTMP-LG architecture is modeled by a normal distribution which is convolved with uniform
noise. The means and covariance of the normal distribution are predicted by an additional LSTM
with hidden state h.

Both encoders p ¢() have 5 convolutional (downsampling) layers. For layer £ = 1,2, 3, 4, the stride
and padding are 2 and 1, respectively, and the convolutional kernel size is 4 x4. The number of
channels for layer £ = 1,2, 3,4 are 192, 256, 512, 1024. Layer 5 has kernel size 4, stride 1, padding
0, and 3072 channels. The decoder architecture f14 is chosen to be asymmetric to the encoder with
convolutional layers replaced with deconvolutional (upsampling) layers. For the Sprites toy video,
the dimensions of z, f, and hidden state h are 64, 512 and 1024, respectively. For less sparse
videos (BAIR and Kinetics600), the dimensions of z, f, and hidden state h are 256, 2048 and 3072,
respectively.
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Figure 5: Compressed videos by our LSTMP-LG model and VP9 in the low bit rate regime. Our
approach achieves better quality on specialized content (BAIR, left) and comparable visual quality
on generic video content (Kinetics, right) compared to VP9.

KFP-LG. KFP-LG is also a proposed baseline model which incorporates both the global state f
and local latent z; but uses a weaker predictive model pg(z; | z:—1) for entropy coding. The main
purpose of the KFP-LG model is to compare to the LSTMP-LG model which has a longer memory.
The conditional prior pg(z; | z;—1) in KFP-LG is described by a deep Kalman Filter parametrized
by a three-layer MLP. The dimension at each layer of MLP is the same as the dimension of the latent
state z;. KFP-LG has the same encoder and decoder structures as the proposed LSTMP-LG model
aforementioned. The only difference between KFP-LG and LSTMP-LG is that they employ different
prior models for conditional entropy coding.

B Qualitative Results

Now we discuss the qualitative performance of our method. We have shown that a deep neural
approach to encode video (LSTMP-LG architecture) can outperform traditional codecs with respect
to PSNR metrics overall on low-resolution videos. Test videos from the Sprites and BAIR datasets
after compression with our method are shown in Fig.[T]and Fig. [5| (left), respectively, and compared
to modern codec performance. Our method achieves a superior image quality at a significantly lower
bit rate than H.264/H.265 and VP9 on these specialized content datasets. This is perhaps expected
since traditional codecs cannot learn efficient representations for specialized content and the learned
priors capture the empirical data distribution well (Appendix [D).

C Latent Variable Entropy Visualization

Global Variables. The VAE encoder has the option to store information in local or global variables.
The local variables are modeled by a temporal prior and can be efficiently stored in binary if the
sequence z1.7 can be sequentially predicted with relative certainty from the context. The global
variables, on the other hand, provide an architectural approach to removing temporal redundancy
since the entire segment is stored in one global state without temporal structure. We find that the
local-global architecture (LSTMP-LG) outperforms the local architecture (LSTMP-L) on all datasets,
demonstrating the usefulness of a hybrid approach which partially encodes the entire video segment
in a global state along with extra frame-by-frame information stored as a sequence.

During training, the VAE learns to utilize the global and local information in the optimal way. The
utilization of each variable can be visualized by plotting the average code length of each latent state,
which is shown in Fig.[6] The VAE learns to significantly utilize the global variables even though
dim(z) is sufficiently large to store the entire content of each individual frame. This provides further
evidence that it is more efficient to incorporate global inference over several frames. Notice that
entropy in the local variables initially tends to decrease as a function of time since the first z; has a



cold start. Note that our approach relies on sequential decoding, prohibiting a bi-directional LSTM
for the local state.
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Figure 6: Average bits of information stored in f and z;.p with PSNR 43.2, 37.1, 30.3 for different
models in (a, b, ¢). Entropy drops with the frame index as the models adapt to the video sequence.

D Latent Variable Distribution Visualization
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Figure 7: Empirical distributions of the posterior of the inference model estimated from BAIR data
and the ground truth prior model in one specific rate-distortion example.

In this appendix, we visualize the distribution of our prior model and empirical distribution of the
posterior of the inference model estimated from data. In Fig.[7, we show the learned priors and the
empirically observed prior over two dimensions of the latent global variable f and z in order to
demonstrate that the prior is capturing the empirical distribution in low-bit rate regime. From Fig.[7}
we can see that the learned priors pg(f) and pg(z1) match the empirical data distributions well,
which leads to low-bit rate encoding of the latent variables. As the conditional probability model
pe(z¢ | z<) is high dimensional, we do not visualize the distribution.
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