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Abstract

Catastrophic forgetting is the notorious vulnerability of neural networks to the
change of the data distribution while learning. This phenomena has long been
considered a major obstacle for allowing the use of learning agents in realistic
continual learning settings. Although this vulnerability of neural networks is widely
investigated, it is currently only mitigated by explicitly reacting to the change of
task. We suggest a novel approach for overcoming catastrophic forgetting in neural
networks, using an online version of the variational Bayes method. Having a
confidence measure of the weights alleviates catastrophic forgetting and, for the
first time, succeeds in this even without the knowledge of when the tasks are being
switched.2

1 Introduction

Deep Neural Networks (DNNs) have been successfully used for solving a variety of tasks such
as images classification [8], speech recognition [2], natural language processing [19] and more.
However, those networks were trained and tuned on a single task. Often, a desirable property for a
network is the ability to retain performance on previous tasks even when presented with new ones.

Catastrophic forgetting [22] is the tendency of neural networks to completely and rapidly forget
previously learned information when learning new information, such as when changing a task or a
source, as in continual learning. In such continual learning tasks we are interested in training a neural
network over multiple tasks D1, ..., DK sequentially. More formally, in continual learning the tasks
arrive one after the other:

d1:T1
∈ D1

dT1+1:T2
∈ D2

. . .

dTK−1+1:TK
∈ DK

where di denote the input data feds into the network on iteration i. Thus, after iteration Tj the input
data switches from DJ (Task J) to DJ+1 (Task J +1). Note, that we assume the optimizer has access
only to the current task’s data. Evaluation is performed, over all seen tasks, once training on the final
task has concluded. In this configuration, the standard approaches suffer from catastrophic forgetting;
they perform well on latest tasks, and poorly on tasks from the early stages of training.

We split continual learning algorithms into two categories:

∗Equal contribution
2Source code to replicate our results throughout the paper will be available online.
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1. Task-aware: The algorithm requires to be informed if the task is being switched in order to
take some special action (e.g. adjust the parameters of the cost function after each task).

2. Task-agnostic: The algorithm is unaware of the tasks schedule, so it cannot take any special
action, it has no knowledge that the data distribution changed.

Task-aware algorithms have a significant disadvantage, as in many realistic applications we may
not possess the knowledge about the tasks schedule. Hence, task-agnostic continual learning is a
harder setup as less information is provided to the system. Current algorithms rely heavily on this
information, which enables them to take significant actions if needed.

Catastrophic forgetting was extensively investigated over the course of the past decades and various
methods to overcome this problem were suggested. It was already observed 30 years ago that
estimating the underlying posterior distribution can be beneficial to combat this phenomena [22].
Lately, it was found that estimating confidence of the weights through their posterior, and using it
to affect their plasticity may allow a natural transition between learned tasks, while reducing the
ill effect of catastrophic forgetting [14, 25]. However, existing methods for reducing catastrophic
forgetting do require the knowledge of when the tasks are switched (“task-aware”).

Contributions. In this work, we present Bayesian Gradient Descent (BGD) – a novel approach
to overcome catastrophic forgetting in neural networks. We use online variational Bayes method
to update the posterior every mini-batch with a closed-form update rule. A notable strength of our
approach, compared to previous methods, is that our method is task-agnostic — it is able to adapt
without an explicit indication that something has changed. BGD results are competitive with various
task-aware continual learning algorithms, despite being task-agnostic and not taking into account
interactions between the weights (a diagonal posterior method). Expanding BGD to non-diagonal
(omitting the mean field approximation) is not trivial, but our results imply that it can boost BGD’s
performance.

2 Related work

Continual learning is a major challenge to existing artificial intelligence algorithms which are based
on DNNs. Several approaches were suggested to allow continual learning. Some of them alter the
network architecture, some add a regularization term and some use Bayesian inference. To the best
of our knowledge, all of the current algorithms are task-aware.3 [26] provides an extensive review of
continual learning methods. We focus on approaches which do not use any samples from previous
tasks.

One approach to prevent catastrophic forgetting is to design new architectures of neural networks. [28]
suggested freezing and expanding the model on every task switch to prevent catastrophic forgetting,
however, it is impractical for a large number of tasks due to the memory growth with each task. [29]
proposed a dual model architecture consisting of a deep generative model that acts as a memory and
a task solving model, a new generative model is created when the task is switched. Methods such as
these, where the architecture is progressively modified, will not be at the focus of our work.

Another approach to prevent catastrophic forgetting is adding a regularization term to the loss function.
“Elastic weight consolidation” (EWC) proposed by [14], slows the conversion of parameters important
to the previous tasks by adding a quadratic penalty on the difference between the optimal parameter
of the previous task and the current parameter. The importance of each weight is measured using the
diagonal of the Fisher information matrix of the previous tasks. “Synaptic Intelligence” (SI) proposed
by [35] also used a quadratic penalty on the difference between the optimal parameter of the previous
task and the current parameter. However, the importance of each weight is measured as the path
length of the updates on the previous task. [18] use knowledge distillation so the network with of the
previously learned tasks is enforced to be similar to the network of the current task.

The Bayesian framework provides a solution to continual learning challenge in the form of Bayes’
rule. When data arrives sequentially, the posterior distribution of the parameters for the previous task
is used as a prior for the new task. “Variational Continual Learning” (VCL) proposed by [25] used
online variational inference combined with the standard variational Bayes approach developed by

3A trivial task-agnostic algorithm is SGD/ADAM, which experiences severe catastrophic forgetting.
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[4], “Bayes By Backprop” (BBB) to reduce catastrophic forgetting by replacing the prior on a task
switch. In the BBB approach, a “mean-field approximation” is applied, meaning that a fully factorized
distribution is used to approximate the posterior distribution. Thus, VCL is a diagonal method. [27]
suggest using Bayesian online learning with a Kronecker factored Laplace approximation to attain a
non-diagonal method for reducing catastrophic forgetting, which allows the algorithm to take into
account interactions between weights within the same layer. Our focus in this work is on Bayesian
diagonal methods.

We discuss additional related work on variational Bayes methods in Appendix C.

We summarize the major differences between our contributions and the previous works as follows:

1. Task-agnostic vs. task-aware: BGD (our method) is the first algorithm, to the best of our
knowledge, to tackle catastrophic-forgetting in a task-agnostic scenario.

2. Prior replacement: BGD replaces the prior on each mini-batch during training, as opposed
to methods such as VCL which replaces it at each task switch.

3. Closed form update rule: We update the posterior over the weights in closed form, in
contrast to BBB (and VCL which relies on BBB) which use SGD optimizer on the variational
free energy.

4. Scalability: Unlike Vanilla BBB, BGD is scalable and easy to implement not only on
MNIST, but also on CIFAR10.

3 Theory

The process of Bayesian inference requires a full probability model providing a joint probability
distribution over the data and the model parameters. The joint probability distribution can be written
as a product of two distributions:

p (D,θ) = p (D|θ) p (θ) , (1)
where p (D|θ) is the likelihood function of the data set D, and p (θ) is the prior distribution of the
parameters θ. The posterior distribution can be calculated using Bayes’ rule:

p (θ|D) =
p (D|θ) p (θ)

p (D)
, (2)

where p (D) is calculated using the sum rule.

In this paper we will focus on the online version of Bayesian inference, in which the data arrives
sequentially, and we do a sequential update of the posterior distribution each time that new data arrives.
In each step, the previous posterior distribution is used as the new prior distribution. Therefore,
according to Bayes’ rule, the posterior distribution at time n is given by:

p (θ|Dn) =
p (Dn|θ) p (θ|Dn−1)

p (Dn)
. (3)

Unfortunately, calculating the posterior distribution is intractable for most practical probability
models. Therefore, we approximate the true posterior using variational methods.

3.1 Online variational Bayes

In variational Bayes, a parametric distribution q (θ|φ) is used for approximating the true posterior
distribution p (θ|D) by minimizing the Kullback-Leibler (KL) divergence with the true posterior
distribution.

KL (q (θ|φ) ||p (θ|D)) = −Eθ∼q(θ|φ)

[
log

p (θ|D)

q (θ|φ)

]
(4)

The optimal variational parameters are the solution of the following optimization problem:

φ∗ = argmin
φ

ˆ
q (θ|φ) log q (θ|φ)

p (θ|D)
dθ = argmin

φ

ˆ
q (θ|φ) log q (θ|φ)

p (D|θ) p (θ)
dθ

= argmin
φ

Eθ∼q(θ|φ) [log (q (θ|φ)) − log (p (θ)) + L (θ) ] , (5)

where L (θ) = − log (p (D|θ)) is the log-likelihood cost function4.
4Notice that we define a cumulative log-likelihood cost function over the data.
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In online variational Bayes, we aim to find the posterior in an online setting, where the data arrives
sequentially. Similar to Bayesian inference we use the previous approximated posterior as the new
prior distribution. For example, at time n the optimal variational parameters are the solution of the
following optimization problem:

φ∗ = argmin
φ

ˆ
qn (θ|φ) log

qn (θ|φ)
p (θ|Dn)

dθ = argmin
φ

ˆ
qn (θ|φ) log

qn (θ|φ)
p (Dn|θ) qn−1 (θ)

dθ

= argmin
φ

Eθ∼qn(θ|φ) [log (qn (θ|φ)) − log (qn−1 (θ)) + Ln (θ) ] , (6)

where Ln (θ) = − log (p (Dn|θ)) is the log-likelihood cost function.

3.2 Diagonal Gaussian approximation

A standard approach is to define the parametric distribution q (θ|φ) so that all the components of the
parameter vector θ would be factorized, i.e. independent (“mean-field approximation”). In addition,
in this paper we will focus on the case in which the parametric distribution q (θ|φ) and the prior
distribution are Gaussian. Therefore:

qn (θ|φ) =
∏
i

N
(
θi|µi, σ2

i

)
, qn−1 (θ) =

∏
i

N
(
θi|mi, v

2
i

)
(7)

In order to solve the optimization problem in eq. (6), we use the unbiased Monte Carlo gradients,
similarly to [4]. We define a deterministic transformation:

θi = µi + εiσi, εi ∼ N (0, 1) , φ = (µ,σ) (8)

The following holds:

∂

∂φ
Eθ [f (θ, φ)] = Eε

[
∂f (θ, φ)

∂θ

∂θ

∂φ
+
∂f (θ, φ)

∂φ

]
, (9)

where f (θ, φ) = log (qn+1 (θ|φ))− log (qn (θ)) + L (θ). Therefore, we can find a critical point of
the objective function by solving the following set of equations:

Eε
[
∂f (θ, φ)

∂θ

∂θ

∂φ
+
∂f (θ, φ)

∂φ

]
= 0 . (10)

Substituting eq. (7) and eq. (8) into eq. (10) we get (see Appendix A for additional details):

µi = mi − v2i Eε
[
∂Ln (θ)

∂θi

]
(11)

σi = vi

√
1 +

(
1

2
viEε

[
∂Ln (θ)

∂θi
εi

])2

− 1

2
v2i Eε

[
∂Ln (θ)

∂θi
εi

]
(12)

Notice that eq. (11) and eq. (12) are implicit equations, since the derivative ∂Ln(θ)
∂θi

is a function of µi
and σi. We approximate the solution using a single explicit iteration of this equation, i.e. evaluate the
derivative ∂Ln(θ)

∂θi
using the prior parameters. This approximation results in an explicit closed form

update rule for µ and σ. This approximation becomes more accurate when we are near the solution of
eq. (11). If we are not near the solution, this can lead to a slow rate of convergence. To compensate
for this we added a "learning rate" hyper-parameter η to adjust the convergence rate. Also, notice
that in the theoretical derivation we assumed that the data arrives sequentially, in an online setting.
In practice, however, the log-likelihood cost function does not converge after one epoch since we
use a single explicit iteration. Therefore, in Algorithm 1 we repeatedly go over the training set until
the convergence criterion is met. In addition, the expectations are approximated using Monte Carlo
sampling method (we use K Monte Carlo samples). In terms of computation complexity, those
Monte Carlo samples are the major difference from SGD, see Appendix F for further discussion. The
full algorithm is described in Algorithm 1.
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Algorithm 1 Bayesian Gradient Descent (BGD)

Initialize µ, σ, η,K

Repeat

µi ← µi − ησ2
i Eε

[
∂Ln(θ)
∂θi

]
, σi ← σi

√
1 +

(
1
2σiEε

[
∂Ln(θ)
∂θi

εi

])2
− 1

2σ
2
i Eε

[
∂Ln(θ)
∂θi

εi

]
Until convergence criterion is met.

The expectations are estimated using Monte Carlo method, with θ(k)i = µi + ε
(k)
i σi:

Eε
[
∂Ln (θ)

∂θi

]
≈ 1

K

K∑
k=1

∂Ln

(
θ(k)

)
∂θi

, Eε
[
∂Ln (θ)

∂θi
εi

]
≈ 1

K

K∑
k=1

∂Ln

(
θ(k)

)
∂θi

ε
(k)
i

3.3 Theoretical properties of Bayesian Gradient Descent

Bayesian Gradient Descent (BGD) consists of a gradient descent algorithm for µ, and a recursive
update rule for σ, both result from an approximation to the online Bayes update in eq. (3), hence the
name BGD. The learning rate of µi is proportional to the uncertainty in the parameter θi according to
the prior distribution. During the learning process, as more data is seen, the learning rate decreases
for parameters with a high degree of certainty, while the learning rate increases for parameters with a
high degree of uncertainty. Next, we establish this intuitive idea more precisely.

It is easy to verify that the update rule for σ is a strictly monotonically decreasing function of
Eε
[
∂Ln(θ)
∂θi

εi

]
. Therefore:

Eε

[
∂L (θ)

∂θi
εi

]
> 0 =⇒ σi (n) < σi (n− 1)

Eε

[
∂L (θ)

∂θi
εi

]
< 0 =⇒ σi (n) > σi (n− 1)

Eε

[
∂L (θ)

∂θi
εi

]
= 0 =⇒ σi (n) = σi (n− 1) (13)

Next, using a Taylor expansion, we show that for small values of σ, the quantityEε
[
∂Ln(θ)
∂θi

εi

]
,

approximates the curvature of the loss:

Eε
[
∂Ln (θ)

∂θi
εi

]
= Eε

∂Ln (µ)
∂θi

+
∑
j

∂2Ln (µ)

∂θi∂θj
εjσj +O

(
‖σ‖2

) εi


=
∂2Ln (µ)

∂2θi
σi+O

(
‖σ‖2

)
,

where we used Eε [εi] = 0 and Eε [εiεj ] = δij in the last line. Thus, in this case, Eε
[
∂Ln(θ)
∂θi

εi

]
is

a finite difference approximation to the component-wise product of the diagonal of the Hessian of
the loss, and the vector σ. Therefore, we expect that the uncertainty (learning rate) would decrease
in areas with positive curvature (e.g., near local minima), or increase in areas with high negative
curvature (e.g., near maxima, or saddles). This seems like a “sensible” behavior of the algorithm,
since we wish to converge to local minima, and escape saddles. This is in contrast to many common
optimization methods, which are either insensitive to the sign of the curvature, or use it the wrong
way [5].

In the case of strongly convex loss, we can make a more rigorous statement, which we prove in
Appendix B.
Theorem 1. We examine BGD with a diagonal Gaussian distribution for θ. If Ln (θ) is a strongly
convex function with parameter mn > 0 and a continuously differentiable function over Rn, then
Eε
[
∂Ln(θ)
∂θi

εi

]
≥ mn√

2π
> 0.
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Corollary 1. If Ln (θ) is strongly convex (concave) function for all n ∈ N, then the sequence
{σi(n)}∞n=1 is strictly monotonically decreasing (increasing).

Furthermore, one can generalize these results and show that if a restriction of Ln (θ) to an axis θi is
strongly convex (concave) for all n ∈ N, then {σi(n)}∞n=1 is monotonic decreasing (increasing).

Therefore, in the case of a strongly convex loss function, σi = 0 is the only stable point of eq. (12),
which means that we collapse to a point estimation similar to SGD. However, for neural networks
σi does not generally converge to zero. In this case, the stable point σi = 0 is generally not unique,
since Eε

[
∂L(θ)
∂θi

εi

]
implicitly depends on σi.

In Appendix G we show the histogram of STD values on MNIST when training for 5000 epochs and
demonstrate we do not collapse to a point estimation.

In the case of over-parameterized models and continual learning, only a part of the weights is essential
for each task. We hypothesize that if weight θi is important to the current task, this implies that, near
the minimum, the function Li = L(θ)|(θ)i=θi is locally convex. Corollary 1 suggests that in this case
σi would be small. In contrast, the loss will have a flat curvature in the direction of weights which
are not important to the task. Therefore, these unimportant weights may have a large uncertainty
σi. Since BGD introduces the linkage between learning rate and the uncertainty (STD), the training
trajectories in the next task would be restricted along the less important weights leading to a good
performance on the new task, while retaining the performance on the current task.

4 Experiments

First, in subsection 4.1, we verify that BGD has a good baseline performance on a single tasks. Next,
in subsection 4.2, we use several continual learning benchmarks to demonstrate BGD’s performance
on several consecutive tasks. Notice that BGD is trained under a task-agnostic setting, but compared
with various algorithms trained under a task-aware setting. We aimed to provide as a broad variety
of comparisons as possible, however, due to the lack of open-source implementations / architecture-
specific implementations of other algorithms, not all algorithms are evaluated in all experiments. See
Appendix E for further implementation details of all experiments and Appendix D for information
about the datasets.

4.1 Classification

As a sanity check, we compare BGD performance on single-task classification to recent Bayesian
methods used for classification along with SGD and ADAM.

Table 1: Test accuracy for MNIST classification.

Layer BBB BGD SGD
width (Gaussian)
400 98.18% 98.26% 98.17%
800 98.01% 98.33% 98.16%

1200 97.96% 98.22% 98.12%

MNIST classification We compare BGD on MNIST with SGD and BBB [4]. Table 1 summarizes
test accuracy5 of networks with various widths. Overall, BGD performs better than BBB and SGD.

CIFAR10 classification We use CIFAR10 to evaluate BGD’s performance on a more complex
dataset and a larger network. In this experiment, besides comparison to SGD and ADAM, we compare
BGD to a group of recent advanced variational inference algorithms, including both diagonal and
non-diagonal methods — K-FAC [21], Noisy K-FAC and Noisy ADAM [36]. For further details
about those algorithms, see Appendix C.

5Results of SGD and BBB in Table 1 for MNIST are as reported on [4].
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Table 2: Classification accuracy on CIFAR10 with modified VGG16 as in [36]. All results except for
BGD and ADAM are as reported in [36]. [N/A] values are due to extreme instability.

Test Accuracy [%]
Method Without BN With BN

Diagonal methods
BGD 88.41 91.07
SGD 88.35 91.39
ADAM 87.12 90.15
BBB 7 88.31 N/A
NoisyADAM 88.23 N/A

Non-diagonal methods
KFAC 88.89 92.13
NoisyKFAC 89.35 92.01

To do so, we followed the experiment described in [36]. There, a VGG16-like6 [30] architecture was
used and data augmentation is applied. We present results both with Batch Normalization [12] and
without it in Table 2.

From those classification experiments we conclude that:

1. BGD slightly outperforms BBB.
2. BGD does not experience underfitting and over-pruning, as shown by [32] for BBB. This is

true even when training much longer — in Appendix G we show training results on MNIST
and CIFAR10 for 5000 epochs.

3. BGD can be applied easily to CIFAR10, as opposed to vanilla BBB.
4. BGD performs only slightly worse than other non-diagonal variational Bayes methods,

although it is using only a diagonal approximation to the posterior.

4.2 Continual learning

We compare BGD’s performance on three different continual learning experiments conducted in
related works - permuted MNIST, CIFAR10/CIFAR100 and a combined vision datasets mix. Surpris-
ingly, BGD performance is comparable to some of the best task-aware algorithms, even though it is
unaware of the task changing (i.e., it solves a more challenging problem).

Continual learning on permuted MNIST BGD is compared with diagonal methods on permuted
MNIST: “Synaptic Intelligence” (SI), “Variational Continual Learning” (VCL) [35, 25] and SGD as
a baseline. Notice that in [35] the author compared SI and “Elastic weight consolidation” (EWC) on
permuted MNIST and showed similar performance.

Permuted MNIST is a set of tasks constructed by a random permutation of MNIST pixels. Each
task has a different permutation of pixels from the previous one, and the network is trained on the
different tasks sequentially. Our setup is two fully connected hidden layers of width 200. We use the
same training configuration for all compared algorithms — 300 epochs and batch size of 128.

Average accuracy on seen tasks is reported in Figure 1a. As can be seen, the network learns to solve
the tasks with high accuracy even without the knowledge of when the tasks are switched.

Figure 1b shows the histogram of STD values at the end of the training process of each task. The
results show that after the first task, a large portion of the weights have STD value which is close
to the initial value of 0.06, while a small fraction of them have a much lower value. As training
progresses, more weights are assigned with STD values much lower than the initial value, but higher

6The detailed network architecture is 32-32-M-64-64-M-128-128-128-M-256-256-256-M-256-256-256-M-
FC10, where each number represents the number of filters in a convolutional layer, and M denotes max-pooling -
same as [36].

7A relaxed version of BBB was used, with λ = 0.1 as described in [36].
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Figure 1: The left figure shows the average test accuracy on permuted MNIST vs. the number of
tasks. BGD (red), VCL (black), SI (green) and SGD (blue). We used mini-batch of size 128 and
300 epochs for all the algorithms. Notice that, in contrast to VCL and SI, BGD is task-agnostic (i.e.
unaware of tasks changing), while still significantly alleviates catastrophic forgetting. The right figure
shows the histogram of STD values at the end of the training process of each task, and the initial STD
value is 0.06.

by at least a factor of 10 then the minimal value of σ, which is ∼ 10−4. These results support our
hypothesis in subsection 3.3 that only a small part of the weights is essential for each task, and as
training progresses percentage of weights with small STD increases as more tasks are seen. It also
shows that we do not collapse to point estimation.

See Appendix H for results on additional configurations and more details on the experiment’s setting.

Continual learning on CIFAR10/CIFAR100 We follow SI [35] experiment on CI-
FAR10/CIFAR100 — training sequentially on six tasks from CIFAR10 and CIFAR100. The first task
is the full CIFAR10 dataset, and the next five tasks are subsets of CIFAR100 with ten classes, where
we train each task for 150 epochs. As a reference, we present results of SGD and SI. We used the
same network as in the original experiment, which consists of four convolutional layers followed by
a fully connected layer with dropout shared by all six tasks. Since we follow the original setup of
this experiment which uses separated last fully connected layer per task, representation learning is
task-agnostic but the last layer is task specific.

The results (Figure 2a) show that the network is able to learn relevant representations (the convolu-
tional layers) even without the knowledge of when the tasks are switched, while attaining a good
balance between retaining reasonable accuracy on previous tasks and achieving high accuracy on
newer ones.

Figure 2b shows the histogram of STD values at the end of the training process of each task. Similar
to the results for permuted MNIST, as more tasks are seen the percentage of weights with STD values
smaller than initial STD value (of 0.019) increases (the minimal value of σ is ∼ 10−4).

Continual learning on vision datasets Finally, we followed [27] and challenged our algorithm
with the vision datasets experiment. In this experiment, we train sequentially on MNIST, notMNIST
8, FashionMNIST, SVHN and CIFAR10 [16, 34, 24, 15]. Training is done in a sequential way with
20 epochs per task — in epochs 1-20 we train on MNIST (first task), and on epochs 81-100 we train
on CIFAR10 (last task). All five datasets consist of about 50,000 training images from 10 different
classes, but they differ from each other in various ways: black and white vs. RGB, letters and digits
vs. vehicles and animals etc. See Appendix D for further details about the datasets. We use the exact
same setup as in [27] for the comparison — LeNet-like [16] architecture with separated last layer for
each task as in CIFAR10/CIFAR100 experiment.

As seen in the results (Table 3), BGD achieves decent average accuracy, despite being task-agnostic.

8Originally published at http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html and downloaded
from https://github.com/davidflanagan/notMNIST-to-MNIST
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Figure 2: The left figure shows the test accuracy per task on last epoch for continual learning on
CIFAR10 and subsets of CIFAR100. Task 1 is the first seen task and task six is the last. The right
figure shows the histogram of STD values at the end of the training process of each task, and the
initial STD value is 0.019.

Table 3: Accuracy for each task after training sequentially on all tasks. BGD provides competitive
results, while being the only task-agnostic algorithm. PTL stands for Per-Task Laplace (one penalty
per task), AL is Approximate Laplace (Laplace approximation of the full posterior at the mode of the
approximate objective) and OL is Online Laplace approximation. Results for SI, PTL, AL and OL
are as reported in [27]

Test accuracy [%] on the end of last task (CIFAR10)
Method Task-agnostic Average MNIST notMNIST F-MNIST SVHN CIFAR10

Diagonal methods
BGD 3 81.37 86.42 89.23 83.05 82.21 65.96
SGD 3 69.64 84.79 82.12 65.91 52.31 63.08
ADAM 3 29.67 17.39 26.26 25.02 15.10 64.62
SI 7 77.21 87.27 79.12 84.61 77.44 57.61
PTL 7 82.96 97.83 94.73 89.13 79.80 53.29
AL 7 82.55 96.56 92.33 89.27 78.00 56.57
OL 7 82.71 96.48 93.41 88.09 81.79 53.80

Non-Diagonal methods
PTL 7 85.32 97.85 94.92 89.31 85.75 58.78
AL 7 85.35 97.90 94.88 90.08 85.24 58.63
OL 7 85.40 97.17 94.78 90.36 85.59 59.11

5 Discussion and future work

In this work, we present for the first time an efficient approach for task-agnostic continual learning.
It mitigates the notorious catastrophic forgetting phenomena that plague neural networks, without
being aware of the change in task. This important property can allow future models to better adapt to
new tasks without explicitly instructed to do so, enabling them to learn in realistic continual learning
settings.

Our method, Bayesian Gradient Descent (BGD) show competitive results with various state-of-the-art
continual learning algorithms while being unaware of the task-switch. It relies on solid theoretical
foundations, and can be applied easily to advanced DNN architectures, including convolution layers
and Batch-Normalization, and works on a broad variety of datasets.

Besides being a continual learning method, BGD had better classification accuracy than previous
Bayesian methods on MNIST, and was on par with SGD on CIFAR10 (without Batch-Normalization).
Despite being an online version of the variational Bayes approach of [4], it does not seem to have
the underfitting and over-pruning issues previously observed in the variational Bayes approach of
[32]. This allowed us to scale this approach beyond MNIST, to CIFAR10. The BGD approach is
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also closely related to the assumed density filtering approach of [31, 9]. However, these methods rely
on certain analytic approximations which are not easily applicable to different neural architectures
(e.g. convnets). In contrast, it is straightforward to implement BGD for any neural architecture. This
approach is also somewhat similar to the Stochastic Gradient Langevin Dynamics (SGLD) approach
[33, 3], in the sense that we use multiple copies of the network during training. However, in contrast
to the SGLD approach, we are not required to store all copies of the networks for inference ([3] had
to use distillation to overcome this), but only two parameters for each weight (µ and σ).

There are many possible extensions and uses of BGD, which were not explored in this work. First,
in this work, our variational approximation used a diagonal Gaussian distribution. This assumption
may be relaxed in the future to non-diagonal or non-Gaussian (e.g., mixtures) distributions, to allow
better flexibility during learning. Second, this work focuses on catastrophic forgetting, however,
Bayesian neural networks might also be beneficial for many other uses. For example, it enables
better weight pruning (See Appendix I); uncertainty estimates over the network output; selection of
hyper-parameters and models in a principled framework; and guided data collection (active learning).
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Appendix
A Derivation of eqs. (11) and (12)

In this section we provide additional details on the derivation of eq. (11) and eq. (12). The objective
function is f (θ, φ) = log (qn (θ|φ))− log (qn−1 (θ)) + Ln (θ), where:

log (qn (θ|φ)) = −
N

2
log (2π)−

∑
k

log (σk)−
∑
k

1

2σ2
k

(θk − µk)2 , (14)

log (qn−1 (θ)) = −
N

2
log (2π)−

∑
k

log (vk)−
∑
k

1

2v2k
(θk −mk)

2
. (15)

We derive eq. (11) by using the first-order necessary conditions for the optimal µi:

Eε
[
∂f (θ, φ)

∂θi

∂θi
∂µi

+
∂f (θ, φ)

∂µi

]
= 0 (16)

Substituting the derivatives, we obtain:

Eε
[
− 1

σ2
i

(θi − µi) +
1

v2i
(θi −mi) +

∂Ln (θ)

∂θi
+

1

σ2
i

(θi − µi)
]

=
1

v2i
(µi −mi) + Eε

[
∂Ln (θ)

∂θi

]
= 0. (17)

And so we obtained eq. (11).

Next, we derive eq. (12), using the first-order necessary conditions for optimal σi:

Eε
[
∂f (θ, φ)

∂θi

∂θi
∂σi

+
∂f (θ, φ)

∂σi

]
= 0. (18)

Substituting the derivatives we obtain:

Eε
[(
− 1

σ2
i

(θi − µi) +
1

v2i
(θi −mi) +

∂Ln (θ)

∂θi

)
εi −

1

σi
+

1

σ3
i

(θi − µi)2
]

= − 1

σi
+
σi
v2i

+ Eε
[
∂Ln (θ)

∂θi
εi

]
= 0. (19)

We get a quadratic equation for σi

σ2
i + σiv

2
iEq(ε)

[
∂Ln (θ)

∂θi
εi

]
− v2i = 0. (20)

Since σi > 0, the solution is eq. (12).

B Proof of Theorem 1

Proof. We define θj = µj + εjσj where εj ∼ N (0, 1). According to the smoothing theorem, the
following holds

Eε
[
∂Ln (θ)

∂θi
εi

]
= Eεj 6=i

[
Eεi
[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i]] . (21)

The conditional expectation is:

Eεi
[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i] =
∞̂

−∞

∂Ln (θ)

∂θi
εifεi (εi) dεi , (22)
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where fεi is the probability density function of a standard normal distribution. Since fεi is an even
function

Eεi

[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i]

=

∞̂

0

∂Ln (µi + εiσi, θ−i)

∂θi
εifεi (εi) dεi

−
∞̂

0

∂Ln (µi − εiσi, θ−i)
∂θi

εifεi (εi) dεi. (23)

Now, since Ln (θ) is strongly convex function with parametermn > 0 and continuously differentiable
function over Rd, the following holds ∀θ1,θ2 ∈ Rd:

(∇Ln (θ1)−∇Ln (θ2))
T
(θ1 − θ2) ≥ mn ‖θ1 − θ2‖ . (24)

For θ1,θ2 such that

(θ1)j =

{
(θ2)j , j 6= i

µi + εiσi, j = i,
(25)

(θ2)j =

{
(θ1)j , j 6= i

µi − εiσi, j = i,
(26)

the following holds: (
∂L (θ1)

∂θi
− ∂L (θ2)

∂θi

)
εi ≥ mn |εi| . (27)

Therefore, substituting this inequality into eq. (17), we obtain:

Eε
[
∂L (θ)

∂θi
εi

]
≥ mn√

2π
> 0. (28)

C Additional related work

Bayesian inference for neural networks has been a subject of significant interest over many years.
As exact Bayesian inference is intractable (for any realistic network size), much research has been
focused on approximation techniques. Most modern techniques stemmed from previous seminal
works which used either a Laplace approximation [20], variational methods [11], or Monte Carlo
methods [23]. In the last years, many methods for approximating the posterior distribution have been
suggested, falling into one of these categories. Those methods include assumed density filtering
[31, 9], approximate power Expectation Propagation [10], Stochastic Langevin Gradient Descent
[33, 3], incremental moment matching [17] and variational Bayes [6, 4].

In this work, we will focus on variational Bayes methods. Practical variational Bayes for modern
neural networks was first introduced by [6], where parametric distribution is used to approximate
the posterior distribution by minimizing the variational free energy. Calculating the variational free
energy is intractable for general neural networks, and thus [6] estimated its gradients using a biased
Monte Carlo method, and used stochastic gradient descent (SGD) to perform minimization. In a
later work, [4] used a re-parameterization trick to introduce an unbiased estimator for the gradients.
Variational Bayes methods were also used extensively on various probabilistic models including
recurrent neural networks [6], auto-encoder [13] and fully connected networks [4]. [21] and [36]
suggested using the connection between natural gradient descent [1] and variational inference to
perform natural gradient optimization in deep neural networks.
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D Datasets

MNIST is a database of handwritten digits, which has a training set of 60,000 examples, and a test
set of 10,000 examples — each a 28× 28 image. The image is labeled with a number in the range 0
to 9.

Permuted MNIST is a set of tasks constructed by a random permutation of MNIST pixels. Each
task has a different permutation of pixels from the previous one.

CIFAR10 is a dataset which consists of 60000 32× 32 color images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images.

CIFAR100 is a dataset which consists of 60000 32 × 32 color images in 100 classes, with 600
images per class [15]. There are 50000 training images and 10000 test images. The 100 classes in
the CIFAR-100 are grouped into 20 superclasses. Each image comes with a “fine” label (the class to
which it belongs) and a “coarse” label (the superclass to which it belongs).

FashionMNIST is a dataset comprising of 28 × 28 grayscale images of 70,000 fashion products
from 10 categories. The training set has 60,000 images and the test set has 10,000 images.

notMNIST is a dataset with 10 classes, with letters A-J taken from different fonts. It has similar
characteristics like MNIST - same pixel size (28× 28), grayscale images and comprised of 10-class.

SVHN is a real-world image dataset with 10 classes, 1 for each digit. It has RGB images of size
32× 32 obtained from house numbers in Google Street View images.

E Implementation details

We initialize the mean of the weights µ by sampling from a Gaussian distribution with a zero mean
and a variance of 2/(ninput + noutput) as in [7]. We use 10 Monte Carlo samples to estimate the
expected gradient during training, and average the accuracy of 10 sampled networks during testing,
unless stated otherwise.

MNIST classification We use a fully connected neural network with two hidden layers of various
widths, ReLU’s as activation functions and softmax output layer with 10 units. We preprocessed
the data to have pixel values in the range of [0, 1]. We use mini-batch of size 128 and η = 1. In
addition, we used a validation set to find the initialization value for σ. In order to compare the results
of Bayesian Gradient Descent (BGD) with the results of Bayes By Backprop (BBB) algorithm by [4],
we used a training set of 50,000 examples and validation set of 10,000 examples and present results
of BBB with the same prior as BGD used. We train the network for 600 epochs.

CIFAR10 classification SGD was trained with learning rate starting at 0.01 and divided by 10 every
100 epochs, momentum was set to 0.9. On both BGD and SGD we used data augmentation of random
cropping and flipping. Both experiments use a batch size of 128 and 10 Monte Carlo iterations. In
the experiment with Batch-Normalization (BN) initial STD is 0.011, η set to 8. µ is initialized using
PyTorch 0.3.1 for convolution layers, bias is initialized to 0 and µ of BN layers scaling and shifting
parameters are initialized to 1 and 0. In the experiment without Batch-Normalization (BN) initial std
is 0.015, η set to 10. µ of convolution layers is initialized using He initialization.

On BGD the initial STD was set to 0.015 and η = 6.

Permutd MNIST We use a fully connected neural network with 2 hidden layers of 200 width,
ReLUs as activation functions and softmax output layer with 10 units. We trained the network using
Bayesian Gradient Descent. The preprocessing is the same as with MNIST classification, but we
used a training set of 60,000 examples. BGD was trained with mini-batch of size 128 and η = 1 for
300 epochs.

CIFAR10/CIFAR100 continual learning Batch size is 256. On BGD we used MAP for inference
method, initial STD was 0.019 and η = 2. For SGD we used constant learning rate of 0.01 and for
SI we used c = 0.01. Hyper parameters for all algorithms were chosen after using grid search and
taking the optimal value.
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Table 4: Average runtime of a single training epoch with different numbers of Monte Carlo samples

MC iterations Runtime [seconds] Vs. SGD
SGD 7.8 ×1

2 (BGD) 18.9 × 2.4
4 (BGD) 35.2 × 4.5
10 (BGD) 83.8 × 10.7

Vision datasets mix We followed the experiment as described in [27]. We use a batch size of 64,
and we normalize the datasets to have zero mean and unit variance. The network architecture is
LeNet like with 2 convolution layers with 20 and 50 channels and kernel size of 5, each convolution
layer is followed by a Relu activations function and max pool, and the two layers are followed with
fully connected layer of size 500 before the last layer.

SGD baseline was trained with a constant learning rate of 0.001 and ADAM used eps 1e− 08, LR of
0.001 and betas: (0.9, 0.999). BGD trained with initial STD of 0.02, η set to 1 and batch size 64.

Weight pruning on MNIST We train a fully connected network with two hidden layers of 1200
width.

F Complexity

BGD requires ×2 more parameters compared to SGD, as it stores both the mean and the STD per
weight. In terms of time complexity, the major difference between SGD and BGD arises from the
estimation of the expected gradients using Monte Carlo samples during training. Since those Monte
Carlo samples are completely independent the algorithm is embarrassingly parallel.

Specifically, given a mini-batch: for each Monte Carlo sample, BGD generates a random network
using mu and sigma, then making a forward-backward pass with the randomized weights.

Two main implementation methods are available (using 10 Monte Carlo samples as an example):

1. Producing the (10) Monte Carlo samples sequentially, thus saving only a single randomized
network in memory at a time (decreasing memory usage, increasing runtime).

2. Producing the (10) Monte Carlo samples in parallel, thus saving (10) randomized networks
in memory (increasing memory usage, decreasing runtime).

We analyzed how the number of Monte Carlo iterations affects the runtime on CIFAR-10 using the
first method of implementation (sequential MC samples). The results, reported in Table 4, show that
runtime is indeed a linear function of the number of MC iterations. In the experiments we used a
single GPU (GeForce GTX 1080 Ti).

G 5000 epochs training

MNIST We use the MNIST classification experiment to demonstrate the convergence of the log-
likelihood cost function and the histogram of STD values. We train a fully connected neural network
with two hidden layers and layer width of 400 for 5000 epochs.

Figure 3a shows the log-likelihood cost function of the training set and the test set. As can be seen, the
log-likelihood cost function on the training set decreases during the training process and converges to
a low value. Thus, BGD does not experience underfitting and over-pruning as was shown by [32] for
BBB.

Figure 3b shows the histogram of STD values during the training process. As can be seen, the
histogram of STD values converges. This demonstrates that σi does not collapse to zero even after
5000 epochs.

Figure 4a shows the learning curve of the train set and the test set. As can be seen, the test accuracy
does not drop even if we continue to train for 5000 epochs.
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Figure 3: The left figure shows the average log-likelihood cost function of the train set and the test set
- layer width 400. The right figure shows the histogram of STD values, the initial STD value is 0.05.

CIFAR10 To further show that BGD does not experience underfitting and over-pruning, we trained
VGG11 9. Figure 4b show the test accuracy during the 5000 epochs.
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Figure 4: The left figure shows test the accuracy and train accuracy on MNIST dataset- layer width
400. The right figure shows the test accuracy on CIFAR10 using VGG11.

H Permuted MNIST experiment

In this experiment we use a fully connected neural network with 2 hidden layers of 200 width, ReLUs
as activation functions and softmax output layer with 10 units. We use the same training configuration
for all the algorithms — 300 epochs and batch size of 128 (BGD was trained with η = 1). We run
an hyper-parameters tuning for SI using c = (0.3, 0.1, 0.05, 0.01, 0.001) and select the best one (c =
0.05) as a baseline (See Figure 5a).

We ran an additional simulation with the same architecture on exactly the configuration as in [35],
see Figure 5b

Moreover, we ran a simulation with a larger architecture using a fully connected neural network with
2 hidden layers of 2000 width. But, in this simulation we run SI with on exactly the configuration as
in [35] (20 epochs and batch size of 256) and BGD with 300 epochs and batch size of 128. we were
not able to run VCL code on this large architecture, see Figure 6.

9We trained a full VGG11. The detailed network architecture is 64-M-128-M-256-256-M-512-512-M-512-
512-M-FC10
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Figure 5: The left figure SI average test accuracy on permuted MNIST vs. the number of tasks with
different hyper-parameter values. The right figure shows the average test accuracy on permuted
MNIST vs. the number of tasks. BGD (red), VCL (black), SI (green) and SGD (blue), We used
mini-batch of size 256 and 20 epochs for all the algorithms.
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Figure 6: The average test accuracy on permuted MNIST vs. the number of tasks. BGD (red), SI
(green) and SGD (blue).

I Weight pruning

STD and mean learned by BGD can be used for weights pruning by defining the signal to noise ratio
(SNR) as SNR = |µ| /σ and using it as a measure of a weight’s necessity [6, 4]. For large STD the
sampled weight value is expected to spread over a large range of values. For small mean, the sampled
value is likely to be close to zero. In both cases, the weight might have no effect on the network’s
output or even a negative effect in terms of loss. Hence, the SNR seems to be a relevant measure
for weights pruning, preferring to prune weights with lower SNR. When comparing with SGD, we
prune weights with low absolute value. When comparing with SGD, we used the absolute value as a
measure — pruning weights with low absolute value.

Weight pruning on MNIST Table 5 summarizes the results of weight pruning on MNIST. We
train a fully connected network with two hidden layers of 1200 width. Results are compared to SGD
and BBB. Note that in BBB the results for pruning were reported for a mixture of Gaussians, (both
prior and variational approximation) which is a more powerful than a single Gaussian used by BGD
— this improved the baseline accuracy results, but had similar relative success in weight pruning as
our method.

Note that our goal was not to improve the current performance of BBB (e.g. weight pruning on
MNIST), but rather to develop a Bayesian algorithm that could be easily scaled while performing
similarly. The next experiment demonstrates weight pruning on CIFAR10.
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Table 5: Weight pruning on MNIST. Showing the ratio Error(Pruning)/Error(No Pruning), smaller
values are better.

Error ratio
% Removed

Dataset (# Weights) BGD SGD BBB

MNIST 0% (2.4M) 1 1 1
95% (120K) 1.05 4.28 1.04

CIFAR10 0% (9.2M) 1 1 7
90% (0.9M) 1.04 7.7 7

Weight pruning on CIFAR10 We evaluated a pruned version of VGG11 trained by BGD, pruning
90% of the weights. BGD pruned network succeed to retain most of the accuracy achieved by the
non-pruned network, while SGD pruned networks accuracy drops. Results are reported in Table
5. BBB results were not tested on CIFAR10 in [4]. In addition, we were not able to run BBB on
CIFAR10 with VGG11. The results indicate that using BGD we are able to easily prune weights.

Figure 7 shows the test accuracy on CIFAR10 with VGG11 as a function of pruning percentage.
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Figure 7: Test accuracy as a function of pruning percentage for CIFAR10 with VGG11.
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