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Abstract

We propose a novel deep learning paradigm of differential flows that learn stochas-
tic differential equation transformations of inputs prior to a standard classification
or regression task. The key property of differential Gaussian processes is the
warping of inputs through infinitely deep, but infinitesimal, differential fields, that
generalize discrete layers into a stochastic dynamical system. We demonstrate
promising results on various regression benchmark datasets.

1 Introduction

Gaussian processes are a family of flexible kernel function distributions [Rasmussen and Williams,
2006]. The capacity of kernel models is inherently determined by the function space induced by
the choice of the kernel, where standard stationary kernels lead to models that underperform in
practice. Shallow – or single – Gaussian processes are often suboptimal since flexible kernels that
would account for the non-stationary and long-range connections of the data are difficult to design
and infer. Deep Gaussian processes elevate the performance of Gaussian processes by mapping the
inputs through multiple Gaussian process ’layers’ [Damianou and Lawrence, 2013, Salimbeni and
Deisenroth, 2017]. However, deep GP’s result in degenerate models if the individual GP’s are not
invertible, which limits their capacity [Duvenaud et al., 2014].

(a) Deep Gaussian process

(b) Differentially deep Gaussian process

Figure 1: (a) Deep Gaussian process is a hi-
erarchical model with a nested composition
of Gaussian processes introducing dependency
across layers. (b) In our formulation, deepness
is introduced as a temporal dependency across
states xi(t) (indicated by dashed line) with a
GP prior over the differential function f

In this abstract, we explore a novel paradigm of learning
continuous-time transformations or flows of the data
instead of learning a discrete sequence of layers. We
apply GP based stochastic differential equation systems
in the original data space to transform the inputs before a
GP classification or regression layer. The transformation
flow consists of an infinite path of infinitesimal steps.
This approach turns the focus from learning iterative
function mappings to learning input representations in
the original feature space, avoiding learning new feature
spaces.

2 Model

We propose a continuous-time modeling approach where
inputs xi are not treated as constant but are instead
driven by an SDE system. In particular, we consider
process warping an input x through a differential func-
tion f until a predefined time T , resulting in x(T ), which
is subsequently classified or regressed with another func-
tion g. We impose GP priors on both the differential
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Figure 2: (a) Illustration of samples from a 2D deep Gaussian processes prior. DGP prior exhibits a pathology
wherein representations in deeper layers concentrate on low-rank manifolds. (b) Samples from a differentially
deep Gaussian processes prior result in rank-preserving representations. (c) The continuous-time nature of the
warping trajectories results from smooth drift and structured diffusion (d).

field f and the predictor function g. A key parameter of
the differential GP model is the amount of simulation time T , which defines the length of flow and
the capacity of the system, analogously to the number of layers in standard deep GPs. The framework
reduces to a conventional Gaussian process with zero flow time T = 0.

We assume a dataset of N inputs X = (x1, . . . ,xN )T ∈ RN×D of D-dimensional vectors xi ∈ RD,
and associated scalar outputs y = (y1, . . . , yN )T ∈ RN that can be continuous for a regression
problem or categorical for classification, respectively. We redefine the inputs as temporal functions
x : T → RD over time such that state paths xt over time t ∈ T = R+ emerge, where the observed
inputs xi,t , xi,0 correspond to initial states xi,0 at time 0. We classify or regress the final data
points XT = (x1,T , . . . ,xN,T )T after T time of an SDE flow with a predictor Gaussian process g.

In addition, we consider sparse Gaussian process approach by augmenting both differential and
predictor Gaussian process with inducing variables with GP prior [Snelson and Ghahramani, 2006,
Titsias, 2009]. The joint density of the augmented model is as below.

p(y,g,ug,XT , f ,Uf ) = p(y|g)︸ ︷︷ ︸
likelihood

p(g|ug,XT )p(ug)︸ ︷︷ ︸
GP prior of g(x)

p(XT |f)︸ ︷︷ ︸
SDE

p(f |Uf )p(Uf )︸ ︷︷ ︸
GP prior of f(x)

, (1)

p(g|ug,XT ) = N (g|Qgug,KXT XT
−QgKZgZg

QT
g ),

p(ug) = N (ug|0,KZgZg ), (2)

p(f |Uf ) = N (f |Qf vec(Uf ),Kxx −QfKZfZf
QT

f ), (3)

p(Uf ) =

D∏
d=1

N (ufd|0,KZfZf
), (4)

where Qg = KXT Zg
K−1ZgZg

and Qf = KXZf
K−1ZfZf

. The model prediction depends on the
distribution of the final states p(XT |f) determined by the SDE flow dxt of the input data X. We
define the flow parameterized by inducing vectors Uf defining the vector field direction at ‘landmark’
locations Zf . The drift and diffusion at every point in the data space is then defined with smooth
non-linear Gaussian processes interpolation given by p(f |Uf ) in (3).

dxt = µ(xt)dt +
√

Σ(xt)dWt (5)

where, drift µ(xt) = KxtZf
K−1ZfZf

Uf is a deterministic state evolution vector field, Σ(xt) =

Kxtxt
−KxtZf

K−1ZfZf
KZfxt

is the diffusion scaling matrix of the stochastic multivariate Wiener
process Wt ∈ RD. A Wiener process has zero initial state W0 = 0, and independent, Gaussian
increments Wt+s −Wt ∼ N (0, sID) over time with standard deviation

√
sID.
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Optimizing the marginal log likelihood involves integrating out the state distributions p(XT |f) of the
non-linear SDE system (5) without a closed form solution. Instead, we propose to follow the SVI
framework as considered by Hensman et al. [2015] to find a lower bound on the model evidence. In
particular, a variational lower bound for the evidence without the state distributions has already been
considered by Hensman et al. [2015]. We propose to include the state distributions by simulating
Monte Carlo state trajectories.

We propose a complete variational posterior approximation over both f and g with Gaussian approxi-
mations for the inducing posteriors q(ug) = N (ug|mg,Sg) and q(Uf ) =

∏D
d=1N (ufd|mfd,Sfd).

q(g,ug,XT , f ,Uf ) = p(g|ug,XT )q(ug)p(XT |f)p(f |Uf )q(Uf ) (6)

Further, the inducing variables ug and Uf can be marginalized out from the above joint distribution,
arriving at following variational distributions (we refer to Hensman et al. [2015] for further details)

q(g|XT ) = N (g|Qgmg,KXT XT
+ Qg(Sg −KZgZg

),QT
g ), (7)

q(f) = N (f |Qf vec(Mf )︸ ︷︷ ︸
µq

,KXX + Qf (Sf −KZfZf
)QT

f︸ ︷︷ ︸
Σq

). (8)

We plug the derived variational posterior drift µq and diffusion Σq estimates to the final variational
SDE flow which conveniently encodes the variational approximation of the vector field f .

dxt = µq(xt)dt +
√

Σq(xt)dWt (9)

The evidence lower bound for our differential deep GP model can be written as

log p(y) ≥
N∑
i=1

{
1

S

S∑
s=1

E
q(g|x(s)

i,T )
log p(yi|gi)︸ ︷︷ ︸

variational expected likelihood

− KL[q(ug)||p(ug)]︸ ︷︷ ︸
prior divergence of g(x)

− KL[q(Uf )||p(Uf )]︸ ︷︷ ︸
prior divergence of f(x)

}
, (10)

which factorizes over both data and Monte Carlo samples of SDE paths x
(s)
i,T ∼ pT (x;µq,Σq,xi)

defined by the numerical solutions of the system (9). We use Euler-Maruyama solver [Higham,
2001] to generate the numerical solutions of the posterior SDE. Assuming a fixed time discretisation
t1, . . . , tk with ∆t = tk/K being the time window, the EM method at tk is

xk+1 = xk + µq(xk)∆t +
√

Σq(xk)∆Wk, (11)

where ∆Wk = Wk+1 −Wk ∼ N (0,∆tID) with standard deviation
√

∆t. However, in practice,
more efficient methods with high-order approximations can be used as well [Kloeden and Platen,
1992, Lamba et al., 2006]. All the model parameters which include variational parameters and kernel
hyperparameters are learned jointly using the stochastic gradients of the lowerbound defined by (10).

3 Experiments

3.1 Step function estimation

We begin by highlighting how the DiffGP estimates a signal with multiple highly non-stationary step
functions as shown in the figure 3. The DiffGP separates the regions around the step function such
that the final regression function g with a standard stationary Gaussian kernel can fit the transformed
data X(t). The model then has learned the non-stationarities of the system with uncertainty in the
signals being modelled by the inherent uncertainties arising from the diffusion.

3.2 UCI regression benchmarks

We compare our model on 8 regression benchmarks with the previously reported results in [Salimbeni
and Deisenroth, 2017]. On Boston, Concrete and Power datasets, where deep models show improve-
ment over shallow models, our model outperforms previous best results of DGP. There is a small
improvement by having a non-linear model on the Kin8mn dataset and our results match that of DGP.
Energy and Wine are small datasets where single Gaussian Processes perform the best. As expected,
both DiffGP and DGP recover the shallow model indicating no over-fitting.
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4 Discussion

We have proposed a continuous-time deep Gaussian process model wherein input locations are
warped through stochastic and smooth differential equations. The continuous-time deep model admits
‘decision-making paths’, where we can explicitly follow the transformation applied to a data point xi.
Analyzing these paths could lead to a better interpretable model. However, modeling in the input
space without intermediate low-dimensional latent representations presents scalability issues. We
leave scaling the approach to high dimensions as future work, while we also intend to explore other
inference methods such as SG-HMC [Chen et al., 2014] or Stein inference [Liu and Wang, 2016] in
the future.

Figure 3: Step function estimation: Observed input space (a) is transformed through stochastic continuous-time
mappings (b) into a warped space (c). The stationary Gaussian process in the warped space gives a smooth
predictive distribution corresponding to a highly non-stationary predictions in the original observed space.

boston energy concrete wine_red kin8mn power naval protein

N 506 768 1,030 1,599 8,192 9,568 11,934 45,730
D 13 8 8 22 8 4 26 9

Linear 4.24(0.16) 2.88(0.05) 10.54(0.13) 0.65(0.01) 0.20(0.00) 4.51(0.03) 0.01(0.00) 5.21(0.02)

BNN L = 2 3.01(0.18) 1.80(0.05) 5.67(0.09) 0.64(0.01) 0.10(0.00) 4.12(0.03) 0.01(0.00) 4.73(0.01)

Sparse GP M = 100 2.87(0.15) 0.78(0.02) 5.97(0.11) 0.63(0.01) 0.09(0.00) 3.91(0.03) 0.00(0.00) 4.43(0.03)
M = 500 2.73(0.12) 0.47(0.02) 5.53(0.12) 0.62(0.01) 0.08(0.00) 3.79(0.03) 0.00(0.00) 4.10(0.03)

Deep GP
M = 100

L = 2 2.90(0.17) 0.47(0.01) 5.61(0.10) 0.63(0.01) 0.06(0.00) 3.79(0.03) 0.00(0.00) 4.00(0.03)
L = 3 2.93(0.16) 0.48(0.01) 5.64(0.10) 0.63(0.01) 0.06(0.00) 3.73(0.04) 0.00(0.00) 3.81(0.04)
L = 4 2.90(0.15) 0.48(0.01) 5.68(0.10) 0.63(0.01) 0.06(0.00) 3.71(0.04) 0.00(0.00) 3.74(0.04)
L = 5 2.92(0.17) 0.47(0.01) 5.65(0.10) 0.63(0.01) 0.06(0.00) 3.68(0.03) 0.00(0.00) 3.72(0.04)

DiffGP
M = 100

T = 1.0 2.80(0.13) 0.49(0.02) 5.32(0.10) 0.63(0.01) 0.06(0.00) 3.76(0.03) 0.00(0.00) 4.04(0.04)
T = 2.0 2.68(0.10) 0.48(0.02) 4.96(0.09) 0.63(0.01) 0.06(0.00) 3.72(0.03) 0.00(0.00) 4.00(0.04)
T = 3.0 2.69(0.14) 0.47(0.02) 4.76(0.12) 0.63(0.01) 0.06(0.00) 3.68(0.03) 0.00(0.00) 3.92(0.04)
T = 4.0 2.67(0.13) 0.49(0.02) 4.65(0.12) 0.63(0.01) 0.06(0.00) 3.66(0.03) 0.00(0.00) 3.89(0.04)
T = 5.0 2.58(0.12) 0.50(0.02) 4.56(0.12) 0.63(0.01) 0.06(0.00) 3.65(0.03) 0.00(0.00) 3.87(0.04)

Table 1: Test RMSE values of 8 benchmark datasets (reproduced from Salimbeni and Deisenroth [2017]). Uses
random 90% / 10% training and test splits, repeated 20 times.
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