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1 Introduction

We are interested in the constrained minimization of a large sum of nonconvex functions defined as
min
θ∈Θ

[
f(θ) ,

∑N
i=1 fi(θ)

]
where Θ is a convex subset of Rp and or all i ∈ JNK, fi : Rp → R are

continuously differentiable, bounded from below and possibly nonconvex. In this paper, we solve this
minimization problem using an MM algorithm [Lange, 2016, Razaviyayn et al., 2013] which works
by finding iteratively a surrogate function that majorizes the objective function. MM algorithms
are very popular in machine learning and computational statistics [Lange, 2016]. Examples include
proximal gradient algorithms [Parikh and Boyd, 2014, Mishchenko et al., 2018], the Expectation-
Maximization (EM) algorithm [McLachlan and Krishnan, 2007] and some variational inference
methods [Wainwright and Jordan, 2008]. When the objective function is a finite-sum, [Mairal,
2015] developed an incremental MM scheme, called MISO, taking advantage of the finite-sum
structure with a cost per iteration that is independent of N . However, the MISO framework rests
upon the computation of tractable surrogates such as quadratic functions. Yet, in many cases, those
surrogates are intractable and need to be approximated. This is the case in particular in Bayesian
Deep Learning [Ghahramani, 2015, Ranganath et al., 2014, Kingma and Welling, 2013]. Ultimately,
MISO convergence guarantees can not be applied on those cases where approximation of surrogates
are used; they often rely on Robbins and Monro [Robbins and Monro, 1951] convergence results for
stochastic optimization.

In this contribution, we propose an incremental MM algorithm, called MISSO (Minimization by
Incremental Stochastic Surrogate Optimization) when the natural surrogate functions are intractable
and should be approximated, for example by Monte Carlo integration, and provide asymptotic
convergence guarantees.

2 Minimization by Incremental Stochastic Surrogate Optimization (MISSO)

M 1. For i ∈ JNK, fi is continuously differentiable on a neighborhood T (Θ) of Θ and is bounded
from below

For any θ ∈ Θ and i ∈ JNK, we say, following [Mairal, 2015] that a function fi,θ : Rp → R is a
surrogate of fi at θ if the function ϑ → fi,θ(ϑ) is continuously differentiable on T (Θ), fi,θ(ϑ) ≥
fi(ϑ) , fi,θ(θ) = fi(θ) and ∇fi,θ(ϑ)

∣∣∣
ϑ=θ

= ∇fi(ϑ)
∣∣∣
ϑ=θ

.

M 2. For i ∈ JNK, hi,θ , fi,θ−fi is L-smooth, i.e. for all (θ, ϑ, ϑ′) ∈ Θ3: |∇hi,θ(ϑ)−∇hi,θ(ϑ′)| ≤
L|ϑ− ϑ′|

We introduce an incremental scheme to deal with the case of intractable surrogate functions. We
assume that the surrogate can be expressed as an integral over a set of latent variables, denoted
z = (zi ∈ Zi, i ∈ JNK) ∈ Z where Z =×N

i=1
Zi with Zi a subset of Rmi . For all i ∈ JNK, let µi
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be a σ-finite measure on the Borel σ-algebra Zi = B(Zi), Pi = {pi(zi, θ); θ ∈ Θ} be a family of
probability densities with respect to µi, and ri,θ : Zi ×Θ→ R be functions such that:

fi,θ(ϑ) ,
∫
Zi

ri,θ(zi, ϑ)pi(zi, θ)µi(dzi) for all (θ, ϑ) ∈ Θ2. (1)

Our scheme is based on the computation, at each iteration, of stochastic surrogate functions for a
mini-batch of components. For i ∈ JNK, the stochastic surrogate function, noted f̂Mi,θ(ϑ) is a Monte
Carlo approximation of the surrogate function fi,θ(ϑ) defined by (1) such that:

f̂Mi,θ(ϑ) ,
1

M

M−1∑
m=0

ri,θ(z
m
i , ϑ) for all (θ, ϑ) ∈ Θ2 (2)

where {zmi }
M−1
m=0 is a Monte Carlo batch. The MISSO algorithm reads:

Algorithm 1 MISSO algorithm

Initialization: given an initial estimate θ0, compute ϑ→ f̂M0

i,θ0(ϑ) defined by (2) for i ∈ JNK.
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}

2. For all i ∈ Ik, sample a Monte Carlo batch {zk,mi }Mk−1
m=0 from pi(zi, θ

k−1) and compute
ϑ→ f̂Mk

i,θk−1(ϑ) defined by (2)

3. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 â

k
i (ϑ) where âki (ϑ) are defined recursively as follows: âki (ϑ) ,

f̂Mk

i,θk−1(ϑ) if i ∈ Ik and âk−1
i (ϑ) otherwise

Whether we use MCMC or direct simulation, we need to control the supremum norm of the fluctu-
ations of the Monte Carlo approximation. Let i ∈ JNK, {ji(zi, ϑ), zi ∈ Zi, ϑ ∈ Θ} be a family of
measurable functions. We define:

Ci(ji) , sup
θ∈Θ

sup
M>0

M−1/2EMi,θ

[
sup
ϑ∈Θ

∣∣∣∣∣
M−1∑
m=0

{
ji(z

m
i , ϑ)−

∫
Zi

ji(zi, ϑ)pi(zi, θ)µi(dzi)

}∣∣∣∣∣
]

(3)

where we denote by EMi,θ is the expectation of the samples {zmi }
M−1
m=0 .

M 3. For all i ∈ JNK and θ ∈ Θ: lim
k→∞

Ci(ri,θ) <∞ and lim
k→∞

Ci(∇ri,θ) <∞.

M 4. {Mk}k≥0 is a non deacreasing sequence of integers which satisfies
∑∞
k=0M

−1/2
k <∞.

Theorem 1. Assume M1-M4. Let
(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the iterative
application described by Algorithm 1. Then:

(i)
(
f(θk)

)
k≥1

converges almost surely and
(
θk
)
k≥1

satisfies the Asymptotic Stationary Point
Condition of [Mairal, 2015].

Proof. The proof is postponed to the supplementary material.

3 Incremental Variational Inference for Bayesian Deep Learning

Let x = (xi, i ∈ JNK) and y = (yi, i ∈ JNK) be i.i.d. input-output pairs and w be a global latent
variable taking values in W a subset of RJ . A natural decomposition of the joint distribution is
p(y, x, w) = p(w)

∏N
i=1 pi(yi|xi, w). The goal is to calculate the posterior distribution p(w|y, x).

The classical variational inference problem boils down to minimizing the following Kullback Leibler
(KL) divergence:

θ∗ = arg min
θ∈Θ

KL(q(w; θ) ‖ p(w|y, x)) = arg min
θ∈Θ

f(θ) = arg min
θ∈Θ

N∑
i=1

fi(θ) (4)
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where q(w; θ) belongs to the multivariate Gaussian family and fi is defined as:

fi(θ) , −
∫
W

log pi(yi|xi, w)q(w; θ)dw +
1

N
KL(q(w; θ) ‖ p(w)) = li(θ) + d(θ) (5)

Even though this procedure makes inference analytical for a large class of models, it still lacks in
many ways. This technique does not scale to large data since it requires calculations over the entire
dataset and the approach does not adapt to complex models (models in which this last integral cannot
be evaluated analytically) such as Bayesian neural networks [Neal, 2012, Gal, 2016]. The former
challenge is tackled by [Hoffman et al., 2013] with the Stochastic Variational Inference algorithm
and the latter is addressed by [Kucukelbir et al., 2017, Blundell et al., 2015] where the intractable
expectation li in (5) is integrated by Monte Carlo. We perform this optimization step using our
framework MISSO with the following quadratic surrogate at θ ∈ Θ:

fi,θ(ϑ) , fi(θ) +∇fi(θ)>(ϑ− θ) +
L

2
‖ϑ− θ‖22 for all ϑ ∈ Θ and i ∈ JNK (6)

where ‖ · ‖2 is the `2-norm and L is an upper bound of the spectral norm of the Hessian of fi at θ. Let
t : Θ× Rd 7→ Rd be a function and φ be the density of the standard multivariate normal distribution
Nd(0, Id). We assume that for all θ ∈ Θ, the distribution of the random vector w = t(θ, ε), where
ε ∼ Nd(0, Id), has a density q(·, θ). Then, following [Blundell et al., 2015, Proposition 1],∇li(θ) is
computed as:

∇li(θ) = −∇
∫
W

log pi(yi|xi, w)q(w; θ)dw = −
∫
W

J(θ, zi)∇ log pi(yi|xi, t(θ, zi))φ(zi)µi(dzi)

(7)
where for each for i ∈ JNK, zi ∈ Rd, J(θ, zi) is the Jacobian of the function t(·, zi) with respect to θ.

Thus, at iteration k we get θk = 1
N

∑N
i=1 θ

τi,k − 1
2γ

∑N
i=1{m̂k

i + ∇d(θk−1)} where m̂k
i =

− 1
Mk

∑Mk−1
m=0 J(θk−1, zk,mi )∇θ log pi(yi, xi|t(θk−1, zk,mi )), if i ∈ Ik, is the MC of (7) where

{zk,mi }Mk−1

m=0 are i.i.d samples from Nd(0, Id) and Mk is the size of the batch which might de-
pend upon the iteration. We apply variational inference for a 2-layer Bayesian neural network
on the MNIST dataset [LeCun and Cortes, 2010] using our MISSO scheme. The training set is
composed of N = 60 000 handwritten digits, 28 × 28 images, d = 784. Our neural network is
composed of an input layer with d = 784 units, a single hidden layer of p = 100 hyperbolic tan-
gent units and a final softmax output layer with K = 10 classes. We set p(w) = N (0, Id) and
p(yi|xi, w) = Softmax(f(xi, w)) where f is the two layer model described above. We compare the
convergence behaviors of the following state of the art optimization algorithms, using their vanilla
implementations on TensorFlow [Abadi et al., 2015]: the SGD [Kiefer and Wolfowitz, 1952], the
ADAM [Kingma and Ba, 2014], the SAG [Le Roux et al., 2012] and the Momentum [Sutskever et al.,
2013] algorithms versus our MISSO update with a constant learning rate of 10−5. Our estimator is
computed using the Edward library [Tran et al., 2016]. The batch size p is set to 1% and 10% of the
training set as seen in Figure 1.

Figure 1: Convergence of the negated ELBO. Runs for two different mini-batch sizes.

Conclusion: In this paper, we have presented a unifying framework for minimization by incremental
surrogate optimization when the surrogate functions are intractable and need to be approximated by
MC integration. Our approach covers a large class of nonconvex optimization algorithms used in
machine learning, such as mini-batch version of the Variational Inference algorithm. Non asymptotic
convergence results for both convex and nonconvex objective functions can be obtained and will be
reported in future works.
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A Proofs

Lemma 1

Let (Vk)k≥0 be a non negative sequence of random variables such that E[V0] <∞. Let (Xk)k≥0 a
non negative sequence of random variables and (Ek)k≥0 be a sequence of random variables such that∑∞
k=0 E[|Ek|] <∞. If for any k ≥ 1:

Vk ≤ Vk−1 −Xk + Ek (8)

then:

(i) for all k ≥ 0, E[Vk] <∞ and the sequence (Vk)k≥0 converges a.s. to a finite limit V∞.

(ii) the sequence (E[Vk])k≥0 converges and lim
k→∞

E[Vk] = E[V∞].

(iii) the series
∑∞
k=0Xk converges almost surely and

∑∞
k=0 E[Xk] <∞.

Remark

Note that the result still holds if (Vk)k≥0 is a sequence of random variables which is bounded from
below by a deterministic quantity M ∈ R.

A.1 Proof of Lemma 1

We first show that for all k ≥ 0, E[Vk] <∞. Note indeed that:

0 ≤ Vk ≤ V0 −
k∑
j=1

Xj +

k∑
j=1

Ej ≤ V0 +

k∑
j=1

Ej (9)

showing that E[Vk] ≤ E[V0] + E
[∑k

j=1Ej

]
<∞.

Since 0 ≤ Xk ≤ Vk−1 − Vk + Ek we also obtain for all k ≥ 0, E[Xk] < ∞. Moreover, since
E
[∑∞

j=1 |Ej |
]
<∞, the series

∑∞
j=1Ej converges a.s. We may therefore define:

Wk = Vk +

∞∑
j=k+1

Ej (10)

Note that E[|Wk|] ≤ E[Vk] + E
[∑∞

j=k+1 |Ej |
]
<∞. For all k ≥ 1, we get:

Wk ≤ Vk−1 −Xk +

∞∑
j=k

Ej ≤Wk−1 −Xk ≤Wk−1

E[Wk] ≤ E[Wk−1]− E[Xk]

(11)

Hence the sequences (Wk)k≥0 and (E[Wk])k≥0 are non increasing. Since for all k ≥ 0, Wk ≥
−
∑∞
j=1 |Ej | > −∞ and E[Wk] ≥ −

∑∞
j=1 E[|Ej |] > −∞, the (random) sequence (Wk)k≥0

converges a.s. to a limit W∞ and the (deterministic) sequence (E[Wk])k≥0 converges to a limit w∞.
Since |Wk| ≤ V0 +

∑∞
j=1 |Ej |, the Fatou lemma implies that:

E[lim inf
k→∞

|Wk|] = E[|W∞|] ≤ lim inf
k→∞

E[|Wk|] ≤ E[V0] +

∞∑
j=1

E[|Ej |] <∞ (12)

showing that the random variable W∞ is integrable.

In the sequel, set Uk ,W0 −Wk. By construction we have for all k ≥ 0, Uk ≥ 0, Uk ≤ Uk+1 and
E[Uk] ≤ E[|W0|] + E[|Wk|] <∞ and by the monotone convergence theorem, we get:

lim
k→∞

E[Uk] = E[ lim
k→∞

Uk] (13)
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Finally, we have:

lim
k→∞

E[Uk] = E[W0]− w∞ and E[ lim
k→∞

Uk] = E[W0]− E[W∞] (14)

showing that E[W∞] = w∞ and concluding the proof of (ii). Moreover, using (11) we have that
Wk ≤Wk−1 −Xk which yields:

∞∑
j=1

Xj ≤W0 −W∞ <∞

∞∑
j=1

E[Xj ] ≤ E[W0]− w∞ <∞
(15)

which concludes the proof of the lemma.

A.2 Proof of theorem 1

A.2.1 Proof of (i)

Set for all ϑ ∈ Θ, i ∈ JNK and k ≥ 1:

aki (ϑ) , fi,θτi,k (ϑ) and āk(ϑ) =

N∑
i=1

aki (ϑ) (16)

where the function fi,θτi,k is defined by (1) and τi,k is defined recursively as follows:

τi,k = k − 1 if i ∈ Ik and τi,k = τi,k−1 otherwise (17)

For any k ≥ 1 and θ ∈ Θ the following decomposition plays a key role:

âk(ϑ) = âk−1(ϑ) +
∑
i∈Ik

{f̂Mk

i,θk−1(ϑ)− âk−1
i (ϑ)} (18)

where for all ϑ ∈ Θ, i ∈ JNK and k ≥ 1:

âki (ϑ) , f̂Mk

i,θτi,k
(ϑ) and âk(ϑ) =

N∑
i=1

âki (ϑ) (19)

Set the following notations:

Vk , āk(θk),

Xk ,−
∑
i∈Ik

{fi,θk−1(θk−1)− ak−1
i (θk−1)},

Ek ,
∑
i∈Ik

{f̂Mk

i,θk−1(θk−1)− fi,θk−1(θk−1)}

+
∑
i∈Ik

{ak−1
i (θk−1)− âk−1

i (θk−1)}

+ āk(θk)− âk(θk) + âk−1(θk−1)− āk−1(θk−1).

Combining (18) with āk(θk) = āk(θk)− âk(θk) + âk(θk) and âk(θk) ≤ âk(θk−1), we obtain:

Vk ≤ Vk−1 −Xk + Ek. (20)

where ak−1
i and āk are defined in (16). We now check the assumptions of Lemma 1. Note first that

the sequence (Vk)k≥0 is bounded from below under assumption M 1. We now check that Xk ≥ 0
thanks to the following relation obtained using the definition of surrogate functions:

Xk =
∑
i∈Ik

{ak−1
i (θk−1)− fi,θk−1(θk−1)} =

∑
i∈Ik

{ak−1
i (θk−1)− fi(θk−1)} ≥ 0. (21)
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We finally have to prove the convergence of the series
∑∞
k=0 E[|Ek|]. For this purpose, we will show

that for all i ∈ JNK:
∞∑
k=0

E
[
|âki (θk)− aki (θk)|

]
<∞ (22)

We have, using the Tower property of the conditional expectation and the Jensen inequality:

E
[
|âki (θk)− aki (θk)|

]
≤ E

[
Ei,θτi,k

[
sup
ϑ∈Θ
|âki (ϑ)− aki (ϑ)|

]]
(23)

Under assumption M 3 applied with the function ϑ→ âki (ϑ), for all i ∈ JNK we have:

Ei,θτi,k
[

sup
ϑ∈Θ
|âki (ϑ)− aki (ϑ)|

]
≤ Ci(ri,θτi,k )M−1/2

τi,k
(24)

where Ci(ri,θτi,k ) is a finite constant defined by (3) and τi,k is defined by (17).

Thus, we have that:
E
[
|âki (θk)− aki (θk)|

]
≤ Ci(ri,θτi,k )E[M−1/2

τi,k
] (25)

Since, any index i is included in a mini-batch with a probability equal to p
N conditionally indepen-

dently from the past, we obtain that:

E[M−1/2
τi,k

] =

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j (26)

Taking the infinite sum of this term yields:

∞∑
k=1

E[M−1/2
τi,k

] =

∞∑
k=1

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j

=

∞∑
k=1

∞∑
l=0

(
1− p

N

)k−(l+1) p

N
1{l≤k−1}M

−1/2
l

=
p

N

∞∑
l=0

(
1− p

N

)−(l+1)

M
−1/2
l

∞∑
k=l+1

(
1− p

N

)k
=

∞∑
l=0

M
−1/2
l

(27)

which proves identity (22), using assumption M 4. By summing over the indices i ∈ JNK, (22)
implies:

∞∑
k=0

E
[
|âk(θk)− āk(θk)|

]
<∞ (28)

Hence, we obtain that
∑∞
k=0 |âk(θk)− āk(θk)| <∞ almost surely which implies that:

lim
k→∞

âk(θk)− āk(θk) = 0 a.s. (29)

Similarly, using assumption M 3 applied for all i ∈ JNK, with the function ϑ→ ∇âki (ϑ) we obtain:

lim
k→∞

∇âk(θk)−∇āk(θk) = 0 a.s. (30)

It follows from (22) and (28) that
∑∞
k=0 E [|Ek|] <∞ and that the series

∑∞
k=0 εk converges to an

almost surely finite limit. Hence by Lemma 1 and (29) we get:

• the sequence
(
āk(θk)

)
k≥0

and the series
∑∞
k=0 χk converge a.s.

• the sequence
(
E [āk(θk)]

)
k≥0

and the series
∑∞
k=0 E [Xk] converge with lim

k→∞
E [āk(θk)] =

E[ lim
k→∞

āk(θk)].
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• the sequence
(
âk(θk)

)
k≥0

converges a.s. and the sequence
(
E [âk(θk)]

)
k≥0

converges.

Now, we have to prove the almost-sure convergence of the sequence
(
f(θk)

)
k≥0

and the convergence
of
(
E [f(θk)]

)
k≥0

.

Let us denote for all θ ∈ Θ and a subset J ⊂ JNK:

fJ(θ) ,
∑
i∈J

fi(θ)

ak−1
J (θ) ,

∑
i∈J

ak−1
i (θ)

(31)

The Beppo-Levi theorem and the Tower property of the conditional expectation imply:

M , E

[ ∞∑
k=1

Xk

]
=

∞∑
k=0

E
[
ak−1
Ik

(θk−1)− fIk(θk−1)
]

=

∞∑
k=0

E
[
E
[
ak−1
Ik

(θk−1)− fIk(θk−1)
∣∣Fk−1

]] (32)

with E
[
fIk(θk−1)

∣∣Fk−1

]
= p

N f(θk−1) and E
[
[ak−1
Ik

(θk−1)
∣∣Fk−1

]
= p

N

∑N
i=1 a

k−1
i (θk−1) =

p
N ā

k−1(θk−1) where Fk−1 = σ(Ij , j ≤ k − 1) is the filtration generated by the sampling of the
indices. We thus obtain:

M =
p

N

∞∑
k=0

E
[
āk−1(θk−1)− f(θk−1)

]
=

p

N
E

[ ∞∑
k=0

āk−1(θk−1)− f(θk−1)

]
<∞ (33)

which yields to:

E

[ ∞∑
k=1

Xk

]
=

p

N
E

[ ∞∑
k=1

{āk−1(θk−1)− f(θk−1)}

]
<∞ (34)

showing that:

lim
k→∞

E
[
āk(θk)− f(θk)

]
= 0

lim
k→∞

āk(θk)− f(θk) = 0 a.s.
(35)

showing that the sequence
(
E [f(θk)]

)
k≥0

converges and that
(
f(θk)

)
k≥0

converges a.s.

A.2.2 Proof of (ii)

Let us define, for all k ≥ 0, h̄k as:

h̄k : ϑ→
N∑
i=1

aki (ϑ)− fi(ϑ) (36)

h̄k is L-smooth with L =
∑N
i=1 Li since each of its component is Li-smooth by definition of the

surrogate functions. Using the particular parameter ϑk = θk − 1
L∇h̄k(θk) we have the following

classical inequality for smooth functions (cf. Lemma 1.2.3 in [Nesterov, 2007]):

0 ≤ h̄k(ϑk) ≤ h̄k(θk)− 1

2L
‖∇h̄k(θk)‖22

=⇒ ‖∇h̄k(θk)‖22 ≤ 2Lh̄k(θk)
(37)

Using (35), we conclude that lim
k→∞

‖∇h̄k(θk)‖2 = 0 a.s. Then, the decomposition of 〈∇f(θk), θ −
θk〉 for any θ ∈ Θ yields:

〈∇f(θk), θ − θk〉 = 〈∇āk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉
= 〈∇āk(θk)−∇âk(θk), θ − θk〉+ 〈∇âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉

(38)
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Note that θk is the result of the minimization of âk(θ) on the constrained set Θ, therefore for all
θ ∈ Θ, 〈∇âk(θk), θ − θk〉 ≥ 0. Thus, we obtain, using the Cauchy-Schwarz inequality:

〈∇f(θk), θ − θk〉 ≥ 〈∇āk(θk)−∇âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉
≥ −‖∇āk(θk)−∇âk(θk)‖2‖θ − θk‖2 − ‖∇h̄k(θk)‖2‖θ − θk‖2

(39)

By minimizing over Θ and taking the infimum limit, we get, using (30):

lim inf
k→∞

inf
θ∈Θ

〈∇f(θk), θ − θk〉
‖θ − θk‖2

≥ − lim
k→∞

(
‖∇āk(θk)−∇âk(θk)‖2 + ‖∇h̄k(θk)‖2

)
= 0 (40)

which is the Asymptotic Stationary Point Condition (ASPC).
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