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Abstract

The success of Generative Adversarial Nets is typically explained by their capability
to infer the underlying probability distribution from finite sets of data observations
and technological enhancements of the original model are driven by the motivation
of improving this capability. However, given the poor generalizability of the com-
mon probability divergence measures, this explanation appears insufficient. In this
work, we argue that of bigger importance than the statistical objective of matching
the probability density of the data at hand is the geometrical objective of learning
the intrinsic data manifold. We thus propose to design Generative Adversarial Net
algorithms following geometric motivations and suggest one possible concept to
do so.

1 Introduction

Out of all deep generative models that have emerged in the recent years, the Generative Adversarial
Nets (GAN) [3]] gained arguably the most attention. An indicator of this is the vast number of
GAN flavors that has been introduced. To name a few, we mention the Least Squares GAN [9],
the Energy-based GAN [15], the Sobolev GAN [10] and the Wasserstein GAN [1]. A common
thread running trough the theoretical interpretation justifying the different GAN models is the one
of estimating the probability distribution from which the data is assumed to be drawn. For instance,
while the optimization of the vanilla GAN can be viewed as the minimization of the Jensen-Shannen
Divergence (JSD) between the generated and the training data distribution [3]], the authors of [1]]
argue that the Earth Mover’s Distance (EMD) is a more appropriate probability divergence measure.

The distribution driven motivation puts GANSs in the tradition of classical density estimation ap-
proaches such as the Kernel Density Estimator (KDE) [[L1]] and likelihood based deep generative
models such as the Variational Autoencoder (VAE) [5]. There is, however, a crucial difference
between these approaches and GANs. While the former assume a model for the underlying density,
the latter do not. For instance, for a KDE with an approximately band-limited Parzen window to
work, the underlying probability density must have low-pass characteristics.

By contrast, GAN models are model free in the sense that they are supposed to estimate the density
directly from samples, without making the detour of parametrized model assumptions. However,
from this perspective, the GAN training objective is not well defined: On the one hand, a GAN must
not simply copy the training samples, but generalize in order to generate new data. On the other hand,
if the probability density is not restricted to a particular model, then it is hardly possible to find a
reasonable notion of optimality under which the best density approximation of a finite set of samples
is not exactly the same set. For a concise explanation of GANS, it is thus necessary to either find an
appropriate probability density model or propose an alternative interpretation. In the following, we
will pursue the latter approach.
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2 Density and Geometry

In this section, we will outline some of the shortcomings of viewing GANSs as density estimators.
For the sake of compactness, we focus on the Wasserstein GANs as a point of reference, due to its
popularity and state-of-the-art performance. Let us recall the sample based formulation of the EMD
that is used in the batch optimization of the Wasserstein GAN algorithm.

Consider two multisets [6], X = {x;}7, and X = {&,;}/", that contain training and generated

1=

samples, respectively. According to [1]], the sample-based EMD is given by
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holds. To see this, first note that Dy (X, X) is always non-negative and is therefore minimized at

X = X. Furthermore, if X # X, then we can find a strictly positive lower bound for D(X’, X ) by
constructing an appropriate 1-Lipschitz window function around a data sample that is contained in X’

more often than in X.

In other words, the loss function favors the exact reproduction of the original training data samples.
The general experience with (Wasserstein) GANS is the contrary: Their distinguishing feature is their
capability to produce morphed versions of the original data [12]].

The Wasserstein GAN estimates the EMD by modeling the critic function f as a neural network
and solving Eq. (T) via restricting the network weights to a compact set. Note that the optimization
problem Eq. (I) is constrained to the set of all possible 1-Lipschitz functions. A nearby conclusion
is thus that, as long as the critic function is restricted to have the Lipschitz property, in order to
assure accuracy of the EMD approximation, the network architecture of the critic must be chosen as
general as possible to keep the feasible set of functions as large as possible and therefore as close
as possible to the feasible set in Eq. (I). In particular, dense layers should perform at least as good
as convolutional ones. However, the experimental results [1] suggest otherwise: It appears that
the generation of photo-realistic samples requires a carefully designed convolutional architecture,
e.g. the Deep Convolutional GAN discriminator [12]], while alternative choices, e.g. the Multilayer
Perceptron (MLP), fail. Interestingly, the performance is much less sensitive to the choice of the
generator architecture, where replacing the convolutional network by a MLP still leads to reasonable
results.

Sensitivity w.r.t. critic architecture choice contradicts the formulation Eq. (I)) and thus suggests that
the Wasserstein GAN performs better, when it does not directly optimize Eq. (). This conclusion is
corroborated by concerns that have been recently raised regarding the generalization properties of the
JSD and the EMD. Specifically, the authors of [2] have shown that estimating the actual JSD or the
EMD of two distributions from a finite set of samples is intractable in high-dimensional spaces.

Ultimately, GANs learn a low-dimensional parametrization (the generator) of the data set. This
makes them a manifold learning [4] algorithm. It is thus reasonable to assume that the capability of a
GAN to generalize to unseen data samples is dictated by how well it learns the intrinsic geometry
of the underlying data model, rather than its density, provided that, by definition, optimal density
estimation is obtained by directly copying the training samples. This assumption is in line with
experimental results on toy examples. In particular, when trained on a mixture of 8 two-dimensional
Gaussian distributions aligned in a circle, cf. [1], the Wasserstein GAN appears to primarily learn the
low dimensional geometry of the circle. The authors explain this behavior by pointing to specific
properties of the EMD. However, this explanation might understate the importance of the particular
function class the critic belongs to due to its network architecture and, more specifically, the level
sets thereof. Their significance was discussed, among others, in [8]]. The author considers group
action diffeomorphisms such as spatial deformations and suggests that convolutional neural networks
(CNN) learn functions that are invariant under these kinds of transformations of the data. According
to that, training CNNs on natural images yields functions whose level sets coincide approximately
with the sets generated by applying such transformations to an image.
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Figure 1: The generator is evaluated on points on a grid. Left: Wasserstein GAN is trained with
1-dimensional Gaussian noise. Right: Wasserstein GAN is trained with 2-dimensional uniform noise.

Fig. [T] depicts generation results for the 8-Gaussian example. For the sake of visualization, the
Generator is evaluated on a regular grid. The Wasserstein GAN is trained for a low dimensional
latent representation z with dim(z) € {1, 2}. For dim(z) = 2, it can be observed that the generator
preserves the local structure of the grid and contracts it at the centers of the Gaussians.

3 A Level Set View

In order to investigate the manifold learning assumption we formulated in the previous section, we
aim at defining an alternative GAN formulation, motivated entirely by geometric heuristics. We
propose an approach based on the level sets of the critic function. Consider a function f : R? — R
for which the level set L = f~1(0) describes the underlying data manifold. Given the outstanding
performance of supervised learning via CNNs on different kinds of real-world data, we assume that
such a function can be implemented via a CNN.

Consider now a point « ¢ L and a proximity-based projection * = 7, a onto L. If f is differentiable
and x is not too far away from L, then the following approximation holds.

fl@) = V(") (@) 3)
Thus, if f = fy is parametrized by a vector 6, then maximizing the magnitude of fy(x) w.r.t. 6
increases the magnitude of the orthogonal projection of the gradient V fy (™) onto & —x*. Meanwhile,
if the orthogonal projection of V fy(x*) onto & — x* is large, then minimizing the magnitude of
fo(x) w.rt. & decreases the norm of & — x* and thus moves « closer to L.

We thus propose the following loss function for the generator gy and critic fj.

L(0,9) = Expp, [fg(x)2] — Ezps [f9(gv9(z))2]7 “)
where pp refers to the data distribution and pg to the latent sampling distribution, e.g. standard
Gaussian. During optimization of the critic, £ is minimized. As a result, the first term ensures that
£y 1(0) is a model for the data manifold, while the second term increases the magnitude of fo(x) for
points not on the manifold. During optimization of the generator, £ is maximized. The first term has
no impact on the optimization and the second term enforces the generated points to move closer to
fo 1(0). The optimization is carried out via RMSProp [14] and is summarized in Algorithm To
prevent the loss function from exploding, the optimization can be repeated multiple times nge,, for
each batch. We refer to the described algorithm as Level Set GAN.

The Mean Squared Error based objective brings to mind another popular GAN algorithm, the Least
Squares GAN. However, the underlying data model of the Level Set GAN is fundamentally different.
While the critic optimization of the Least Squares GAN views the real and generated samples as two
classes of a classification problem, the critic optimization of the Level Set GAN is more properly
described as an anomaly detection, in which the level set serves as a model for the non-anomalous
data.

In more formal terms, the relation between level sets and manifolds is the following. Consider a
sufficiently smooth, full-rank function I' : R — R4~*_ For any y € R?~*, the pre-image I'"!(y)
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Algorithm 1: The Level Set GAN
Input: Learning rate v, batch size m, number of generator iterations ngen

Initialize neural network parameters 6, 1
while not converged do
for each batch {x;}, of training data do
Sample {z;}7, from appropriate latent distribution
Lo 3215 fo(mi)® = 352 folgo(2i))
0 + 0 — - RMSProp(0, VeLy)
fort =1,...,ngen do
Sample {z;}7 , from appropriate latent distribution
Ly < 371 fo(go(2i))°
¥+ 9 — a- RMSProp(d, Vg Ly)
end

end
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Figure 2: Samples produced by the generator of the Level Set GAN. Left: Results for the 8 Gaussian
toy problem (trained with uniform noise and evaluated on a grid). Middle: Results for MNIST with
deep convolutional architecture (trained with Gaussian noise). Right: Results for a subset of CelebA
with deep convolutional architecture (trained with Gaussian noise)

is a k-dimensional embedded submanifold of R%, According to this relation, it could be sensible to
model the critic as vector-valued, rather than scalar-valued. However, as of now, we have not come
up with a reasonable way to control the rank of the critic function, even though the rank of a neural
network has attracted considerable attention in recent research, e.g. in [13]]. Therefore, we focus on
the scalar version for now.

4 Experiments

We observe positive results for the Level Set GAN. Fig. [2| depicts samples generated by training
the model on the 8-Gaussian problem, the MNIST dataset and a subset of the CelebA dataset [7],
respectively. Even though the quality of the generated images can not yet be considered state-of-the-
art, we understand the outcome as a first confirmation that the interpretation of the GAN as manifold
learning algorithm is justifiable.

In its current form, the Level Set GAN has issues with exploding values for £ and with mode
collapse. The former can be mitigated by increasing the number of stochastic gradient iterations for
the generator. The latter needs to be further investigated. Interestingly, replacing the mean squared
error formulation in Eq. (@) by an ¢; based loss increases mode collapse. A possible explanation
for this is that the ¢; loss favors the scenario, where some parts of the data fit the model very well,
while others do not fit the model at all. Mode collapse from a geometrical point of view can be thus
described by a scenario, where the manifold overfits to a small subset of the data.



5 Conclusion

In this work, we challenge the commonplace intepretation of GANS as density estimators and propose
an alternative view, based on the data geometry and the level sets of the critic function. We suggest to
incorporate said view in the design of GAN algorithms and do so by proposing the Level Set GAN.
We report proof-of-concept results that give rise to hope that the geometric view is a proper model
assumption for GANSs. In the future, we aim to improve the Level Set GAN in order to provide a
robust and theoretically sound alternative to current GAN based models.
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