
Do Deep Generative Models Know What They Don’t Know?∗

Eric Nalisnick†‡, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan†
DeepMind

1 Introduction

We investigate if modern deep generative models can be used for anomaly detection. Imagine that we
wish to protect a classifier from inputs unlike the training data. One approach is to train a density
model p(x;θ) (with θ denoting the parameters) to approximate the true distribution of training
inputs p∗(x) and refuse to make a prediction for any x that has a sufficiently low density under
p(x;θ). This idea has been proposed by various papers (Bishop, 1994) and as recently as in the panel
discussion at Advances in Approximate Bayesian Inference (AABI) 2017 (Blei et al., 2017). We
find a conspicuous point of failure: when trained on CIFAR-10 (Krizhevsky & Hinton, 2009), VAEs,
autoregressive models, and flow-based generative models all assign a higher likelihood to SVHN
(Netzer et al., 2011) than to the training data. We find this observation to be quite problematic and
unintuitive since SVHN’s digit images are so visually distinct from the dogs, horses, trucks, boats,
etc. found in CIFAR-10.

We go on to study this CIFAR-10 vs SVHN phenomenon in flow-based models in particular since they
allow for exact marginal density calculations. To the best of our knowledge, we are the first4 to report
these unintuitive findings for a variety of deep generative models. Moreover, our experiments with
flow-based models isolate some crucial experimental variables such as the effect of constant-volume
vs non-volume-preserving transformations. Lastly, our analysis provides some simple but general
expressions for quantifying the gap in the model density between two data sets. We close the paper
by urging more study of the out-of-training-distribution properties of deep generative models, as
understanding their behaviour in this setting is crucial for their deployment to the real world.

2 Motivating Observations

Given the impressive advances of deep generative models, we sought to test their ability to quantify
when an input comes from a different distribution than that of the training set. For the experiment, we
trained the same Glow architecture described in Kingma & Dhariwal (2018)—except small enough
that it could fit on one GPU5—on CIFAR-10. We then calculated the log-likelihood (higher value is
better) and bits-per-dimension (BPD, lower value is better)6 of the test split of SVHN, since it is a
popular data set and of the same dimensionality (32× 32× 3)—expecting the model to give a lower
probability to SVHN because it was not trained on it.

The table of Figure 1a reports the BPD of the training data (CIFAR10-Train), the in-distribution test
data (CIFAR10-Test), and the out-of-distribution data (SVHN-Test). Here we see a peculiar result:
the SVHN BPD is one bit lower than that of both in-distribution data sets. We observed a BPD of
2.39 for SVHN vs 3.39 for CIFAR10-Train vs 3.46 for CIFAR10-Test. Figure 1b shows a histogram
of the log-likelihood for the three data sets. Clearly, the SVHN examples (red bars) have higher
likelihood across the board, and the result is therefore not caused by a few outliers. We observed this
phenomenon when training on CIFAR-10 and testing on SVHN, but not the other way around so this

∗This work is a condensed version of Nalisnick et al. (2018).
†Corresponding authors: e.nalisnick@eng.cam.ac.uk and balajiln@google.com.
‡Work done during an internship at DeepMind.

4The concurrent work of Choi & Jang (2018) reports the same phenomenon for invertible generative models.
5Specifically, we use 3 levels of 8 steps (1× 1 convolution followed by an affine coupling layer). Kingma &
Dhariwal (2018) use 3 levels of 32 steps. Although we use a smaller model, it still produces good samples
(Appendix Figure 9) and competitive bits per dimension for CIFAR-10: 3.46 for ours vs 3.35 for theirs.

6See (Theis et al., 2016, Section 3.1) for the definitions of log-likelihood and bits-per-dimension.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

mailto:e.nalisnick@eng.cam.ac.uk
mailto:balajiln@google.com

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR10

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

Glow Trained on SVHN

SVHN-Test 2.057

(a) Glow: Bits per dimension
(b) Train on CIFAR10, Test on SVHN

Figure 1: Testing Out-of-Distribution. Log-likelihood (expressed in bits per dimension) calculated
from Glow (Kingma & Dhariwal, 2018) on SVHN, CIFAR-10.

phenomenon is not symmetric. See Figure 4 in Appendix A for results when training on SVHN and
testing on CIFAR-10.

We next tested if the phenomenon occurs for the other common deep generative models: PixelCNN
and VAE. We do not include GANs in the comparison since evaluating their likelihood is an open
problem. Figure 2 reports the same histograms as above for these models, showing the distribution of
log p(x) evaluations for CIFAR-10’s train (black) and test (blue) splits and SVHN’s test (red) split.
Since in all plots the red bars are shifted to the right much as they were before—albeit to varying
degrees, with perhaps PixelCNN having the smallest gap—we see that, indeed, this inability to detect
inputs unlike the training data persists for these other model classes. SVHN images continue to have
higher likelihood than CIFAR-10 training images.

25000 20000 15000 10000 5000 0

log p(X)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

(a) PixelCNN

16000 14000 12000 10000 8000 6000 4000 2000 0

log p(X)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

(b) VAE with RNVP as encoder

16000 14000 12000 10000 8000 6000 4000 2000 0

log p(X)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

(c) VAE conv-categorical likelihood

Figure 2: Train on CIFAR10, Test on SVHN: Log-likelihood calculated from PixelCNN and VAEs.
VAE models described in Rosca et al. (2018).

3 Digging Deeper into the Flow-Based Model

While we observed the CIFAR-10 vs SVHN phenomenon for the PixelCNN, VAE, and Glow, we
now narrow our investigation to just the class of invertible generative models. The rationale is that
they allow for better experimental control as, firstly, they can compute exact marginal likelihoods,
unlike the VAE, and secondly, the transforms used in flow-based models have Jacobian constraints
that simplify the second order analysis we present later.

To further examine this curious phenomenon, we inspect the change-of-variables objective itself,
investigating if one or both terms give the out-of-distribution data a higher value. We report the
constituent log p(z) and log |∂fφ/∂x| terms for NVP-Glow in Figure 3, showing histograms for
log p(z) in subfigure (a) and for log |∂fφ/∂x| in subfigure (b). We see that p(z) behaves mostly

(a) CIFAR10: log p(z) (b) CIFAR10: Volume

10000 9500 9000 8500 8000 7500 7000 6500

log p(X)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

(c) CV-GLOW

0 20000 40000 60000 80000 100000

iterations

2.0

2.5

3.0

3.5

4.0

4.5

B
it

s-
p
e
r-

d
im

e
n
si

o
n
 (

b
p
d
) CIFAR-10 TRAIN

CIFAR-10 TEST

SVHN TEST

(d) Likelihood vs. Time

Figure 3: Decomposing the Likelihood of NVP-Glow. The histograms show Glow’s log-likelihood
decomposed into contributions from the z-distribution and volume element.

2

as expected. The red bars are clearly shifted to the left, representing lower likelihoods under the
latent distribution. The volume element seems to cause SVHN’s higher likelihood. Subfigure (b)
shows that all of the SVHN log-volume evaluations (red) are conspicuously shifted to the right—to
higher values—when compared to CIFAR-10’s (blue and black). Since SVHN’s p(z) evaluations are
only slightly less than CIFAR-10’s, the volume term dominates, resulting in SVHN having a higher
likelihood.

To experimentally control for the effect of the volume term, we trained Glow with constant-volume
(CV) transformations. We modify the affine layers to use only translation operations (Dinh et al.,
2015) but keep the 1× 1 convolutions as is. The log-determinant-Jacobian is then HW

∑
k log |Uk|,

where |Uk| is the determinant of the convolutional weights Uk for the kth flow. This makes the
volume element constant across all inputs x, allowing us to isolate its effect. Figure 3c shows the
results for this model, which we term CV-Glow (constant-volume Glow). Subfigure (c) shows a
histogram of the log p(x) evaluations, just as shown before in Figure 1b, and we see that SVHN (red)
still achieves a higher likelihood (lower BPD) than the CIFAR-10 training set. Subfigure (d) shows
the SVHN vs CIFAR-10 BPD over the course of training CV-Glow. Notice that there is no cross-over
point in the curves. We also tested if using an ensemble of five Glows would mitigate the effect. It
did not: see Appendix E for the results.

Second Order Analysis Lastly, we aim to provide a more direct analysis of when another distri-
bution might have higher likelihood than the one used for training. Consider two distributions: the
training distribution x ∼ p∗ and some dissimilar distribution x ∼ q also with support on X . For a
given generative model p(x;θ), the adversarial distribution q will have a higher likelihood than the
training data’s if Eq[log p(x;θ)]− Ep∗ [log p(x;θ)] > 0. This expression is hard to analyze directly
so we perform a second-order expansion of the log-likelihood around an interior point x0. Applying
a second-order expansion to both likelihoods, taking expectations, and canceling the common terms,
we have:

Eq [log p(x; θ)]− Ep∗ [log p(x; θ)] ≈ ∇x0
log p(x0; θ)

T
(Eq [x]− Ep∗ [x]) +

1

2
Tr{∇2

x0
log p(x0; θ)(Σq −Σp∗)} (1)

where Σ = E
[
(x− x0)(x− x0)

T
]
, the covariance matrix, and Tr{·} is the trace operation. Since

the expansion is accurate only locally around x0, we next assume that Eq[x] = Ep∗ [x] = x0. While
this at first glance may seem like a strong assumption, it is not too removed from practice since data
is usually centered before being fed to the model. For SVHN and CIFAR-10 in particular, we find
this assumption to hold (Appendix Figure 8).

We use the expression in Equation 1 to analyze the behavior of CV-Glow on CIFAR-10 vs SVHN,
seeing if the difference in likelihoods can be explained by the model curvature and data’s second
moment. The second derivative terms simplify considerably for CV-Glow with a spherical latent
density. Given a C × C kernel Uk, with k indexing the flow and C the number of input channels,
the derivatives are ∂fh,w,c/∂xh,w,c =

∏
k

∑C
j=1 uk,c,j , with h and w indexing the spatial height

and width and j the columns of the kth flow’s 1 × 1 convolutional kernel. The second derivative
is then ∂2fh,w,c/∂x

2
h,w,c = 0. Plugging in the second derivative of the Gaussian’s log density—a

common choice for the latent distribution in flow models, following (Dinh et al., 2015, 2017; Kingma
& Dhariwal, 2018)—and the empirical variances, we have:

ESVHN[log p(x;θ)]− ECIFAR10[log p(x;θ)] ≈
1

2σ2
ψ

[
α2
1 · 12.3 + α2

2 · 6.5 + α2
3 · 14.5

]
≥ 0 (2)

where αc =
∏K

k=1

∑C
j=1 uk,c,j and σ2

ψ is the variance of the latent distribution. The full derivation
is in Appendix F. We know the final expression is greater than or equal to zero since all α2

c ≥ 0. Thus,
the second-order expression we derived does indeed predict we should see a higher likelihood for
SVHN than for CIFAR-10. Moreover, we leave the CV-Glow’s parameters as constants to emphasize
the expression is non-negative for any parameter setting of the CV-Glow model. This supports
our observation that the gap remained relatively constant over the course of training (Figure 3c d).
Furthermore, the ∂2 log p(z;ψ)/∂z2 term would be negative for any log-concave density function,
meaning that changing the latent density to Laplace or logistic would not change the result.

Discussion Our conclusion is that SVHN simply "sits inside of" CIFAR-10—roughly same mean,
smaller variance—resulting in its higher likelihood. Thus, we urge caution when using deep generative
models with out-of-training-distribution inputs as we have shown that comparing likelihoods alone

3

cannot identify the training set or inputs like it. We cannot conclude that there is any pathology innate
to deep generative models. It could be a problem that plagues any generative model, no matter how
high its capacity. In turn, we must then temper the enthusiasm with which we preach the benefits of
generative models until their sensitivity to out-of-distribution inputs is better understood.

References

Christopher M Bishop. Novelty Detection and Neural Network Validation. IEE Proceedings-Vision,
Image and Signal processing, 141(4):217–222, 1994.

Christopher M Bishop. Training with Noise is Equivalent to Tikhonov Regularization. Neural
Computation, 7(1):108–116, 1995.

David Blei, Katherine Heller, Tim Salimans, Max Welling, and Zoubin Ghahramani. Panel
Discussion. Advances in Approximate Bayesian Inference, December 2017. URL https:
//youtu.be/x1UByHT60mQ?t=46m2s. NIPS Workshop.

Hyunsun Choi and Eric Jang. Generative Ensembles for Robust Anomaly Detection. ArXiv e-Print
arXiv:1810.01392, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-Linear Independent Components
Estimation. ICLR Workshop Track, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation Using Real NVP. In
International Conference on Learning Representations (ICLR), 2017.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization Theory and Neural Networks
Architectures. Neural Computation, 7(2):219–269, 1995.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions.
In Advances in Neural Information Processing Systems (NIPS), 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation Using Deep Ensembles. In Advances in Neural Information Processing
Systems (NIPS), 2017.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
Deep Generative Models Know What They Don’t Know? ArXiv e-Print arXiv:1810.09136, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive Auto-
Encoders: Explicit Invariance During Feature Extraction. In Proceedings of the 28th International
Conference on Machine Learning (ICML), 2011.

Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution matching in variational
inference. arXiv preprint arXiv:1802.06847, 2018.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A Note on the Evaluation of Generative
Models. In International Conference on Learning Representations (ICLR), 2016.

4

https://youtu.be/x1UByHT60mQ?t=46m2s
https://youtu.be/x1UByHT60mQ?t=46m2s

A Results illustrating asymmetric behavior

10000 9000 8000 7000 6000 5000 4000 3000 2000

log p(X)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

SVHN-TRAIN

SVHN-TEST

CIFAR10-TEST

Figure 4: Histogram of Glow log-likelihoods when training on SVHN and testing on CIFAR10. Note
that the model trained on SVHN is able to assign lower likelihood to CIFAR10, which illustrates the
asymmetry compared to Figure 1b.

B Analyzing the Change-of-Variables Formula as an Optimization
Function

Consider the intuition underlying the volume term in the change of variables objective. As we are
maximizing the Jacobian’s determinant, it means that the model is being encouraged to maximize the
∂fj/∂xj partial derivatives. In other words, the model is rewarded for making the transformation
sensitive to small changes in x. This behavior starkly contradicts a long history of derivative-based
regularization penalties. Dating back at least to (Girosi et al., 1995), penalizing the Frobenius norm
of a neural network’s Jacobian—which upper bounds the volume term7—has been shown to improve
generalization. This agrees with intuition since we would like the model to be insensitive to small
changes in the input, which are likely noise. Moreover, Bishop (1995) showed that training a network
under additive Gaussian noise is equivalent to Jacobian regularization, and Rifai et al. (2011) proposed
contractive autoencoders, which penalize the Jacobian-norm of the encoder. Allowing invertible
generative models to maximize the Jacobian term without constraint suggests, at minimum, that these
models will not learn robust representations.

Limiting Behavior. We next attempt to quantify the limiting behavior of the log volume element.
Let us assume, for the purposes of a general treatment, that the bijection fφ is an L-Lipschitz function.
Both terms in the change-of-variables objective can be bounded as follows:

log p(x;θ) = log pz(f(x;φ))︸ ︷︷ ︸
O(maxz log pz(z)

+ log

∣∣∣∣∂fφ∂x
∣∣∣∣︸ ︷︷ ︸

O(D logL)

≤ max
z

log pz(z) +D logL (3)

where L is the Lipschitz constant, D the dimensionality, and O(maxz log pz(z)) an expression for
the (log) mode of p(z). We will make this mode term for concrete for Gaussian distributions below.
The bound on the volume term follows from Hadamard’s inequality:

log

∣∣∣∣∂fφ∂x
∣∣∣∣ ≤ log

D∏
j=1

∣∣∣∣∂fφ∂x ej
∣∣∣∣ ≤ log(L |e·|)D = D logL

where ej is an eigenvector. While this expression is too general to admit any strong conclusions, we
can see from it that the ‘peakedness’ of the distribution represented by the mode must keep pace with
the Lipschitz constant, especially as dimensionality increases, in order for both terms to contribute
equally to the objective.

We can further illuminate the connection between L and the concentration of the latent distribution
through the following proposition:
7It is easy to show the upper bound via Hadamard’s inequality: det ∂f/∂x ≤ ||∂f/∂x||F .

5

Proposition 1. Assume x ∼ p∗ is distributed with moments E[x] = µx and V ar[x] = σ2
x. Moreover,

let f : X 7→ Z be L-Lipschitz and f(µx) = µz . We then have the following concentration inequality
for some constant δ:

P (|f(x)− µz| ≥ δ) ≤
L2σ2

x

δ2
.

Proof : From the fact that f is L-Lipschitz, we know |f(x)− µz| ≤ L
∣∣x− f−1(µz)

∣∣. Assuming
µx = f−1(µz)), we can apply Chebyshev’s inequality to the RHS: Pr(L

∣∣x− f−1(µz)
∣∣ ≥ δ) ≤

L2σ2
x/δ

2. Since L
∣∣x− f−1(µz)

∣∣ ≥ |f(x)− µz|, we can plug the RHS into the inequality and the
bound will continue to hold.

From the inequality we can see that the latent distribution can be made more concentrated by
decreasing L and/or the data’s variance σ2

x. Since the latter is fixed, optimization only influences L.
Yet, recall that the volume term in the change-of-variables objective rewards increasing f ’s derivatives
and thus L. While we have given an upper bound and therefore cannot say that increasing L will
necessarily decrease concentration in latent space, it is for certain that leaving L unconstrained does
not directly pressure the f(x) evaluations to concentrate.

Previous work (Dinh et al., 2015, 2017; Kingma & Dhariwal, 2018) has almost exclusively used
a factorized zero-mean Gaussian as the latent distribution, and therefore we examine this case in
particular. The log-mode can be expressed as −D/2 · log 2πσ2

z , making the likelihood bound

logN(f(x;φ);0, σ2
zI) + log

∣∣∣∣∂fφ∂x
∣∣∣∣ ≤ −D2 log 2πσ2

z +D logL. (4)

We see that both terms scale with D although in different directions, with the contribution of the
z-distribution becoming more negative and the volume term’s becoming more positive. We performed
a simulation to demonstrate this behavior on the two moons data set, which is shown in Figure 5 (a).
We replicated the original two dimensions to create data sets of dimensionality of up to 100. The
results are shown in Figure 5 (b). The empirical values of the two terms are shown by the solid lines,
and indeed, we see they exhibit the expected diverging behavior as dimensionality increases.

(a) Two Moons Data Set (2D)

(b) Exponential Parametrization (c) Sigmoid Parametrization

Figure 5: Limiting Bounds. We trained an RNVP transformation on two moons data sets—which is
shown in (a) for 2 dimensions—of increasing dimensionality, tracking the empirical value of each
term against the upper bounds. Subfigure (b) shows Glow with an exp parametrization for the scales
and (c) shows Glow with a sigmoid parametrization.

C Glow with Sigmoid Parametrization

Upon reading the open source implementation of Glow,8 we found that Kingma & Dhariwal (2018)
in practice parametrize the scaling factor as sigmoid(s(xd:;φs)) instead of exp{s(xd:;φs)}. This
choice allows the volume only to decrease and thus results in the volume term being bounded as

8https://github.com/openai/glow/blob/master/model.py#L376

6

https://github.com/openai/glow/blob/master/model.py#L376

(ignoring the convolutional transforms)

log

∣∣∣∣∂fφ∂x
∣∣∣∣ = F∑

f=1

df∑
j=1

log sigmoid(sf,j(xdf :;φs)) ≤ FD log 1 = 0 (5)

where f indexes the flows and df the dimensionality at flow f . Interestingly, this parametrization has
a fixed upper bound of zero, removing the dependence on D found in Equation 4. We demonstrate
the change in behavior introduced by the alternate parametrization via the same two moon simulation.
The only difference is that the RNVP transforms use a sigmoid parametrizations for the scaling
operation. See Figure 5 (c) for the results: we see that now both change-of-variable terms are
oriented downward as dimensionality grows. We conjecture this parametrization helps condition the
log-likelihood, limiting the volume term’s influence, when training the large models (∼ 90 flows)
used by Kingma & Dhariwal (2018). However, it does not fix the out-of-distribution over-confidence
we report in Section 2.

D Constant and Random Inputs

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR10

Random 15.773
Constant (128) 0.589

Figure 6: Random and constant images. Log-likelihood (expressed in bits per dimension) of random
and constant inputs calculated from NVP-Glow for models trained on CIFAR-10.

E Ensembling Glows

The likelihood function technically measures how likely the parameters are under the data (and
not how likely the data is under the model), and perhaps a better quantity would be the posterior
predictive distribution p(xtest|xtrain) =

1
M

∑
m p(xtest|θm) where we draw samples from posterior

distribution θm ∼ p(θ|xtrain). Intutitively, it seems that such an integration would be more robust
than a single maximum likelihood point estimate. As a crude approximation to Bayesian inference,
we tried averaging over ensembles of generative models since Lakshminarayanan et al. (2017)
showed that ensembles of discriminative models are robust to out-of-distribution inputs. We compute
an “ensemble predictive distribution” as p(x) = 1

M

∑
m p(x;θm), where m indexes over models.

However, as Figure 7 shows, ensembles did not significantly change the relative difference between
in-distribution (CIFAR-10, black and blue) and out-of-distribution (SVHN, red).

14000 12000 10000 8000 6000 4000 2000 0

log p(X)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

Figure 7: Ensemble of Glows. The plot above shows a histogram of log-likelihoods computed using
an ensemble of Glow models trained on CIFAR10, tested on SVHN. Ensembles were not found to be
robust against this phenomenon.

7

F Derivation of CV-Glow’s Likelihood Difference

We start with Equation 1 and assume equal means:
Eq[log p(x;θ)]− Ep∗ [log p(x;θ)] ≈

1

2
Tr

{[
∇2
x0

log pz(f(x0;φ)) +∇2
x0

log

∣∣∣∣∂fφ∂x0

∣∣∣∣] (Σq −Σp∗)

}
.

The volume element for CV-Glow does not depend on x0 and therefore drops from the equation:

∇2
x0

log

∣∣∣∣∂fφ∂x0

∣∣∣∣ = ∇2
x0
HW

∑
k

log |Uk| = 0 (6)

where Uk denotes the kth 1× 1-convolution’s kernel. Moving on to the first term, the log probability
under the latent distribution, we have:

∇2
x0

log p(f(x0);ψ) = ∇2
x0

{
−1
2σ2
ψ

||f(x0)||22 −
D

2
log 2πσ2

ψ

}

= ∇x0

{
−1
σ2
ψ

(∑
d

fd(x0)

)
∇x0f(x0)

}

=
−1
σ2
ψ

[
∇x0f(x0)(∇x0f(x0))

T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
.

(7)

Since f is comprised of translation operations and 1× 1 convolutions, its partial derivatives involve
just the latter (as the former are all ones), and therefore we have the partial derivatives:

∂fh,w,c(x0)

∂xh,w,c
=

K∏
k=1

Ck∑
j=1

uk,c,j ,
∂2fh,w,c(x0)

∂x2h,w,c

= 0 (8)

where h and w index the input spatial dimensions, c the input channel dimensions, k the series of
flows, and j the column dimensions of the Ck × Ck-sized convolutional kernel Uk. The diagonal
elements of ∇x0f(x0)(∇x0f(x0))

T are then (
∏K

k=1

∑Ck

j=1 uk,c,j)
2, and the diagonal element of

∇2
x0
f(x0) are all zero.

Then returning to the full equation, for the constant-volume Glow model we have:
1

2
Tr

{[
∇2
x0

log p(f(x0)) +∇2
x0

log

∣∣∣∣ ∂f∂x0

∣∣∣∣] (Σq −Σp∗)

}
=

1

2
Tr
{[
∇2
x0

log p(f(x0))
]
(Σq −Σp∗)

}
=
−1
2σ2
ψ

Tr

{[
∇x0

f(x0)(∇x0
f(x0))

T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
(Σq −Σp∗)

}

=
−1
2σ2
ψ

∑
l,m

{[
∇x0

f(x0)(∇x0
f(x0))

T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
� (Σq −Σp∗)

}
l,m

.

(9)
Lastly, we assume that both Σq and Σp∗ are diagonal and thus the element-wise multiplication with
∇2
x0

log p(f(x0)) collects only its diagonal elements:

−1
2σ2
ψ

∑
l,m

{[
∇x0f(x0)(∇x0f(x0))

T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
� (Σq −Σp∗)

}
l,m

=
−1
2σ2
ψ

H∑
h

W∑
w

C∑
c

 K∏
k=1

Ck∑
j=1

uk,c,j

2

(σ2
q,h,w,c − σ2

p∗,h,w,c)

=
−1
2σ2
ψ

C∑
c

 K∏
k=1

Ck∑
j=1

uk,c,j

2
H∑
h

W∑
w

(σ2
q,h,w,c − σ2

p∗,h,w,c)

(10)

8

where we arrived at the last line by rearranging the sum to collect the shared channel terms.

G Histogram of data statistics

0.40 0.45 0.50 0.55
0

10

20

30

40

50
mean

SVHN

CIFAR-10

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0

10

20

30

40

50

60

70

80

90
diag(covariance)

SVHN

CIFAR-10

0.02 0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

25

30

35

40
nondiag(covariance)

SVHN

CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
|z|/sqrt(D)

SVHN

CIFAR-10

Figure 8: Data statistics: Histogram of per-dimensional mean, per-dimensional variance, non-
diagonal elements of covariance matrix, and normalized norm on CIFAR10-SVHN. Note that pixels
are converted from 0-255 scale to 0-1 scale by diving by 256.

H Samples from the models

(a) CIFAR-10 samples (b) SVHN samples

Figure 9: Samples. Samples from affine-Glow models used for analysis.

9

	Introduction
	Motivating Observations
	Digging Deeper into the Flow-Based Model
	Results illustrating asymmetric behavior
	 Analyzing the Change-of-Variables Formula as an Optimization Function
	Glow with Sigmoid Parametrization
	Constant and Random Inputs
	Ensembling Glows
	Derivation of CV-Glow's Likelihood Difference
	Histogram of data statistics
	Samples from the models

