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Abstract

We propose a novel hybrid recommender system method that treats missing data in
a principled manner and that uses amortized inference for fast predictions. We name
this method, the Partial Variational Autoencoder (p-VAE). P-VAE uses a novel
probabilistic generative model to handle varying numbers of user ratings in a prin-
cipled way. Using the proposed amortized partial inference technique in p-VAEs,
learning and inference can be efficiently performed by minimizing the so-called
partial variational upper bound, without making ad-hoc assumptions on the values
of missing ratings. Empirical experiments on the MovieLens dataset demonstrate
the state-of-the-art performance of our method for movie recommendations.

1 Introduction

Recommender Systems Recommender systems (RS) are one of the most extensively studied,
wide-spread machine learning application areas in a variety of real-world scenarios. The main
purpose of a recommender system is to model the user’s preferences (through ratings, etc.) on items
to make recommendations on unseen ones, based on historical data of users and items. According
to the type of data that is used, recommender systems can be categorized into three different types
[1]: vanilla collaborative filtering (CF, based on past user-item interactions), content-based systems
(based on meta information such as user profile and item content/features), and hybrid recommender
systems (or content-based collaborative filtering, based on both types of information) 2. Many of the
RS approaches are still dominated by linear models [13, 20] due to their efficiency and simplicity.

Related recent works and challenges Recently, efforts have been made to generalize the linear RS
models by introducing the representational power of deep learning models [3, 5, 8, 11, 12, 18, 22, 24],
which can also be categorized into three categories: non-linear generalization of CF [3, 5, 8, 12, 18,
24]; non-linear item content feature representation with deep learning [11, 21, 22], and non-linear
hybrid methods [2]. Despite the success of introducing deep learning into recommender systems,
a central challenge remains: all of the previous methods ignore uncertainties in missing data (i.e.,
unrated items), and implicitly assume a constant-value imputation for those missing entries (e.g.
zero imputing in [9, 12, 17, 18, 24]). This assumption is often severely violated, since the user-item
interaction data are usually very large but sparsely observed, making it difficult to train CF-based
methods. Additionally, few non-linear CF methods are able utilize the content information.

Contributions In this work, we address the aforementioned issue with our novel non-linear exten-
sion of CF based on the proposed Partial Variational Autoencoder (p-VAE). First of its kind, p-VAE
is a principled and scalable probabilistic model capable of intrinsically handling massive missing
ratings of variable sizes across users, without relying on ad-hoc assumptions on missing ratings.
Additionally, our p-VAE can be easily be adapted as a hybrid RS to encode item content information.

∗This work was done during his internship at Microsoft Research Cambridge.
2CF will be referring to both vanilla CF and the hybrid method for the rest of the paper.
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2 Partial VAE (p-VAE) for Hybrid Recommender System

Problem formulation We consider the content-based collaborative filtering (CF) setting. Suppose
we have access to the ratings of M items from N users. Let rnm be the rating given by the nth
user to the mth item, and rn = rOn ∪ rUn is the partially observed rating vector for the nth user with
observed entries denoted as rOn and missing ones denoted as rUn . We further assume that the meta
information, i.e. the user profile un and item features im may available (although our methods can
also be applied both with and without such meta information). Under this setting, the goal of the RS
is to recommend potentially interesting unseen items. This is done based on efficient and accurate
predictions of the missing ratings rUn given the observed ratings rOn and the meta information. That
is to infer p(rUn |rOn ,un, {im}1≤m≤M ). For simplicity, we will omit the index n for rn, and drop
un, im whenever the context is clear.

From VAE to partial VAE We consider extending the variational autoencoder (VAE) approach
to hybrid CF, since it enables us to overcome the limited capacity of (probabilistic) linear models
commonly used in CF. A regular VAE approach uses a generative model (decoder) p(r, z) =
p(r|z)p(z) that generates observations r given latent variables z, and an inference model (encoder)
q(z|r) that infers the latent state z given fully observed r. Training VAE is very efficient through
optimizing a variational bound. However, in our setting of RS, there are a huge number of possible
partitions {U,O}, where the size of observed ratings might vary. This makes classic approaches to
train a VAE no longer directly applicable.

Previous works tries to solve this issue by manually imputing the missing rU with a constant value
[18]. The main drawback of this approach is that it can not differ between missing values and actually
observed values. This poses learning difficulties and potential risks of poor uncertainty estimations,
since rating data is typically extremely sparsely observed. Last but not the least, the parameterization
of the encoder neural network is inefficient and does not make use of the sparsity of rating data.

To address this problem in a principled manner, we propose the partial VAE (p-VAE) collaborative
filtering method. Similar to a VAE, P-VAE assumes a latent variable model p(r) =

∫
z
p(r|z)p(z),

where z is the latent variable. Notice the factorized structure for p(r|z), i.e.

p(r|z) =
∏
i

pi(ri|z). (1)

This implies that given z, the observed ratings rO are conditionally independent of rU . Therefore,
inferences about rU can be reduced to p(z|rO). Once knowledge about z is obtained, we can draw
correct inferences about rU . To approximate p(z|rO) we introduce an auxiliary variational inference
network q(z|rO) and derive the partial variational upper bound,

DKL(q(z|rO)‖p(z|rO)) = Ez∼q(z|rO)[log q(z|rO)− log p(z|rO)]

≤ Ez∼q(z|rO)[log q(z|rO)− log p(rO|z)− log p(z)] ≡ Lp. (2)

This bound, Lp, depends only on the observation rO. The size of rO could vary between different
data points. Next, we develop the partial inference network for auxiliary distribution q(z|rO), which
takes a set of partially observed ratings rO whose length may vary across users or across time.

Amortized Inference with partial observations Inspired by the Point Net (PN) approach for
point cloud classification [16, 23], we specify the approximate distribution q(z|rO) by a permutation
invariant set function encoding, given by:

c(rO) := g(h(s1), h(s2), ..., h(s|O|)), (3)

where |O| is the number of the observed ratings, sm carries the information of the rating and item
identity. For example, sm = [em, rm] or sm = em ∗ rm. Here, em is the ID vector of the mth item.
There are many ways to define em under different settings, such as by using the meta information,
or optimizing em from scratch during learning when the meta information is not available. In our
experiments, we treat em as the concatenation of the fixed meta information that comes with the item
data and the user profile, and a learnable set of identity embeddings. We use sm = em ∗ rm in this
work, and show that this setting generalizes naive Zero Imputation (ZI) VAE [14] (see Appendix A)
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We use a neural network h(·) to map input s from RD+1 to RK , where D is the dimension of each
em, and rm is a scalar, K is the latent space size. The Key to the PN structure is the permutation
invariant aggregation operation g(·), such as max-pooling or summation. In this way, the mapping
c(rO) is invariant to permutations of elements of rO and rO can have arbitrary length. Finally, the
fixed-size code c(rO) is fed into an ordinary amortized inference network, that transforms the code
into the statistics of a multivariate Gaussian distribution to approximate p(z|rO). In practice, since
the dimension of item feature im often satisfies D � M , this parameterization of encoder is very
efficient compared with typical VAE approaches, which requires a huge M ×K weight matrix.

Note that our proposed method generalizes many existing methods such as [19, 18, 14, 12, 9]. The
relationship between our method and those related work are presented in Appendix B.

3 Experiments

Method Test RMSE
Matrix Factorization Methods
PMF† 0.883
LLORMA-Global [10] 0.865
BiasMF∗ 0.845
NNMF [3] 0.843
User based generative models
U-RBM∗ 0.881
U-Autoencoder 0.870
U-ZI 0.872
U-p-VAE 0.856
U-p-VAE(meta) 0.856
Item based generative models
I-RBM∗ 0.854
I-Autoencoder 0.847
I-ZI 0.851
I-p-VAE 0.841

Table 1: Test RMSE on MovieLens 1M.
†: Taken from [3]. ∗: Taken from [18].

MovieLens: experiment setting We apply our p-VAE
recommender system to the MovieLens dataset [4]. We
choose the Movielens 1M, which contains 1,000,206 rat-
ing records of 3,952 movies by 6,040 users. Movielens
consists of large and sparsely observed data (around 5%
observed ratings). We apply 90%/10% training-test ratio
to split the dataset. We compare the baselines from previ-
ous work, including Probabilistic matrix factorization[13],
Restricted Boltsman Machines[17], AutoRec[18], Bi-
ased Matrix factorization[7], Neural Non-negative Matrix
Factorization[3], LLORMA[10]. We provide one addi-
tional baseline: Zerp imputing VAE (ZI). ZI-VAE is the
degenerated case of p-VAE that uses ad-hoc zero imput-
ing for unobserved ratings (also used in other AE-based
baselines), which is as an VAE extension of [9].

We group these baselines into three categories: matrix
factorization methods, user-based generative models, and

item based generative models. In user based models, the ratings from each user are treated as a
training example. On the contrary, in item based models, the ratings of the same item are treated as a
training example. Both U-p-VAE and I-p-VAE has one hidden layer with 100 and 500 dimensional
hidden units, respectively. In include two versions of U-p-VAE, with or without meta features of
users and items. In particular, for U-p-VAE, we further improve our results by running Hamiltonian
Monte Carlo (HMC) [15] on latent space z with 20 leapfrog steps and 10 samples, following [6]. Our
methods are trained for 400 epochs using Adam with a learning rate of 0.001, with batch size 100.

Results Table 1 compares p-VAE with baselines in terms of RMSE, where we have directly quoted
their results since the experimental setting in these works is the same as ours. The exception is
autoencoders where we report results from our implementation, since it is a special case of our
method. Overall, in both user-based categories and item-based categories, p-VAE outperforms all
baselines. Note that, our best performing method, the item based p-VAE (I-p-VAE) also outperforms
the all matrix factorization methods. The results of ZI-VAE are only slightly better (or worse in item
based version) than previous non-probabilistic Autoencoder baselines, which explains that the main
performance gain of p-VAE comes from the better uncertainty estimation of missing data provided by
amortized partial inference component. This confirms our conjecture in the previous section. The
meta information does not help p-VAE to achieve better results due to that the proposed infernece
method is already accurate enough without the help of the simple meta data.

4 Conclusion

We proposed the Partial VAE (p-VAE) as a novel and highly accurate generative CF model for recom-
mander system. The p-VAE addresses a number of issues in regular CF settings with autoencoder
approaches. In particular, the p-VAE provides a principled approach for handling large amounts of
missing values in user-item rating data. For future work, we will continue to improve our model and
investigate its performance via more sophisticated evaluation methods on more data sets.
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Appendix

A Zero imputing as a Point Net

Here we present how the zero imputing (ZI) and PointNet (PN) approaches relate.

Zero imputation with inference net In ZI, the natural parameter of λ (e.g., Gaussian parameters
in variational autoencoders) is approximated using the following neural network:

f(x) :=

L∑
l=1

w
(1)
l σ(w

(0)
l xT ), (4)

where L is the number of hidden units, x is the input image with xi be the value of the ith pixel.
To deal with partially observed data x = xo ∪ xu, ZI simply sets all xu to zero, and use the full
inference model f(x) to perform approximate inference.

PointNet parameterization The PN approach approximates the natural parameter λ by a permuta-
tion invariant set function

g(h(s1), h(s2), ..., h(sO)),

where si = [xi, ei], ei is the I dimensional embedding/ID/location vector of the ith pixel, g(·) is a
symmetric operation such as max-pooling and summation, and h(·) is a nonlinear feature mapping
from RI+1 to RK (we will always refer h as feature maps ). In the current version of the partial-VAE
implementation, where Gaussian approximation is used, we set K = 2H with H being the dimension
of latent variables. We set g to be the element-wise summation operator, i.e. a mapping from RKO to
RK defined by:

g(h(s1), h(s2), ..., h(sO)) =
∑
i∈O

h(si).

This parameterization corresponds to products of multiple Exp-Fam factors
∏

i∈O exp{−〈h(si),Φ〉}.

From PN to ZI To derive the PN correspondence of the above ZI network we define the following
PN functions:

h(si) := ei ∗ xi

g(h(s1), h(s2), ..., h(sO)) :=

I∑
k=1

θkσ(
∑
i∈O

hk(si)),

where hk(·) is the kth output feature of h(·). The above PN parameterization is also permutation
invariant; setting L = I , θl = w

(1)
l ,(w(0)

l )i = (ei)l the resulting PN model is equivalent to the ZI
neural network.

Generalizing ZI from PN perspective In the ZI approach, the missing values are replaced with
zeros. However, this ad-hoc approach does not distinguish missing values from actual observed zero
values. In practice, being able to distinguish between these two is crucial for improving uncertainty
estimation during partial inference. One the other hand, we have found that PN-based partial VAE
experiences difficulties in training. To alleviate both issues, we proposed a generalization of the ZI
approach that follows a PN perspective. One of the advantages of PN is setting the feature maps of the
unobserved variables to zero instead of the related weights. As discussed before, these two approaches
are equivalent to each other only if the factors are linear. More generally, we can parameterize the PN
by:

h(1)(si) := ei ∗ xi
h(2)(h

(1)
i ) := NN1(h

(1)
i )

g(h(s1), h(s2), ..., h(sO)) := NN2(σ(
∑
i∈O

h
(2)
k (h

(1)
i ))),

where NN1 is a mapping from RI to RK defined by a neural network, and NN2 is a mapping from
RK to R2H defined by another neural network.
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B Connections to related work

In this section, we briefly present the connections of our proposed model to some of the related works.
We show that ours is a more general and deeper model.

From AutoRec to Partial VAE AutoRec [18] (and Deep AutoRec [9])is a auto-encoder based
collaborative filtering method. In particular, AutoRec can be used for modeling user’s behavior or
item’s behavior, which are referred as U-AutoRec or I-AutoRec respectively. In the following, we
will assume the U-AutoRec as the only difference between these two is the input observations. The
encoder network will take all ratings (observed and unobserved) as input, where the unobserved data
are marked by 0. This encoder will then map the user observations into a latent vector z which can
be seen as the latent representation of the user. Then, this user representation is transformed by the
decoder network to impute the missing ratings as well as reconstructing the observed ones. This
encoding-decoding procedure is deterministic and trained by minimizing the RMSE between the
reconstruction and observed ratings.
The encoder of partial VAE is a non-linear generalization of the AutoRec. According to Appendix A,
Partial VAE can be seen as ZI through multiplying observed values by item embedding ei, which is
represented as h(1)(si). In AutoRec, h(1)(si) will be summed over all observed i, whereas partial
VAE will first map each factor h(i)(si) through a non-linear mapping NN1(·), followed by a pooling
function g(·) (e.g. summation).
Another distinction is the training objective. In AutoRec, the latent representation z is a free-
parameter which are obtained by minimizing the RMSE. On the other hand, partial VAE adopts a
Bayesian treatment which places a prior distribution over the random variable z. Training objective is
maximizing partial variational lower bound. Thus, the partial VAE can be regarded as the nonlinear,
variational generalization to AutoRec.

Connections to HI-VAEs Heterogeneous-Incomplete VAE (HI-VAE)[14] is a recent concurrent
work that tries to modify the original VAE to handle heterogenous (mixed continuous and discrete) or
incomplete (with missing data at random). Under missing data, HI-VAE also propose to use partial
variational bound for learning and inference. However, their inference method tries to handle missing
data with zeros. As discussed previously, the main drawback of this approach is that it can not differ
between missing values and actually observed values. This will also result in the degeneration of
approximate posterior, which means that the VAE model tends to reconstruct unobserved data with
the single best solution that ignores the data uncertainty. Essentially, as shown in Appendix A, this
approach can be viewed as a special case of PoinNet parameterization of encoder with a specific
choice of aggregation function. In a sense, HI-VAE is the variational version of AutoRec.

Relations to Matchbox [19] Matchbox is an effective model that models the user-item interaction
matrix by assuming that the ratings can be factorized into the inner product of user trait vector and
item trait vector. Each trait vector is then modelled by the linear transformation on user/item meta
features. Matchbox hence generalized the SVD matrix factorization approach, and a fully Bayesian
treatment is adopted to the model, where approximate inference is implemented by variational
message passing and expectation propagation. Matchbox further generalized this approach to handle
different user feedback models and model dynamical drift over time. From the fundamental model
point of view, Matchbox is essentially a Bayesian (w.r.t weights) linear variational autoencoder, while
our partial VAE is non-Bayesian w.r.t decoder-encoder weights. The missing data problem during
inference phase is avoided since non-amortized variational inference is used, therefore approximate
messages must be re-optimized whenever each of the rating configurations changes, while in partial
VAE, these information are amortized into a single model that can be applied to all missing patterns
and user-item configurations.
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