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Abstract

Recent advances in deep learning has shown that multi-layered non-linear models
perform extremely well in fitting various types of data, and the individual layers
often turn out to have natural interpretations. In this paper, we propose deep
generative models called the nested Hierarchical Dirichlet Processes (nHDP), that
are multi-layered nonparametric admixture models. We borrow and build upon
ideas from the Hierarchical Dirichlet Process (HDP) and the nested Dirichlet
Process (nDP) by modeling each layer as an HDP where the base distribution is
the HDP from the previous layer. We show that similar to the HDP, the nHDP
emerges as the infinite limit of a combination of finite deep admixture models.
We propose an equivalent restaurant process interpretation for the nHDP called
the Nested Chinese Restaurant franchise (nCRF) based on which we explore two
techniques for posterior inference. We show that our direct sampling technique
scales efficiently for arbitrarily deep models. We experimentally show that the deep
nHDP leads to better perplexity for document modeling with more nested layers.

1 Introduction

An important pursuit in machine learning is learning multiple layers of representation of observed
data. Recent advances in deep learning has shown that multi-layered non-linear models perform
extremely well in fitting various types of data, such as those related to natural language text and
speech, images and videos [12}[7]. Also, multiple layers often turn out to have natural interpretations,
where each layer learns meaningful combinations of the previous layer’s representation. For example,
in deep neural network models of images, the first layer may capture edges, the second layer corners,
and so on [[7]. For hierarchical probabilistic models of textual data, the first layer may capture topics
over words, the second layer may capture authors over topics, etc [10].

The focus of this paper is on deep Bayesian non-parametric models and, more specifically, on multi-
layered admixture models of this kind. In admixture or mixed membership models [S]], each data item
is modeled as a mixture over components, and such models have significantly richer representational
power compared to mixture models and also wide applicability. The Hierarchical Dirichlet Process
(HDP) [5] extends the notion of finite admixture models, famously captured by Latent Dirichlet
Allocation (LDA) [4]], to infinite mixture components. The HDP does this by coupling Dirichlet
Processes (DP) [2]], such that a draw from a DP serves as the base distribution for another DP.

In this paper, we explore how such layers of admixtures can be nested arbitrarily deeply to better
model data. While the Bayesian framework serves as a natural protection against over-fitting, we
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would like to provide as much flexibility to a model within this framework. Layers of admixtures,
instead of mixtures, provides such flexibility. The Author-Topic Model [10] explores such a two
level model in the finite setting, where documents are mixtures over ‘topics’ and topics mixtures over
‘authors’. We explore such models in the infinite setting - also arbitrarily deep - where representation
consists of layers of entities, and each entity is a mixture over entities at the previous layer.

We build upon the idea of the nested Dirichlet Process [9]], which is a two level ‘nesting’ of Dirichlet
processes - where one Dirichlet Process is the base distribution of another Dirichlet Process. We
extend this idea to show that layers of admixtures can be created by nesting Hierarchical Dirichlet
Processes in a similar way. Such a nesting can then be made arbitrarily deep - hence the name deep
Nested Hierarchical Dirichlet Processes.

We note that the nested CRP [3] and its extension (also interestingly called the nested HDP) [8]],
while being deep non-parametric models, are not deep admixture models in our sense. In these,
‘topic’ distributions are structured as an arbitrarily deep and arbitrarily wide tree, where a topic at any
layer has exactly one topic from the previous layer as its ‘parent’. Our model is significantly more
flexible by allowing entities at each layer to have a distribution over all entities at the previous layer.
This is more in keeping with fully-connected neural net architectures, where all nodes at a layer are
connected to all nodes at the previous layer.

In the context of deep generative models, it is important to develop probabilistic inference algorithms
that scale. We study sampling based inference algorithms for the deep nHDP based on an equivalent
Chinese Restaurant Process representation, which we call the deep nested Chinese Restaurant
Franchise. We extend two different sampling algorithms that have been proposed for the HDP -
called the direct and indirect sampling schemes. While these two algorithms are known to perform
similarly for the single-layer HDP, we show that, we show that when extended to multiple layers,
the indirect sampling scheme has complexity growing exponentially with number of layers, and is
therefore impractical. However, the direct sampling scheme scales linearly with number of layers,
enabling scalable probabilistic inference.

We demonstrate this difference in complexity of the two sampling algorithms using experiments on
text corpora, while also showing that deep non-parametric admixture models show better generaliza-
tion performance than their shallow counterparts.

In an earlier conference paper [[1], we had introduced the notion of nesting between HDPs to create
2-layer author topic model. In this paper, we have extended the definition for deep nesting, formally
studied the relationship with finite admixture models, extended the inference algorithms for arbitrary
number of layers and identified how they differ in complexity beyond a single layer.

2 Model

We define a multi-layer Nested Hierarchical Dirichlet Processes which has an HDP at every layer.
Let L denote the number of layers of nesting, indexed by I € {0, ..., L — 1}. The base distribution of
HDP at layer [ is the HDP at layer [ — 1 and we term this as nesting of two HDPs.

Stick-breaking Construction: For creating an admixture at layer [ € {0, ..., L — 1} we follow the
HDP process. We create an infinite set of entities from previous layer [ — 1 sampled from base
distribution B': {¢}}?°, ~ B! and a global entity distribution for this layer over these: Gl =
S, BLS ¢1» where the weights are drawn from a stick-breaking distribution, Bt~ GEM(~'). An
infinite set of entities at layer [ are defined over layer [ — 1 entities, where entity 7 in layer [ is defined
by its own distinct local entity distribution: G, = ooy 7rf, k 6% . The weights are drawn from a DP

with the global popularities of layer [ — 1 entities as the base distribution: 7. ~ DP(a!, ).

We can recognize this overall construction for layer [ entities as a draw from an HDP, which we name
as H': G. ~ HDP(c!,~!, B') = H'. In our nested structure, H' is the base distribution for next
layer: B't! = H'. Note that this can equivalently be represented as B'*! = HDP(a!, 4!, B!) =
HDP(a!,+!, HDP(a!~1, /=1 B!~1)). We define this nested structure as the nested HDP (nHDP)
and write - B'*! = nHDP(I + 1, {a!,~!}, ..., {a®,~°}, H)

The details of the generative process follow. First the distributions for the ‘entities’ at different layers
are sampled starting with the ‘topics’ at layer I = 0.



prior for topics B = H = Dir(7°)
layer [ < L ¢, ~ B!
global weight for l-entity 8! ~ GEM (+')
Gh= > Bidy ~D'=DP(H, B
k=1,...
1+1 entity’s wt for l-entity 7. ~ DP(a!, ")
=Y 7wy ~ H = HDP(a!,+, BY)

coupling between layers Bl = H' =nHDP(I + 1,{a!,~'},---,{a® 4"}, H)
There is an equivalent indirect representation of the local topic preferences using topic samples (also
called tables) [[L1]]. Let {zpét}g’il denote the samples/tables for the j'" entity at layer [ drawn from
the topic distributions at the previous layer: d) ~ Gy B s ! and {k . 122, denote the set of indexes of
the layer [ — 1 topics corresponding to each topic sample. Their corresponding weights {th}tzr are
drawn from a stick-breaking distribution GEM (o), b ~ GEM (o).

1+1 entity’s weight for I-table 7t~ GEM(a!)
=> aldyu ~H =HDP(,y, B
¢

Finally, data items are generated by sampling entities at each layer [ as 95-1- ~ Géjl € {4} ...}. The

data item (word) is sampled at the final layer as xj; ~ Hoi. Note that in the document modeling
use-case, grouping of words with respect to the level L-entity is observed and termed as a document.

Restaurant Process Representation: Just as the HDP has a restaurant process interpretation -

the Chinese Restaurant Franchise (CRF)[L1] - for the deep nested HDP we show an equivalent

interpretation in terms of multiple layers of nested CRFs, corresponding to the multiple layers of HDP.

In the restaurant interpretation, each group r represents a restaurant at each layer [, the entity samples
!, are called tables, and the sampled entities z;bk are called dishes, which get served at tables.

For a given entity layer [ € {0 ..., L — 1}, assume K entities {¢}, ..., ¢ } have been drawn from
base drstrrbutron Bl Let (¥4, ..., wi,tfl) be sequence of entity samples / tables drawn from G,
for rt" entity of this layer and an indirect representation of G, is constructed using entity samples
as above. Due to the nested structure, the predictive distribution for the draw of layer [ entity for
word ji denoted by Hl is additionally conditioned on the corresponding draw at layer [ 4 1 i.e. 09“.

Given that 0”1 Gl 6. 91+1 is drawn by integrating out the group level distribution G...

r Yji
m,. l l
01,100 = GLL6ky, .. 6y, B, 0y 0l Gl Y Jﬁ%t + nlainlB (1)
pat -
where 7', is the number of times any of {011, . 9l1N1 0h,. .., J i_1) got assigned to the t'"

atom 9L, of restaurant r and m!, =", §(¢L,, ¢%) is the number of entity samples in 7" restaurant
assigned to previous layer entity ¢§€.
The predictive distribution of ¢! entity sample, after integrating out Gl is as follows:

l

gl

g 2
+vl ¢k+m%,+7l @)
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where m%k is the number of entity samples across all restaurants in layer / assigned to k*" entity qbi,
of previous layer.

Relation with deep finite admixture models: The HDP can be shown to arise as the infinite limit
of two different finite admixture models [11]. We show that a similar relationship persists across the
nested coupling between the deep nHDP and deep finite admixture models.
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Figure 1: Restaurant process interpretation for the nested Hierarchical Dirichlet Process

Consider a L-layer admixture model G;(L, {K'}) with K' entities at layer [ defined using direct
sampling of entities.

Theorem 1 For eachl € {0,...,L}, as K!' — oo, the finite admixture model for layer | approaches
an nHDP. ~
lim G, (L, {K'}) = G ~ nHDP(L, {o!,+'}, H) )
Kl—oco

A similar result holds for the indirect L-layer finite admixture model construction G, (L, { K'}, {T'})
with K entities and T" entity samples or tables at layer I.

Theorem 2 For each | € {0,...,L}, as K' — oo, and for each v € {1,...,K'}, T! — oo, the
generative process of the finite admixture model at layer | approaches an nHDP.

lim  Gj(L, {K'},{T'}) = G} ~nHDP(L,{a',7'}, H) 4
K! T'—oc0

Deep Nested Non-parametric Flexible Models: We end with a discussion of an enhancement to our
model, where each layer has the flexibility to be either an admixture or a mixture, while retaining its
non-parametric nature. This may be useful in the presence of specific knowledge about the relations
between entities in the domain. To achieve a mixture, instead of an admixture, at any layer, we replace
an HDP-HDP nesting with a DP-HDP nesting (where an HDP has a DP as the base distribution) or a
DP-DP nesting, depending on the nature of the subsequent layer. The instance of this model with a
mixture at every layer is directly related to the nCRP [3]. The inference algorithms that we propose
for the nested HDP in the appendix can be modified in a reasonably straight-forward manner for these
flexible variants.

3 Inference

We use partially collapsed Gibbs sampling for approximate inference. The conditional posterior for
the hidden variables that not marginalized can be derived from the nCRF conditionals. We propose
two inference schemes, building upon similar schemes for the HDP.

Indirect Sampling: Here, we sample at every level [ € {0,..., L}, the table assignments tél the

tt" level table for customer i of the j document, and dish assignments k., for tables ¢ at restaurant
r at level [. We refer to this as the nCRF index sampling inference scheme. However unlike the
inference for a single level HDP, a naive approach of sampling all the above indices is intractable
leading to an exponential complexity at each level due to the tight coupling between the variables.



Lemma: The complexity of the nCRF index sampling scheme at layer [ in each iteration is
O((T!, ) P XM Nypaw) + O(KL . (TL,. )Sma=) where SL . is the maximum of the count of all
data items (words) assigned to a single table at a any restaurant at a specific level [, K!, . is the
maximum number of dishes at any level [ and T!,,, is the maximum number of tables in a single
restaurant at any level [, M the total number of documents and N, , the maximum number of words
in any document.

Direct Sampling: We propose an alternative nCRF direct sampling scheme, similar to the direct
sampling scheme in [T1] that samples the dishes 2!, at each level [ for customer i from the j*
document conditioned on dish assignments at the remammg levels.

p( p|z7‘]17 ;jl =nz ;z b= =4,z 7‘]1» 757)()

o p(2; pIZﬂU 2 =rp(t = qlg5l 2 = p)
The first term is the predictive distribution of zg? given the level [ + 1 dish assignment r, while the
second term arises from the previous level dish assignment g that depends on the value of zél Hence,
p( = pl|zt 5o jjl = r) can be viewed as consisting of two terms — one from picking an existing
table in restaurant r with dish assignment p, and another from creating a new table in restaurant r at
level [ and assigning the dish p to it.

Lol
! JO S - nyptalB new
p(zji p|z! Z 5,25 = 7T) W for an existing dish p, and W for a new dish p.
- l l l 1/{3[ 1 161 1
p(zj; = q\zﬂl 1 Zj; = D) X P"ﬁ for an existing dish ¢, and % for a new dish gq.

We sample 3 as (81, 85 ... Bbet, Brew) ~ Dir(m!;,mly ... m'y, 4"). We adapt the method from [6]
for sampling the table counts mi -
Lemma: In each iteration, the complexity of direct sampling algorithm at layer [ is O(M N, KL, ,..)

where M is the number of documents, V4, is the maximum number of words in any document and
K! .. is current number of entities at layer [.

4 Experiments

Datasets: We use the following publicly available publication datasets. The NIPS dataseﬂ isa
collection of NIPS proceedings (volume 0-12). with 1,740 documents contributed by a total of 2,037
authors, with total 2,301,375 word tokens resulting in a vocabulary of 13,649 words.

1o nCR
o | g = Direc
Model Finite | nHDP | nHDP c S
Model 2level | 1level | 2level % o | |
[Perplexity | 2783 | 1775 | 1247 | 287!
Table 1: Perplexity of Finite-2Level, 711
o

nHDP-1Level and nHDP-2Level for \ 7 :
NIPS 0 500 1500

time in seconds

Table 2: Comparing run-time of two layer flexible
nHDP (the DP-HDP) model

Perplexity with Number of Layers: We observe that addition of non-parametric layers lead to
better generalization performance over a finite model. Also a deeper model with more layers leads to
better generalization performance

Comparing Direct and Indirect Sampling: We run the direct sampling and the Indirect sampling
algorithm, on a two level nested non-parametric flexible model (DP-HDP model) and a comparison
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of run-time is shown in the figure. We observe that even for 2 layers, direct sampling scheme is
significantly faster than the indirect sampling scheme.

S Conclusion

We have proposed nested Hierarchical Dirichlet Processes(nHDP) for deep multilevel non-parametric
admixture modeling. We further explore relations between such a nested infinite admixture model
and its finite counterparts, and show that the deep nested HDP arises as infinite limit of deep finite
admixture models. We have explored two techniques for posterior inference based on the Gibbs
sampling and show that the direct sampling technique scales efficiently for arbitrarily deep models.
We experimentally show that the deep nHDP leads to better perplexity for document modeling with
more nested layers to capture more complex relationships in data.
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