
Variational Implicit Processes

Chao Ma1 Yingzhen Li2 José Miguel Hernández-Lobato12
1University of Cambridge 2Microsoft Research Cambridge

{cm905,jmh233}@cam.ac.uk, Yingzhen.Li@microsoft.com

Abstract

We introduce the variational implicit processes (VIPs), a principled Bayesian
modeling technique based on a class of highly flexible priors over functions. Similar
to Gaussian processes (GPs), in implicit processes (IPs), an implicit multivariate
prior (data simulators, Bayesian neural networks, non-linear transformations of
stochastic processes, etc.) is placed over any finite collections of random variables.
A novel and efficient approximate inference algorithm for IPs is derived using
wake-sleep updates, which gives analytic solutions and allows scalable hyper-
parameter learning with stochastic optimization. Experiments demonstrate that
VIPs return better uncertainty estimates and superior performance over existing
inference methods for GPs and Bayesian neural networks.

1 Introduction

Powerful models with implicit distributions as core components have recently attracted enormous
interest in both deep learning as well as the approximate Bayesian inference community. In contrast to
prescribed probabilistic models [24] that assign explicit densities to possible outcomes of the model,
implicit models implicitly assign probability measures by the specification of the data generating
process. One of the most well known implicit distributions is the generator of generative adversarial
nets (GANs) [2, 9, 34, 73, 82, 107] that transforms isotropic noise into high dimensional data, say
images, using neural networks. In approximate inference context, implicit distributions have also
been deployed to postulate flexible approximate posterior distributions [61, 63, 65, 66, 85, 101, 104].
However, such generation process does not necessarily allow evaluation of densities point-wise,
which becomes the main barrier for inference and learning.

This paper explores applications of implicit models to Bayesian modeling of random functions.
Similar to the construction of Gaussian processes (GPs), we construct implicit stochastic processes
(IPs) by assigning implicit distributions over any finite collections of random variables. Recall that a
GP defines the distribution of a random function f by placing a multivariate Gaussian distribution
N (f ; m,Kff) over any finite collection of function values f = (f(x1), ..., f(xN))> evaluated at
any given finite collection of input locations X = {xn}Nn=1.1 An alternative parameterization of
GPs defines the sampling process as f ∼ N (f ; m,Kff) ⇔ z ∼ N (z; 0, I), f = Bz + m, with
Kff = BB> the Cholesky decomposition of the covariance matrix. Observing this, we propose a
generalization of the generative process by replacing the linear transform of the latent variable z with
a nonlinear one. This gives the formal definition of implicit stochastic process as follows:
Definition 1 (noiseless implicit stochastic processes). An implicit stochastic process (IP) is a collec-
tion of random variables f(·), such that any finite collection f = (f(x1), ..., f(xN))> has a joint
distribution implicitly defined by the following generative process

z ∼ p(z), f(xn) = gθ(xn, z), ∀ xn ∈ X. (1)
A function distributed according to the above IP is denoted as f(·) ∼ IP(gθ(·, ·), pz).

1xn can also be unobserved as in Gaussian process latent variable models [53].

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

Note that z ∼ p(z) could be an infinite dimensional object such as a Gaussian Process (in this case,
g becomes an operator). This definition of an IP is well-defined, in which we provide theoretical
justifications in Appendix C.2 and C.3.

Many powerful models, including neural samplers, warped Gaussian Processes [96] and Bayesian
Neural Networks, can be represented by an IP (see Appendix C). With an IP as the prior, one can
directly perform posterior inference over functions in a non-parametric fashion, which avoids typical
issues of Bayesian inference in parameter space (e.g. symmetric modes in the posterior distribution
of Bayesian neural network weights). Therefore IPs bring together the best of both worlds, that is,
combining the elegance of inference, and the well-calibrated uncertainty of Bayesian nonparametric
methods, with the strong representational power of implicit models.

However, standard approximate Bayesian inference techniques are non-applicable as the underlying
distribution of an IP is intractable. As the main contribution of the paper, we develop a novel and
fast variational framework that gives a closed-form approximation to the intractable IP posterior. We
conduct experiments to compare IPs with the proposed inference method, and GPs/Bayesian neural
networks/Bayesian RNNs with existing variational approaches.

2 Variational implicit processes

Consider the following regression model with an IP prior over the function:2

f(·) ∼ IP(gθ(·, ·), pz), y = f(x) + ε, ε ∼ N (0, σ2). (2)

Equation (2) defines an implicit model as p(y, f |x) is intractable in most cases. Given an observational
dataset D = {X,y} and a set of test inputs X∗, Bayesian predictive inference over y∗ involves
computing the predictive distribution p(y∗|X∗,X,y, θ), which itself implies computing the posterior
p(f |X,y, θ). Besides prediction, we may also want to learn the prior parameters θ and noise variance
σ by maximizing the log marginal likelihood: log p(y|X, θ) = log

∫
f
p(y|f)p(f |X, θ)df , with f

the evaluation of f on X. Unfortunately, both the prior p(f |X, θ) and the posterior p(f |X,y, θ)
are intractable as the implicit process does not allow point-wise density evaluation, let alone the
integration tasks. Therefore, to address these tasks, we must resort to approximate inference methods.

We propose a generalization of the wake-sleep algorithm [43] to handle both intractabilities. This
method returns (i) an approximate posterior distribution q(f |X,y) which is later used for predictive
inference, and (ii) an approximation to the marginal likelihood p(y|X, θ) for hyper-parameter
optimization. In this paper we choose q(f |X,y) to be the posterior distribution of a Gaussian process,
qGP(f |X,y). Due to page limit we present the full algorithm in Appendix D, and a high-level
summary of our algorithm is the following:

• Sleep phase: sample dreamed data (function values f and noisy outputs y) as indicated in (2),
and use them fit a GP regression model qGP(y, f |X) = p(y|f ,X)qGP(f |X) with maximum
likelihood. This is equivalent to minimizing DKL[p(y, f |X, θ)||qGP(y, f |X)] that is also a
variational upper bound of DKL[p(f |X,y, θ)||qGP(f |X,y)]. It has an analytic solution: the
optimal GP qGP(f) has the same mean and covariance functions as the IP prior.

• Wake phase: approximate the IP posterior p(f |X,y, θ) with the GP posterior qGP(f |X,y),
and optimize hyper-parameters θ by maximizing the approximated marginal likelihood
log p(y|X, θ) ≈ log qGP(y|X). In Appendix D.2, this optimization task is further reduced
to Bayesian linear regression (with hyper parameters being optimized simultaneously) using
α-variational inference.

We name this inference framework as the variational implicit processes (VIPs). Our approach has
two key advantages. First, the algorithm has no explicit sleep phase computation, and the sleep
phase’s analytic solution can be directly plugged into the wake-phase objective. Second, the proposed
wake phase update is highly scalable: with stochastic optimization techniques, the Bayesian linear
regression task has the same order of time complexity as training Bayesian neural networks. Crucially,
our wake-sleep algorithm does not require the evaluation of the implicit prior distribution. Therefore
the intractability of IP prior distributions is no longer an obstacle for approximate inference, and our
inference framework can be applied to many implicit process models.

2Note that it is common to add Gaussian noise ε to an implicit model, e.g. see the noise smoothing trick used
in training GANs [89, 97].

2

−1

0

1

2

y

VIP - train mean
VIP - interpolation mean
training sample
test sample

−2

−1

0

1

2

y

VDO - train mean
VDO - interpolation mean
training sample
test sample

−200 −150 −100 −50 0 50 100 150 200
x

−2

0

2

y

GPR - train mean
GPR - interpolation mean
training sample
test sample

Figure 1: Interpolations returned by VIP (top), variational dropout
(middle), and exact GP (bottom), respectively. SVGP is omitted as it
looks nearly the same. Grey dots: training data, red dots: test data, dark
dots: predictive means, light grey and dark grey areas: Confidence in-
tervals with 2 standard deviations of the training and test set, respectively.

 Solar Data
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 NLL

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70RMSE

VIP VDO SVGP GP

Figure 2: Test performance on so-
lar irradiance interpolation. The
lower the better.

3 Experiments

Solar irradiance prediction We compare the VIP with variational sparse GP (SVGP, 100 inducing
points), exact GP and variational dropout Bayesian NN (VDO) on the solar irradiance dataset [57].
The dataset is constructed following [31], where 5 segments of length 20 are removed for interpolation.
All the inputs are then centered, and the targets are standardized. We use the same general settings as
specified in Appendix E.1, except that we run Adam with learning rate = 0.001 for 5000 iterations.

Predictive interpolations are shown in Figure 1. We see that VIP and VDO give similar interpolation
behaviors. However, VDO overall under-estimates uncertainty when compared with VIP, especially in
the interval [−100, 200]. VDO also incorrectly estimates the mean function around x = −150 where
the ground truth there is a constant. On the contrary, VIP is able to recover the correct mean estimation
around this interval with high confidence. GP methods recover the exact mean of training data with
high confidence, but they return poor estimates of predictive means for interpolation. Quantitatively,
the right two plots in Figure 2 show that VIP achieves the best NLL/RMSE performance, again
indicating that its returns high-quality uncertainties and accurate mean predictions.

Further experiments We have further conducted comprehensive experiments in Appendix E, in-
cluding a synthetic example (Sec E.1), multivariate regression on UCI datasets (Sec E.2), approximate
Bayesian computation (ABC) on the Lotka–Volterra implicit model (Sec E.3), and Bayesian LSTM
for predicting power conversion efficiency of organic photovoltaics molecules (Sec E.4). These
results demonstrate that VIPs return better uncertainty estimates and superior performance over
existing inference methods for GPs and Bayesian NNs.

4 Conclusions

We presented a variational approach for learning and Bayesian inference over function space based
on implicit process priors. It provides a powerful framework that combines the rich represen-
tational power of implicit models with the well-calibrated uncertainty estimates from (paramet-
ric/nonparametric) Bayesian models. As an example, with Bayesian neural networks as the implicit
process prior, our approach outperformed many existing Gaussian process/Bayesian neural network
methods and achieved significantly improved results on the a number of experiments. Many directions
remain to be explored. Classification models with implicit process priors will be developed. Implicit
process latent variable models will also be derived in a similar fashion as Gaussian process latent
variable models [53]. Future work will investigate novel inference methods to models equipped with
other implicit process priors, e.g. data simulators in astrophysics, ecology and climate science.

3

References

[1] Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, and Eric P Xing.
Learning scalable deep kernels with recurrent structure. The Journal of Machine Learning
Research, 18(1):2850–2886, 2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv:1701.07875,
2017.

[3] Matej Balog, Balaji Lakshminarayanan, Zoubin Ghahramani, Daniel M Roy, and Yee Whye
Teh. The mondrian kernel. arXiv preprint arXiv:1606.05241, 2016.

[4] David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks.
NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 168:215–238, 1998.

[5] Mark A Beaumont, Jean-Marie Cornuet, Jean-Michel Marin, and Christian P Robert. Adaptive
approximate bayesian computation. Biometrika, 96(4):983–990, 2009.

[6] Daniel Beck and Trevor Cohn. Learning kernels over strings using gaussian processes. In
Proceedings of the Eighth International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 67–73, 2017.

[7] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[8] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of dimensionality for local
kernel machines. Techn. Rep, 1258, 2005.

[9] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative
adversarial networks. arXiv:1703.10717, 2017.

[10] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks. arXiv:1505.05424, 2015.

[11] Fernando V Bonassi, Mike West, et al. Sequential monte carlo with adaptive weights for
approximate bayesian computation. Bayesian Analysis, 10(1):171–187, 2015.

[12] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial exam-
ples, uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks.
arXiv:1707.02476, 2017.

[13] Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-Lobato, Yingzhen Li, and Richard
Turner. Deep Gaussian processes for regression using approximate expectation propagation.
In International Conference on Machine Learning, pages 1472–1481, 2016.

[14] Thang D Bui and Richard E Turner. Tree-structured Gaussian process approximations. In
Advances in Neural Information Processing Systems, pages 2213–2221, 2014.

[15] Thang D Bui, Josiah Yan, and Richard E Turner. A unifying framework for sparse Gaussian
process approximation using power expectation propagation. arXiv:1605.07066, 2016.

[16] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in
Neural Information Processing Systems, pages 342–350, 2009.

[17] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning, pages 160–167. ACM, 2008.

[18] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods
for point process intensity estimation. In Proceedings of the 25th International Conference on
Machine Learning, pages 192–199. ACM, 2008.

[19] Kurt Cutajar, Edwin V Bonilla, Pietro Michiardi, and Maurizio Filippone. Random feature
expansions for deep Gaussian processes. arXiv:1610.04386, 2016.

[20] Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215, 2013.

[21] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances in Neural
Information Processing Systems, pages 2253–2261, 2016.

4

[22] John Denker and Yann Lecun. Transforming neural-net output levels to probability distribu-
tions. In Advances in Neural Information Processing Systems 3. Citeseer, 1991.

[23] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Learning and policy search in stochastic dynamical systems with Bayesian neural networks.
arXiv:1605.07127, 2016.

[24] Peter J Diggle and Richard J Gratton. Monte carlo methods of inference for implicit statistical
models. Journal of the Royal Statistical Society. Series B (Methodological), pages 193–227,
1984.

[25] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition.
In ICML, pages 647–655, 2014.

[26] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B Tenenbaum, and Zoubin
Ghahramani. Structure discovery in nonparametric regression through compositional kernel
search. arXiv:1302.4922, 2013.

[27] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, pages 2224–
2232, 2015.

[28] Daniel Flam-Shepherd, James Requeima, and David Duvenaud. Mapping gaussian process
priors to bayesian neural networks. NIPS Bayesian deep learning workshop, 2017.

[29] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning, pages
1050–1059, 2016.

[30] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. In Advances in Neural Information Processing Systems, pages
1019–1027, 2016.

[31] Yarin Gal and Richard Turner. Improving the Gaussian process sparse spectrum approximation
by representing uncertainty in frequency inputs. In International Conference on Machine
Learning, pages 655–664, 2015.

[32] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Es-
lami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[33] Amir Globerson and Roi Livni. Learning infinite-layer networks: beyond the kernel trick.
arxiv preprint. arXiv preprint arXiv:1606.05316, 2016.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680, 2014.

[35] Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems, pages 2348–2356, 2011.

[36] William H Guss. Deep function machines: Generalized neural networks for topological layer
expression. arXiv preprint arXiv:1612.04799, 2016.

[37] Johannes Hachmann, Roberto Olivares-Amaya, Adrian Jinich, Anthony L Appleton, Martin A
Blood-Forsythe, Laszlo R Seress, Carolina Roman-Salgado, Kai Trepte, Sule Atahan-Evrenk,
Süleyman Er, et al. Lead candidates for high-performance organic photovoltaics from high-
throughput quantum chemistry–the harvard clean energy project. Energy & Environmental
Science, 7(2):698–704, 2014.

[38] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural
networks. arXiv:1508.05133, 2015.

[39] Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, and Amir Globerson. Improper deep
kernels. In Artificial Intelligence and Statistics, pages 1159–1167, 2016.

[40] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data.
arXiv:1309.6835, 2013.

[41] José Miguel Hernández-Lobato and Ryan P Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. arXiv:1502.05336, 2015.

5

[42] José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Daniel Hernández-Lobato,
Thang Bui, and Richard Eric Turner. Black-box α-divergence minimization. 2016.

[43] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The" wake-sleep"
algorithm for unsupervised neural networks. Science, 268(5214):1158, 1995.

[44] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[45] Geoffrey E Hinton and Ruslan R Salakhutdinov. Using deep belief nets to learn covariance
kernels for Gaussian processes. In Advances in Neural Information Processing Systems, pages
1249–1256, 2008.

[46] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the Sixth Annual Conference on
Computational Learning Theory, pages 5–13. ACM, 1993.

[47] Tomoharu Iwata and Zoubin Ghahramani. Improving output uncertainty estimation and
generalization in deep learning via neural network Gaussian processes. arXiv:1707.05922,
2017.

[48] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[49] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In EMNLP,
volume 3, page 413, 2013.

[50] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,
2013.

[51] Karl Krauth, Edwin V Bonilla, Kurt Cutajar, and Maurizio Filippone. Autogp: Exploring the
capabilities and limitations of Gaussian process models. arXiv:1610.05392, 2016.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[53] Neil D Lawrence. Gaussian process latent variable models for visualisation of high dimensional
data. In Advances in Neural Information Processing Systems, pages 329–336, 2004.

[54] Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, and Aníbal R
Figueiras-Vidal. Sparse spectrum gaussian process regression. Journal of Machine Learning
Research, 11(Jun):1865–1881, 2010.

[55] Quoc V Le. Building high-level features using large scale unsupervised learning. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 8595–8598.
IEEE, 2013.

[56] Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence
and Statistics, pages 404–411, 2007.

[57] Judith Lean, Juerg Beer, and Raymond Bradley. Reconstruction of solar irradiance since 1610:
Implications for climate change. Geophysical Research Letters, 22(23):3195–3198, 1995.

[58] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. arXiv:1711.00165, 2017.

[59] Yingzhen Li and Yarin Gal. Dropout inference in Bayesian neural networks with alpha-
divergences. arXiv:1703.02914, 2017.

[60] Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. Stochastic expectation
propagation. In Advances in Neural Information Processing Systems, pages 2323–2331, 2015.

[61] Yingzhen Li and Qiang Liu. Wild variational approximations.

[62] Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In Advances in
Neural Information Processing Systems, pages 1073–1081, 2016.

[63] Yingzhen Li, Richard E Turner, and Qiang Liu. Approximate inference with amortised MCMC.
arXiv:1702.08343, 2017.

[64] Moshe Lichman et al. Uci machine learning repository, 2013.

6

[65] Qiang Liu and Yihao Feng. Two methods for wild variational inference. arXiv:1612.00081,
2016.

[66] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian
inference algorithm. In Advances in Neural Information Processing Systems, pages 2370–2378,
2016.

[67] Michel Loeve. In Probability Theory I-II. Springer, 1977.
[68] Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. Markov chain monte carlo

without likelihoods. Proceedings of the National Academy of Sciences, 100(26):15324–15328,
2003.

[69] Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. arXiv:1804.11271,
2018.

[70] Alexander G de G Matthews, Mark Van Der Wilk, Tom Nickson, Keisuke Fujii, Alexis
Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A
Gaussian process library using tensorflow. The Journal of Machine Learning Research,
18(1):1299–1304, 2017.

[71] Thomas Minka. Power EP. Technical report, Technical report, Microsoft Research, Cambridge,
2004.

[72] Thomas P Minka. Expectation propagation for approximate Bayesian inference. In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 362–369. Morgan
Kaufmann Publishers Inc., 2001.

[73] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv:1411.1784,
2014.

[74] Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acoustic modeling using deep
belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):14–22,
2012.

[75] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29–53. Springer, 1996.

[76] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[77] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with
bayesian conditional density estimation. In Advances in Neural Information Processing
Systems, pages 1028–1036, 2016.

[78] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In Advances in
Neural Information Processing Systems, pages 3360–3368, 2016.

[79] Edward O Pyzer-Knapp, Kewei Li, and Alan Aspuru-Guzik. Learning from the harvard
clean energy project: The use of neural networks to accelerate materials discovery. Advanced
Functional Materials, 25(41):6495–6502, 2015.

[80] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE, 1(2):4, 2017.

[81] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approxi-
mate Gaussian process regression. Journal of Machine Learning Research, 6(Dec):1939–1959,
2005.

[82] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv:1511.06434, 2015.

[83] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008.

[84] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine
learning, volume 1. MIT press Cambridge, 2006.

[85] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv:1505.05770, 2015.

7

[86] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[87] Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis,
University of Cambridge, 2012.

[88] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In AISTATS,
volume 1, page 3, 2009.

[89] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2234–2242, 2016.

[90] Yves-Laurent Kom Samo and Stephen Roberts. String gaussian process kernels. arXiv preprint
arXiv:1506.02239, 2015.

[91] Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. In Artificial Intelligence and Statistics 9, number
EPFL-CONF-161318, 2003.

[92] Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to
Gaussian processes. In Artificial Intelligence and Statistics, pages 877–885, 2014.

[93] Jiaxin Shi, Jianfei Chen, Jun Zhu, Shengyang Sun, Yucen Luo, Yihong Gu, and Yuhao Zhou.
ZhuSuan: A library for Bayesian deep learning. arXiv:1709.05870, 2017.

[94] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, 2014.

[95] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems, pages 1257–1264, 2006.

[96] Edward Snelson, Zoubin Ghahramani, and Carl E Rasmussen. Warped gaussian processes. In
Advances in neural information processing systems, pages 337–344, 2004.

[97] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amor-
tised map inference for image super-resolution. arXiv preprint arXiv:1610.04490, 2016.

[98] Maxwell B Stinchcombe. Neural network approximation of continuous functionals and
continuous functions on compactifications. Neural Networks, 12(3):467–477, 1999.

[99] Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
International Conference on Artificial Intelligence and Statistics, pages 567–574, 2009.

[100] Felipe Tobar, Thang D Bui, and Richard E Turner. Learning stationary time series using
Gaussian processes with nonparametric kernels. In Advances in Neural Information Processing
Systems, pages 3501–3509, 2015.

[101] Dustin Tran, Rajesh Ranganath, and David M Blei. Deep and hierarchical implicit models.
arXiv:1702.08896, 2017.

[102] Richard E Turner and Maneesh Sahani. Statistical inference for single-and multi-band proba-
bilistic amplitude demodulation. In Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, pages 5466–5469. IEEE, 2010.

[103] Mark van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional Gaussian
processes. In Advances in Neural Information Processing Systems, pages 2845–2854, 2017.

[104] Dilin Wang and Qiang Liu. Learning to draw samples: With application to amortized mle for
generative adversarial learning. arXiv:1611.01722, 2016.

[105] Christopher KI Williams. Computing with infinite networks. In Advances in Neural Informa-
tion Processing Systems, pages 295–301, 1997.

[106] Andrew G Wilson, Zhiting Hu, Ruslan R Salakhutdinov, and Eric P Xing. Stochastic variational
deep kernel learning. In Advances in Neural Information Processing Systems, pages 2586–
2594, 2016.

[107] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In AAAI, pages 2852–2858, 2017.

[108] Huaiyu Zhu and Richard Rohwer. Information geometric measurements of generalisation.
1995.

8

Appendix

A Brief review of Gaussian Processes

Gaussian Processes [84], as a popular example of Bayesian nonparametrics, provides a principled
probabilistic framework for non-parametric Bayesian inference over functions, by imposing rich
and flexible nonparametric priors over functions of interest. As flexible and interpretable function
approximators, their Bayesian nature also enables Gaussian Processes to provide valuable information
of uncertainties regarding predictions for intelligence systems, all wrapped up in a single, exact
closed form solution of posterior inference.

Despite the success and popularity of Gaussian Processes (as well as other Bayesian nonparametrics)
in the past decades, their O(N3) computation and O(N2) storage complexities make it impractical
to apply Gaussian Processes to large and complicated datasets. Therefore, people often resort to
complicated approximate methods [14, 15, 18, 40, 81, 87, 91, 95, 99, 102].

An inevitable issue that must also be addressed is the representational power of GP kernels. It has
been argued that [8] local kernels commonly used for nonlinear regressions are not able to obtain
hierarchical representations for high dimensional data, which limits the usefulness of Bayesian
nonparametric methods for complicated tasks. A number of novel schemes were proposed, including
deep GPs [13, 19, 20], the design of expressive kernels [26, 100, 103], and the hybrid models using
deep neural nets as input features of GPs [45, 106]. However, the first two approaches still struggle to
model complex high dimensional data such as texts and images easily; and in the third approach, the
merits of fully Bayesian approach has been discarded.

We breifly introduce Gaussian Processes for regression. Assume that we have a set of observational
data {(xn, yn}Nn=1), where xn is the D dimensional input of n th data point, and yn is the corre-
sponding scalar target of the regression problem. A Gaussian Process model assumes that yn is
generated according the following procedure: firstly a function f(·) is drawn from a Gaussian Process
GP(m, k) (to be defined later). Then for each input data xn, the corresponding yn is then drawn
according to:

yn = f(xn) + εn, ε ∼ N (0, σ2), n = 1, · · · , N

A Gaussian Process is a nonparametric distribution defined over the space of functions, such that:

Definition 2 (Gaussian Processes). A Gaussian process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distributions. A Gaussian Process is fully specified by
its mean function m(·) : RD 7→ R and covariance function K(·, ·) : (RD,RD) 7→ R, such that any
finite collection of function values f are distributed as Gaussian distribution N (f ; m,Kff), where
(m)n = m(xn), (Kff)n,n′ = K(xn,xn′).

Now, given a set of observational data {(xn, yn)}Nn=1, we are able to perform probabilistic inference
and assign posterior probabilities over all plausible functions that might have generated the data.
Under the setting of regression, given a new test point input data x∗, we are interested in posterior
distributions over f∗. Fortunately, this posterior distribution of interest admits a closed form solution
f∗ ∼ N (µ∗,Σ∗):

µ∗ = m +Kx∗f (Kff + σ2I)−1(y −m) (A.1)

Σ∗ = Kx∗x∗ −Kx∗f (Kff + σ2I)−1Kfx∗ (A.2)

In our notation, (y)n = yn, (Kx∗f)n = K(x∗,xn), andKx∗x∗ = K(x∗,x∗). Although the Gaussian
Process regression framework is theoretically very elegant, in practice its computational burden is
prohibitive for large datasets since the matrix inversion (Kff + σ2I)−1 takes O(N3) time due to
Cholesky decomposition. Once matrix inversion is done, predictions in test time can be made in
O(N) for posterior mean µ∗ and O(N2) for posterior uncertainty Σ∗, respectively.

9

B Brief Review of Variational inference, and black-box αnergy

We give a brief review of modern variational techniques, including standard variational inference
and black-box α-Divergence minimization (BB-α), on which our methodology is heavily based.
Considers the problem of finding the posterior distribution, p(θ|D, τ), D = {xn}Nn=1) under the
model likelihood p(x|θ, τ) and a prior distribution p0(θ):

p(θ|D, τ) ∝ 1

Z
p0(θ)

∏
n

p(xn|θ, τ)

Variational inference [48] transfers the above inference problem to an optimization problem, by
first proposing a class of approximate posterior q(θ), and then minimize the KL-divergence from
the approximate posterior to the true posterior DKL(q||p). Equivalently, VI optimizes the following
variational free energy,

FVFE = log p(D|τ)−DKL[q||p(θ|D)] =

〈
log

p(D, θ|τ)

q(θ)

〉
q(θ)

.

Built upon the idea of VI, BB-α is a modern black-box variational inference framework that unifies
and interpolates between Variational Bayes [48] and Expectation Propagation-like algorithms [60,72].
BB-α performs approximate inference by minimizing the following α-divergence [108] Dα[p||q]:

Dα[p||q] =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−αdθ

)
.

α-divergence is a generic class of divergences that includes the inclusive KL-divergence (α=1, corre-
sponds to EP), Hellinger distance (α=0.5), and the exclusive KL-divergence (α = 0, corresponds to
VI) as special cases. Traditionally power EP [71] optimizes an α-divergence locally with exponential
family approximation q(θ) ∝ 1

Z p0(θ)
∏
n f̃n(θ),f̃n(θ) ∝ exp

[
λTnφ(θ)

]
via message passing. It

converges to a fixed point of the so called power EP energy:

LPEP(λ0, {λn}) = logZ(λ0) + (
N

α
− 1) logZ(λq)

− 1

α

N∑
n=1

log

∫
p(xn|θ, τ)α exp

[
(λq − αλn)Tφ(θ)

]
dθ,

where λq = λ0+
∑N
n=1 λn is the natural parameter of q(θ). On the contrary, BB-α directly optimizes

LPEP with tied factors f̃n = f̃ to avoid prohibitive local factor updates and storage on the whole
dataset. This means λn = λ for all n and λq = λ0 +Nλ. Therefore instead of parameterizing each
factors, one can directly parameterize q(θ) and replace all the local factors in the power-EP energy
function by f̃(θ) ∝ (q(θ)/p0(θ))1/N . After re-arranging terms, this gives the BB-α energy:

Lα(q) = − 1

α

∑
n

logEq

[(
fn(θ)p0(θ)

1
N

q(θ)
1
N

)α]
.

which can be further approximated by the following if the dataset is large [59]:

Lα(q) = DKL[q||p0]− 1

α

∑
n

logEq [p(xn|θ, τ)α] .

The optimization of Lα(q) could be performed in a black-box manner with reparameterization
trick [50] and MC approximation. Empirically, it has been shown that BB-α with α 6= 0 can return
significantly better uncertainty estimation than VB, and has been applied successfully in different
scenarios [23, 59]. From the hyperparameter learning (i.e., τ in p(xn|θ, τ)) point of veiw, it is
shown in [62] that the BB-α energy Lα(q) constitutes a better estimation of log marginal likelihood,
log p(D) when compared with the variational free energy. Therefore, for both inference and learning,
BB-α energy is extensively used in this paper.

10

y

θ
x

z

N

a

y

f(·)x

N

b

y

wx

N

c

... ...ht ht+1 hT

w

xt xt+1 xT

yT

N

d

Figure 3: Examples of IPs: (a) Neural samplers; (b) Warped Gaussian Processes (c) Bayesian neural networks;
(d) Bayesian RNNs.

C Implicit stochastic processes

C.1 Examples of implicit stochastic processes

IPs are very powerful and form a rich class of priors over functions (see also C.2 and C.3). Indeed,
we visualize some examples of IPs in Figure 3 with discussions as follows:
Example 1 (Data simulators). Simulators, e.g. physics engines and climate models, are omnipresent
in science and engineering. These models encode laws of physics in gθ(·, ·), use z ∼ p(z) to explain
the remaining randomness, and evaluate the function at input locations x: f(x) = gθ(x, z). We
define the neural sampler as a specific instance of this class. In this case gθ(·, ·) is a neural network
with weights θ, i.e., gθ(·, ·) = NNθ(·, ·), and p(z) = Uniform([−a, a]d).
Example 2 (Warped Gaussian Processes). Warped Gaussian Processes [96] is also an interesting
example of IPs. Let z(·) ∼ p(z) be an GP prior, and gθ(x, z) is defined as gθ(x, z) = h(z(x)),
where h(·) is a one dimensional monotonic function that mapping on to the whole of the real line.
Example 3 (Bayesian neural network). In a Bayesian neural network the synaptic weights W are
random variables (i.e., z = W) with a prior p(W) on them. A function is sampled by W ∼ p(W)
and then setting f(x) = gθ(x,W) = NNW(x) for all x ∈ X. In this case θ could include, e.g., the
network architecture and additional hyper-parameters.
Example 4 (Bayesian RNN). Similar to Example 3, a Bayesian recurrent neural network (RNN)
can be defined by considering its weights as random variables, and taking as function evaluation an
output value generated by the RNN after processing the last symbol of an input sequence.

C.2 Well-definedness of implicit processes (finite dimensional case)

Proposition 1 (Finite dimension case). Let z be a finite dimensional vector. Then there exists a unique
stochastic process, such that any finite collection of random variables has distribution implicitly
defined by Definition (1).

Proof Generally, consider the following noisy IP model:

f(·) ∼ IP(gθ(·, ·), pz), yn = f(xn) + εn, εn ∼ N (0, σ2).

For any finite collection of random variables y1:n = {y1, ..., yn}, ∀n we denote the induced dis-
tribution as pn(y1:n). Note that p1:n(y1:n) can be represented as Ep(z)[

∏n
i=1N (yi; g(xi; z), σ2)].

Therefore for any m < n, we have∫
p1:n(y1:n)dym+1:n

=

∫ ∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dzdym+1:n

11

=

∫ ∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dym+1:ndz

=

∫ m∏
i=1

N (yi; g(xi, z), σ2)p(z)dz = p1:m(y1:m).

Note that the swap+ of the order of integration relies on that the integral is finite. Therefore,
the marginal consistency condition of Kolmogorov extension theorem is satisfied. Similarly, the
permutation consistency condition of Kolmogorov extension theorem can be proved as follows:
assume π(1 : n) = {π(1), ..., π(n)} is a permutation of the indices 1 : n, then

pπ(1:n)(yπ(1:n))

=

∫ n∏
i=1

N (yπ(i); g(xπ(i), z), σ2)p(z)dz

=

∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dz = p1:n(y1:n).

Therefore, by Kolmogorov extension theorem, there exists a unique stochastic process, with finite
marginals that are distributed exactly according to Definition 1.

C.3 Well-definedness of implicit processes (infinite dimensional case)

Proposition 2 (Infinite dimension case). Let z(·) ∼ SP(0, C) be a centered continuous stochastic
process on L2(Rd) with covariance function C(·, ·). Then the operator g(x, z) = Ok(z)(x) :=

h(
∫
x

∑M
l=0Kl(x,x

′)z(x′)dx′), 0 < M < +∞ defines a stochastic process if Kl ∈ L2(Rd × Rd) ,
h is a Borel measurable, bijective function in R and there exist 0 ≤ A < +∞ such that |h(x)| ≤ A|x|
for ∀x ∈ R.

Proof Since L2(Rd) is closed under finite summation, without loss of generality, we consider the
case of M = 1 where O(z)(x) = h(

∫
K(x,x′)z(x′)dx′). According to Karhuhen-Loeve expansion

(K-L expansion) theorem [67], the stochastic process z can be expanded as the stochastic infinite
series,

z(x) =

∞∑
i

Ziφi(x), Zi ∼ N (0, λi),

∞∑
i

λi < +∞.

Here {φi}∞i=1 is an orthonormal basis of L2(Rd) that are also eigen functions of the operator OC(z)
defined by OC(z)(x) =

∫
C(x,x′)z(x′)dx′. The variance λi of Zi is the corresponding eigen value

of φi(x).

Apply the linear operator

OK(z)(x) =

∫
K(x,x′)z(x′)dx′

on this K-L expansion of z, we have:

OK(z)(x) =

∫
K(x,x′)z(x′)dx′

=

∫
K(x,x′)

∞∑
i

Ziφi(x
′)dx′

=

∞∑
i

Zi

∫
K(x,x′)φi(x

′)dx′,

(C.1)

where the exchange of summation and integral is guaranteed by Fubini’s theorem. Therefore, the
functions {

∫
x
K(x,x′)φi(x

′)dx′}∞i=1 forms a new basis of L2(Rd). To show that the stochastic

12

series C.1 converge:

||
∞∑
i

Zi

∫
K(x,x′)φi(x

′)dx||2L2

≤ ||OK ||2||
∞∑
i

Ziφi(x
′)||2L2

= ||OK ||2
∞∑
i

||Zi||22,

where the operator norm is defined by

||OK || := inf{c ≥ 0 : ||Ok(f)||L2 ≤ c||f ||L2 , ∀f ∈ L2(Rd)}.

This is a well defined norm since OK is a bounded operator (K ∈ L2(Rd × Rd)). The last equality
follows from the orthonormality of {φi}. The condition

∑∞
i λi < ∞ further guarantees that∑∞

i ||Zi||2 converges almost surely. Therefore, the random series (C.1) converges in L2(Rd) a.s..

Finally we consider the nonlinear mapping h(·). With h(·) a Borel measurable function satisfying
the condition that there exist 0 ≤ A < +∞ such that |h(x)| ≤ A|x| for ∀x ∈ R, it follows that
h ◦ OK(z) ∈ L2(Rd). In summary, g = Ok(z) = h ◦ OK(z) defines a well-defined stochastic
process on L2(Rd).

Note that for infinite dimensional case, the operator defined in Proposition 2 can be recursively applied
to build many powerful models [33, 36, 56, 98, 105] that even possesses universal approximation
ability to nonlinear operators [36]. In the recent example [36], the so called Deep Function Machines
(DFMs) that possess universal approximation ability to nonlinear operators:
Definition 3 (Deep Function Machines [36]). A deep function machine g = ODFM (z, S) is a
computational skeleton S indexed by I with the following properties:

• Every vertex in S is a Hilbert space Hl where l ∈ I .

• If nodes l ∈ A ⊂ I feed into l′ then the activation on l′ is denoted yl ∈ Hl and is defined as

yl
′

= h ◦ (
∑
l∈A

OKl
(yl))

Therefore, by Proposition 2, we have proved:
Corollary 2 Let z(·) ∼ SP(0, C) be a centered continuous stochastic process on H = L2(Rd).
Then the Deep function machine operator g = ODFM (z, S) defines a well-defined stochastic process
on H.

D Details of the Wake-Sleep procedure for VIPs

D.1 Sleep phase: GP posterior as variational distribution

This section proposes an approximation to the IP posterior p(f |X,y, θ). A naive approach based
on variational inference [48] would require computing the joint distribution p(y, f |X, θ) that is
again intractable. However, sampling from this joint distribution is straightforward. Therefore, we
leverage the idea of the sleep phase in the wake-sleep algorithm to approximate the joint distribution
p(y, f |X, θ) instead.

Precisely, we approximate p(y, f |X, θ) with a simpler distribution q(y, f |X) = q(y|f)q(f |X) instead.
We use a GP prior for q(f |X) with mean and covariance functions m(·) and K(·, ·), respectively, and
write the prior as q(f |X) = qGP(f |X,m,K). The sleep-phase update minimizes the KL divergence
between the two joint distributions, which reduces to the following constrained optimization problem:

q?GP = argmin
m,K

U(m,K), U(m,K) = DKL[p(y, f |X, θ)||qGP(y, f |X,m,K)]. (D.1)

13

We further simplify the approximation by using q(y|f) = p(y|f), which reduces U(m,K) to
DKL[p(f |X, θ)||qGP(f |X,m,K)], and the objective is minimized when m(·) and K(·, ·) are equal
to the mean and covariance functions of the IP, respectively:

m?(x) = E[f(x)], (D.2)
K?(x1,x2) = E[(f(x1)−m?(x1))(f(x2)−m?(x2))].

In the following we also write the optimal solution as q?GP(f |X, θ) = qGP(f |X,m?,K?) to explicitly
specify the dependency on prior parameters θ. In practice, the mean and covariance functions are
estimated by by Monte Carlo, which leads to maximum likelihood training for the GP with dreamed
data from the IP. Assume S functions are drawn from the IP: fs(·) ∼ IP(gθ(·, ·), pz), s = 1, . . . , S.
The optimum of U(m,K) is then estimated by the MLE solution:

m?
MLE(x) =

1

S

∑
s

fs(x), (D.3)

K?MLE(x1,x2) =
1

S

∑
s

∆s(x1)∆s(x2), (D.4)

∆s(x) = fs(x)−m?
MLE(x).

To reduce computational costs, the number of dreamed samples S is often small. Therefore, we
perform maximum a posteriori/posterior mean estimation instead, by putting an inverse Wishart
process prior [92] IWP(ν,Ψ) over the GP covariance function (Appendix G.1).

The original sleep phase algorithm in [43] also find a posterior approximation by minimiz-
ing (D.1). However, the original approach would define the q distribution as q(y, f |X) =
p(y|X, θ)qGP(f |y,X), which builds a recognition model that can be directly transfered for later
inference. By contrast, we define q(y, f |X) = p(y|f)qGP(f |X), which corresponds to an approxima-
tion of the IP prior. In other words, we approximate an intractable generative model using another
generative model with a GP prior and later, the resulting GP posterior q?GP(f |X,y) is employed
as the variational distribution. Importantly, we never explicitly perform the sleep phase updates as
there is an analytic solution readily available, which can potentially save an enormous amount of
computation.

Another interesting observation is that the sleep phase’s objective U(m,K) also provides an upper-
bound to the KL divergence between the posterior distributions,

J = DKL[p(f |X,y, θ)||qGP(f |X,y)].

One can show that U is an upper-bound of J according to the non-negativity and chain rule of KL
divergence:

U(m,K) = J + DKL[p(y|X, θ)||qGP(y|X)] ≥ J . (D.5)
Therefore J is also decreased when the mean and covariance functions are optimized during the
sleep phase. This justifies U(m,K) as a valid variational objective for posterior approximation.

D.2 Wake phase: Bayesian linear regression over random functions

In the wake phase of traditional wake-sleep, the prior parameters θ are optimized by maximizing
the variational lower-bound [48] to the log marginal likelihood log p(y|X, θ). Unfortunately, this
requires evaluating the IP prior p(f |X, θ) which is again intractable. But recall from (D.5) that during
the sleep phase DKL[p(y|X, θ)||qGP(y|X)] is also minimized. Therefore we directly approximate
the log marginal likelihood using the optimal GP from the sleep phase, i.e.

log p(y|X, θ) ≈ log q?GP(y|X, θ). (D.6)

This again demonstrates the key advantage of the proposed sleep phase update via generative model
matching. Also it becomes a sensible objective for predictive inference as the GP returned by
wake-sleep will be used at prediction time anyway.

Similar to GP regression, optimizing log q?GP(y|X, θ) can be computationally expensive for large
datasets. Therefore sparse GP approximation techniques [15, 40, 95, 99] are applicable, but we
leave them to future work and consider an alternative approach that is related to random feature
approximations of GPs [3, 29, 31, 54, 83]. Note that log q?GP(y|X, θ) can be approximated by the

14

log marginal likelihood of a Bayesian linear regression model with S randomly sampled dreamed
functions, and coefficient a = (a1, ..., aS):

log q?GP(y|X, θ) ≈ log

∫ ∏
n

q?(yn|xn,a, θ)p(a)da, (D.7)

q?(yn|xn,a, θ) = N
(
yn;µ(xn,a, θ), σ

2
)
,

p(a) = N (a; 0, I),

µ(xn,a, θ) =
1√
S

∑
s

(fs(xn)−m?(xn))as.

(D.8)

Then it is straightforward to apply variational inference again for scalable stochastic optimization,
and we follow [42, 59, 62] to approximate (D.7) by the α-energy (see Appendix B):

log q?GP(y|X, θ) ≈ LαGP(θ, q(a)) (D.9)

=
1

α

N∑
n

logEq(a) [q?(yn|xn,a, θ)α]−DKL[q(a)||p(a)].

When α→ 0 the α-energy reduces to the variational lower-bound, and empirically the α-energy has
better approximation accuracy when α > 0 [42, 59, 62]. Also since the prior p(a) is conjugate to the
Gaussian likelihood q?(yn|xn,a, θ), the exact posterior of a can be reached by a correlated Gaussian
q(a). Stochastic optimization is applied to the α-energy wrt. θ and q(a) jointly, making our approach
scalable to big datasets.

D.3 Computational complexity and scalable predictive inference

Assume the evaluation of a sampled function value f(x) = gθ(x, z) for a given input x takes
O(C) time. The VIP has time complexity O(CMS + MS2 + S3) in training, where M is the
size of a mini-batch, and S is the number of random functions sampled from IP(gθ(·, ·), pz). Note
that approximate inference techniques in z space, e.g. mean-field Gaussian approximation to the
posterior of Bayesian neural network weights [10,42,59], also takesO(CMS) time. Therefore when
C is large (typically the case for neural networks) the additional cost is often negligible, as S is
usually significantly smaller than the typical number of inducing points in sparse GP (S = 20 in the
experiments).

Predictive inference follows the standard GP equations to compute q?GP(f∗|X∗,X,y, θ?) on test data
X∗ that has K datapoints: f∗ ∼ N (f∗; m∗,Σ∗),

m∗ = m?(x∗) + K∗f (Kff + σ2I)−1(y −m?(X)),

Σ∗ = K∗∗ −K∗f (Kff + σ2I)−1Kf∗.
(D.10)

Recall that the optimal variational GP approximation has mean and covariance functions defined as
(D.3) and (D.4), respectively, which means Kff has rank S. Therefore predictive inference requires
both function evaluations and matrix inversion, which costsO(C(K+N)S+NS2 +S3) time. This
complexity can be further reduced: note that the computational cost is dominated by the inversion of
matrix Kff + σ2I. Denote the Cholesky decomposition of the kernel matrix Kff = BB> as before.
It is straightforward to show that in the Bayesian linear regression problem (D.8) the exact posterior
of a is q(a|X,y) = N (a;µ,Σ), with µ = 1

σ2 ΣB>(y−m), σ2Σ−1 = B>B + σ2I. Therefore the
parameters of the GP predictive distribution in (D.10) are reduced to:

m∗ = φ>∗ µ, Σ∗ = φ>∗ Σφ∗, (D.11)

(φ∗)s =
1√
S

(fs(x∗)−m?(x∗)).

This reduces the prediction cost to O(CKS + S3), which is on par with e.g. conventional predictive
inference techniques for Bayesian neural networks that also cost O(CKS). In practice we use the
mean and covariance matrix from q(a) to compute the predictive distribution. Alternatively one
can directly sample a ∼ q(a) and compute f∗ =

∑S
s=1 asfs(X∗), which is also an O(CKS + S3)

inference approach3 but is liable for higher variance.
3If q(a) is a mean-field Gaussian distribution then the cost is O(CKS).

15

−3 −2 −1 0 1 2 3
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

VIP - interpolation mean
clean ground truth
VIP - training noisy sample

−3 −2 −1 0 1 2 3

VDO - interpolation mean
clean ground truth
VDO - training noisy sample

−3 −2 −1 0 1 2 3

GP - interpolation mean
clean ground truth
GP - training noisy sample

Figure 4: First row: Predictions returned from VIP (left), VDO (middle) and exact GP (right), respectively.
Dark grey dots: noisy observations; dark line: clean ground truth function; dark gray line: predictive means;
Gray shaded area: confidence intervals with 2 standard deviations. Second row: Corresponding predictive
uncertainties.

E Further experiments

We evaluate VIPs for regression using real-world data. For small datasets we use the posterior GP
equations for prediction, otherwise we use the O(S3) approximation. We use S = 20 for VIP unless
noted otherwise. When the VIP is equipped with a Bayesian NN/LSTM as prior over functions,
the prior parameters over each weight are untied, thus can be individually tuned. Fully Bayesian
estimates of the prior parameters are used in experiments E.2 and E.4. We focus on comparing VIPs
to other fully Bayesian approaches, with detailed experimental settings presented in the next section.

E.1 Synthetic example

We first evaluate the predictive inference and uncertainty estimate of our method on a toy regression
example. The training set is generated by first sampling 300 inputs x from N (0, 1). Then, for each
x obtained, the corresponding target y is simulated as y = cos 5x

|x|+1 + ε, ε ∼ N (0, 0.1). The test set
consists of 1000 evenly spaced points on [−3, 3]. We use an IP with a Bayesian neural network
(1-10-10-1 architecture) as the prior. We use α = 0 for the wake-step training. We also compare
VIP with the full exact GP with RBF kernel, and another Bayesian neural network with identical
architecture but trained using variational Bernoulli dropout (VDO) with dropout rate p = 0.99 and
length scale l = 0.001. The (hyper-)parameters are optimized using 500 epochs (batch training) with
Adam optimizer (learning rate = 0.01).

Figure 4 visualizes the results. Compared with VDO and GP, VIP’s predictive mean is closer to
the ground truth function. Moreover, VIP provides the best predictive uncertainty, especially when
compared with VDO: it increases smoothly when |x| → 3, where training data is sparse around there.
Although the uncertainty estimate of GP also increases when data is sparser, it slightly over-fits to
the training data, and tends to extrapolate a zero mean function around |x| ≈ 3. Test Negative Log-
likelihood (NLL) and RMSE results reveal similar conclusions (see Table 1), where VIP significantly
outperforms VDO and GP.

Table 1: Interpolation performance on toy dataset.
Method VIP VDO GP

Test NLL -0.60±0.01 −0.07± 0.01 −0.48± 0.00
Test RMSE 0.140±0.00 0.161±0.00 0.149±0.00

E.2 Multivariate regression

We perform experiments on real-world multivariate regression datasets from the UCI data repository
[64]. We train a VIP with a Bayesian neural net as the prior over latent functions (VIP-BNN), and
compare it with VDO, GP, SVGP, and additionally other popular approximate inference methods

16

Table 2: Regression experiment: Average test negative log likelihood
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP
boston 506 13 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.63±0.04 2.46±0.04
concrete 1030 8 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.4±0.01 3.05±0.02
energy 768 8 0.60±0.03 0.59±0.04 2.17±0.02 1.13±0.02 0.95±0.09 2.31±0.02 0.57±0.02
kin8nm 8192 8 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 -0.76±0.00 N/A±0.00
power 9568 4 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 2.82±0.00 N/A±0.00
protein 45730 9 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 3.01±0.00 N/A±0.00
red wine 1588 11 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 0.98±0.02 0.26±0.03
yacht 308 6 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 2.29±0.03 0.10±0.05
naval 11934 16 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.81±0.00 N/A±0.00
Avg.Rank 1.77±0.54 2.77±0.57 4.66±0.28 3.88±0.38 2.55±0.37 4.44±0.66 N/A±0.00

Table 3: Regression experiment: Average test RMSE
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP
boston 506 13 2.88±0.14 2.78±0.12 3.85±0.22 3.15±0.11 3.06±0.09 3.30±0.21 2.95±0.12
concrete 1030 8 4.81±0.13 5.54±0.09 6.51±0.10 6.11±0.10 5.18±0.16 7.25±0.15 5.31±0.15
energy 768 8 0.45±0.01 0.45±0.05 2.07±0.05 0.74±0.04 0.51±0.03 2.39±0.06 0.45±0.01
kin8nm 8192 8 0.07±0.00 0.08±0.00 0.10±0.00 0.10±0.00 0.09±0.00 0.11±0.01 N/A±0.00
power 9568 4 4.11±0.05 4.11±0.04 4.11±0.04 4.38±0.03 4.08±0.00 4.06±0.04 N/A±0.00
protein 45730 9 4.25±0.07 4.54±0.03 4.88±0.04 4.79±0.01 4.46±0.00 4.90±0.01 N/A±0.00
red wine 1588 11 0.64±0.01 0.66±0.01 0.66±0.01 0.64±0.01 0.69±0.01 0.65±0.01 0.62±0.01
yacht 308 6 0.32±0.06 0.54±0.09 0.79±0.05 1.03±0.06 0.49±0.04 2.25±0.13 0.35±0.04
naval 11934 16 0.00±0.00 0.00±0.00 0.38±0.00 0.01±0.00 0.01±0.00 0.00±0.00 N/A±0.00
Avg.Rank 1.33±0.23 2.22±0.36 4.66±0.33 4.00±0.44 3.11±0.42 4.44±0.72 N/A±0.00

for Bayesian neural nets: variational Gaussian inference with reparameterization tricks (VI, [10])
and variational dropout (VDO, [29]), variational alpha inference by dropout (α = 0.5, [59]). We
further train a VIP with neural sampler prior (VIP-NS), as defined in section C. All neural networks
use a [dim(x)-10-10-1] architecture with two hidden layers of size 10. All the models are trained for
1,000 epochs of full batch training using Adam (learning rate = 0.01). Observational noise variance
for VIP and VDO are tuned using fast grid search over validation set, as detailed in Appendix H.
The α value for both VIP and alpha-variational inference are fixed to 0.5, as suggested in [42, 59].
The experiments are repeated for 10 times on all datasets except Protein Structure, on which the
experiments are repeated for 5 times.

Results are shown in Table 2 and 3 with the best performances boldfaced. Note that exact (full) GP
models are only trained for small datasets due to its prohibitive cubic computational costs, therefore
it is not included for the overall ranking. VIP-based methods consistently outperforms other methods,
obtaining the best test-NLL in 7 datasets, and the best test RMSE in 8 out of the 9 datasets. In addition,
VIP-BNN obtains the best ranking among 6 methods. It is also encouraging to note that, despite its
general form, the VIP-NS achieves the second best average ranking in RMSE, outperforming many
specifically designed BNN algorithms. Despite that only S = 20 samples are used for VIP-based
methods, VIP out performs exact GP 3/5 in terms of test NLL, and 4/5 in terms of test RMSE.

E.3 ABC example: the Lotka–Volterra model

We apply our VIP approach on an Approximate Bayesian Computation (ABC) example with the
Lotka–Volterra (L-V) model that models the continuous dynamics of stochastic population of a
predator-prey system. An L-V model consists of 4 parameters θ = {θ1, θ2, θ3, θ4} that controls the
rate of four possible random events in the model:

ẏ = θ1xy − θ2y, ẋ = θ3x− θ4xy,

where x is the population of the predator, and y is the population of the prey. Therefore the L-V model
is an implicit model, which allows the simulation of data but not the evaluation of model density. We
follow the experiment setup of [77] to select the ground truth parameter of the L-V model, so that the
model exhibit a natural oscillatory behavior which makes posterior inference difficult. Then the L-V
model is simulated for 25 time units with a step size of 0.05, resulting in 500 training observations.
The prediction task is to extrapolate the simulation to the [25, 30] time interval.

We consider (approximate) posterior inference using two types of approaches: regression-based
methods (VIP-BNN, VDO-BNN and SVGP), and ABC methods (MCMC-ABC [68] and SMC-
ABC [5, 11]). ABC methods first perform posterior inference in the parameter space, then use the

17

 Clean Energy Data
0.5

0.8

1.0

1.2

1.5

1.8

2.0

NLL

0.8

0.9

1.0

1.1

1.2

1.3

1.4RMSE

VIP
VDO-LSTM
α-LSTM

BB-α-BNN
VI-BNN

FITC-GP
DGP

Figure 5: Performance on clean energy dataset

L-V simulator with posterior parameter samples for prediction. On the contrary, regression-based
methods treat this task as an ordinary regression problem, where VDO-BNN fits an approximate
posterior to the NN weights, and VIP-BNN/SVGP perform predictive inference directly in function
space. Results are shown in Table 4, where VIP-BNN outperforms others by a large margin in both
test NLL and RMSE. More importantly, VIP is the only regression-based method that outperforms
ABC methods, demonstrating its flexibility in modeling implicit systems.

Table 4: ABC with the Lotka–Volterra model
Method VIP-BNN VDO-

BNN
SVGP MCMC-

ABC
SMC-
ABC

Test NLL 0.485 1.25 1.266 0.717 0.588
Test RMSE 0.094 0.80 0.950 0.307 0.357

E.4 Bayesian LSTM for predicting power conversion efficiency of organic photovoltaics
molecules

Finally we perform experiments with data from the Harvard Clean Energy Project, the world’s
largest materials high-throughput virtual screening effort [37]. It has scanned a large number of
molecules of organic photovoltaics to find those with high power conversion efficiency (PCE) using
quantum-chemical techniques. The target value within this dataset is the PCE of each molecule,
and the input is the variable-length sequential character data that represents the molecule structures.
Previous studies have handcrafted [13, 42, 79] or learned finger-print features [27] that transforms the
raw string data into fixed-size feature for prediction.

We use a VIP with a prior defined by Bayesian LSTM (200 hidden units) and α = 0.5. We
replicate the experimental settings in [13, 42], except that our method directly takes raw sequential
molecule structure data as input. We compare our approach with variational dropout for LSTM
(VDO-LSTM) [30], alpha-variational inference LSTM (α-LSTM, [59]), BB-α on BNN [42], VI on
BNN [10], FITC GP and deep GP trained with expectation propagation (DGP, [13]). Results for the
latter 4 methods are directly obtained from [13, 42]. Results in Figure 5 show that VIP significantly
outperforms other baselines and hits a state-of-the-art result in both test likelihood and RMSE.

Table 5: Performance on clean energy dataset
Metric VIP VDO-LSTM α-LSTM BB-α VI-BNN FITC-GP EP-DGP
Test NLL 0.65±0.01 1.24±0.01 2.06±0.02 0.74±0.01 1.37±0.02 1.25±0.00 0.98±0.00
Test RMSE 0.88±0.02 0.93±0.01 1.38±0.02 1.08±0.01 1.07±0.01 1.35±0.00 1.17±0.00

18

F Related research

In the world of nonparametric models, Gaussian Processes (GPs) [84] provides a principled and
flexible probabilistic framework for Bayesian inference over functions. The Bayesian nature enables
GPs to provide accurate uncertainty estimates on unseen data, all wrapped up in a single, exact closed
form solution of posterior inference. Despite the success and popularity of GPs in the past decades,
their O(N3) time and O(N2) space complexities make them impractical for large-scale datasets.
Therefore, people often resort to complicated approximate methods [14,15,18,40,81,87,91,95,99,102].
Another intrinsic issue is the limited representational power of GP kernels. It has been argued that
stationary kernels commonly used for nonlinear regressions are not able to obtain hierarchical
representations for high dimensional data, which limits the usefulness of GP methods [8].

On the contrary, in the world of parametric modeling, it is well-known that deep neural networks [7,
25,44,52,52,88,94] are extremely flexible function approximators that enable learning from very high-
dimensional and structured data. Nowadays Deep learning has been widely spread to an enormous
amount of tasks, including computer vision [25, 52, 94] and speech recognition [17, 49, 55, 74]. As
people starts to apply deep learning techniques to critical applications such as automatic driving
and health care, uncertainty quantification of neural networks has become increasingly important.
Although decent progress has been made [4, 10, 22, 35, 41, 46, 59, 76], uncertainty in deep learning
still remains an open challenge.

Research in the Gaussian process-neural net correspondance has been extensively explored in order
to improve the understandings of both worlds. Bayesian neural nets (BNNs) with infinitely wide
hidden layers and certain prior distributions have been studied from a GP perspective. e.g. [75,76,105]
for single-hidden layer, and [29, 38, 58, 69] for deeper nets. Notably, in [29, 75] a one-layer Bayesian
neural network with non-linearity σ(·) and mean-field Gaussian prior is approximately equivalent to
a Gaussian process with kernel function

KVDO(x1,x2) = Ep(w)p(b)[σ(w>x1 + b)σ(w>x2 + b)]. (F.1)

Later [58] and [69] generalized this result and proved that deep Bayesian neural networks is approxi-
mately equivalent to a Gaussian process with a compositional kernel [16, 21, 39, 78] that mimic the
deep net. These approaches allow us to construct expressive kernels for GPs [51], or conversely,
exploit the exact Bayesian inference on GPs to perform exact Bayesian prediction for deep neural
nets [58]. We will compare the above kernel with equation (D.4) in Appendix F.1.

A number of alternative schemes have also been investigated to exploit deep structures for GP model
design. These include: (1) deep GPs [13, 19, 20], where compositions of GP priors are proposed
to represent prior over compositional functions; (2) the search and design of kernels for accurate
and efficient learning [3, 6, 26, 90, 100, 103], and (3) deep kernel learning that uses deep neural net
features as the inputs to GPs [1, 12, 45, 47, 106]. Frustratingly the first two approaches still struggle to
model high-dimensional structured data such as texts and images; and the third approach is not fully
Bayesian, i.e. the model is only Bayesian wrt. the last output layer.

Our work is in different spirit of the above two: the intension is not to understand BNNs as GPs nor to
use the deep learning concept to help GP design. Instead we directly model a BNN as an instance of
implicit processes (IPs), and the GP is used as a variational distribution to assist predictive inference.4
Therefore it also retains some of the benefits of Bayesian nonparametric approaches. This variational
approximation does not require previous assumptions in the GP-BNN correspondence literature
(infinite hidden units, i.i.d. weight priors, etc) [58, 69] nor the conditions in compositional kernel
literature. Instead the optimal kernel (D.4) in the sleep phase applies to any IP that includes BNNs
and beyond. A very recent work [28] also minimizes the sleep phase KL divergence (D.1) but wrt. the
BNN prior, and their goal is to regularize BNN priors and implant some smoothness properties of
GPs to BNNs. By contrast, our approach takes the advantage from the BNN prior over functions to
better encode rich structures. Also [28] still performs variational posterior inference in weight space,
and our inference method in function space also allows better uncertainty quantification.

From the practical point of view, the proposed inference method is computationally cheap, and it
allows scalable learning of hyper-parameters. The O(S3) additional cost is negligible when the
computation is dominated by the evaluation of e.g. BNN function samples. In the case where GP

4In principle any process can be used here as the variational distribution, and we use GPs here for the
convenience of analytic approximations.

19

approximations dominate the cost, our approach does not require expensive matrix inversions, nor
complicated kernel compositions that only have analytic forms under restricted cases [51, 58].

Finally, concurrent work of neural processes [32] studies a special case of the IP, which corresponds
to the neural sampler in our experiments in Section E.2. However, inference is conducted in the latent
variable z space using the variational auto-encoder approach [50, 86], with the inference network
parameterized in a similar way as PointNet [80]. By contrast, the proposed VIP approach applies
to any implicitly defined process, and performs inference in function space. In the experiments we
also show improved accuracies of the VIP approach on neural samplers over many existing Bayesian
approaches.

F.1 Further discussions on Bayesian neural networks

Following previous section, we provide a further discussion on the comparison between our kernel
in equation (D.4), and the kernel proposed in [29], which is the most similar one found in the
literature. Notably, consider a Gaussian process GP(0,KVDO(·, ·)), where KVDO is defined as in
F.1. [29] considered approximating this GP with a one-hidden layer BNN ŷ(·) = BNN(·, θ) with θ
collecting the weights and bias vectors of the network. Denote the weight matrix of the first layer as
W ∈ RD×K , i.e. the network has K hidden units, and the kth column of W as wk. Similarly the
bias vector is b = (b1, ..., bK). We further assume the prior distributions of the first-layer parameters
are p(W) =

∏K
k=1 p(wk) and p(b) =

∏K
k=1 p(bk), and use mean-field Gaussian prior for the output

layer. Then this BNN constructs an approximation to the GP kernel as:

K̃VDO(x1,x2) =
1

K

∑
k

σ(w>k x1 + bk)σ(w>k x2 + bk), wk ∼ p(w), bk ∼ p(b).

This approximation is equivalent to the empirical estimation (D.4) when S = K and the implicit
process is defined by

f(x) = σ(w>x + b), z = {w, b}, p(z) = p(w)p(b). (F.2)

In such case, the output layer of that one-hidden layer BNN corresponds to the Bayesian linear
regression “features” in our final approximation. However, the two methods are motivated in different
ways. [29] used this interpretation to approximate a GP with kernel (F.1) using a one-hidden layer
BNN, while our goal is to approximate the implicit process F.2 by a GP (note that the implicit process
is defined as the output of the hidden layer, not the output of the BNN). Also this coincidence only
applies when the IP is defined by a Bayesian logistic regression model, and our approximation is
applicable to BNN and beyond.

G Further details on the derivations

G.1 Inverse Wishart process as prior for kernel function

Definition 4 (Inverse Wishart processes [92]). Let Σ be random function Σ(·, ·) : X × X → R. A
stochastic process defined on such functions is called the inverse Wishart process onX with parameter
ν and base function Ψ : X ×X → R, if for any finite collection of input data X = {xs}1≤s≤Ns

, the
corresponding matrix-valued evaluation Σ(X,X) ∈ Π(Ns) is distributed according to an inverse
Wishart distribution Σ(X,X) ∼ IWS(ν,Ψ(X,X)). We denote Σ ∼ IWP(v,Ψ(·, ·)).

Consider the problem in Section D.1 of minimizing the objective

U(m,K) = DKL[p(f ,y|X, θ)||qGP(f ,y|X,m(·),K(·, ·))]
Since we use q(y|f) = p(y|f), this reduces U(m,K) to DKL[p(f |X, θ)||qGP(f |X,m,K)]. In order
to obtain optimal solution wrt. U(m,K), it sufficies to draw S fantasy functions (each sample is a
random function fs(·)) from the prior distribution p(f |X, θ), and perform moment matching, which
gives exactly the MLE solution, i.e., empirical mean and covariance functions

m?
MLE(·) =

∑
s

1

S
fs(·) (G.1)

K?MLE(x1,x2) =
1

S

∑
s

[fs(x1)−m?(x1)][fs(x2)−m?(x2)] (G.2)

20

In practice, in order to gain computational advantage, the number of fantasy functions S is often
small, therefore we further put an inverse wishart process prior over the GP covariance function, i.e.
K(·, ·) ∼ IWP(ν,Ψ). By doing so, we are able to give MAP estimation instead of MLE estimation.
Since inverse Wishart distribution is conjugate to multivariate Gaussian distribution, the Maximum A
Posteriori(MAP) solution is given by

K?MAP(x1,x2) =
1

ν + S +N + 1
{
∑
s

[fs(x1)−m?(x1)][fs(x2)−m?(x2)] + Ψ(x1,x2)}

(G.3)

Where N is the number of data points in the training set X where m(·) and K(·, ·) are evaluated.
Alternatively, one could also use Posterior Mean Estimator (which is an example of Bayes estimator
that minimizes posterior expected squared loss)

K?PM(x1,x2) =
1

ν + S −N − 1
{
∑
s

[fs(x1)−m?(x1)][fs(x2)−m?(x2)] + Ψ(x1,x2)} (G.4)

In the implementation of this paper, we choose KPM estimator with ν = N and Ψ(x1,x2) =
ψδ(x1,x2). The hyper parameter ψ is trained using fast grid search using the same procedure for the
noise variance parameter, as detailed in Appendix H.

G.2 Derivation of the upper bound U(m,K)or sleep phase

Applying the chaine rule of KL-divregence, we have

J (m,K) =DKL[p(f |X,y, θ)||qGP(f |X,y,m(·),K(·, ·))]
=DKL[p(f ,y|X, θ)||qGP(f ,y|X,m(·),K(·, ·))]
−DKL[p(y|X, θ)||qGP(y|X,m(·),K(·, ·))]

Therefore, by the non-negative property of KL divergence, we have

J (m,K) =DKL[p(f |X,y, θ)||qGP(f |X,y,m(·),K(·, ·))]
≤U(m,K) = DKL[p(f ,y|X, θ)||qGP(f ,y|X,m(·),K(·, ·))]

Finally, since m and K are the optimal solution of U(m,K), it is also optimal for
−DKL(p(y|X, θ)||qGP(y|X,m(·),K(·, ·))) under the same samples {fs(·)}Ss=1. Therefore not only
the upper bound U is optimized in sleep phase, the gap −DKL(p(y|X, θ)||qGP(y|X,m(·),K(·, ·)))
is also decreased when the mean and covariance functions are optimized.

G.3 Fully Bayesian approximation

Here, We further present a fully Bayesian treatment, by introducing a prior distribution p(θ) on the
prior parameters θ, and fitting a variational approximation q(θ) to the posterior. Sleep phase updates
remain the same when conditioned on a given configuration of θ. The α-energy term in wake phase
learning becomes

log qGP(y|X) = log

∫
θ

qGP(y|X, θ)p(θ)dθ ≈ LαGP(q(a), q(θ)),

LαGP(q(a), q(θ)) =
1

α

N∑
n

logEq(a)q(θ) [q?(yn|xn,a, θ)α]−DKL[q(a)||p(a)]−DKL[q(θ)||p(θ)].

(G.5)
Therefore, compared with the point estimate case, the only extra term needs to be estimated is
−DKL[q(θ)||p(θ)]. Note that, introducing q(θ) will double the number of parameters. In the case
of Bayesian NN as an IP, where θ contains means and variances for weight priors, then a simple
Gaussian q(θ) will need two sets of means and variances variational parameters (i.e., posterior means
of means, posterior variances of means,posterior means of variances, posterior variances of variances).
Therefore, to make the representation compact, we choose q(θ) to be a Dirac-delta function δ(θq).

21

Another issue of fully Bayesian approach is, one need to specify and tune the form and hyperparame-
ters for p(θ). To alleviate this, notice that from standard variational lower bound

log qGP(y|X) ≈ 〈log qGP(y|X, θ)〉q(θ) −DKL[q(θ)||p(θ)].

Then DKL[q(θ)||p(θ)] can be approximated by

−DKL[q(θ)||p(θ)] ≈ −〈log qGP(y|X, θ)〉q(θ) + constant

= − log qGP(y|X, θq) + constant

Therefore, this gives us a new regulation term − log qGP(y|X, θq), which penalizes the parameter
configurations that returns a full marginal log likelihood (as opposed to the diagonal likelihood
in the original BB-α energy 1

α

∑N
n logEq(z)q(θ)qGP(yn|xn, z, θ)α) that is too high, especially the

contribution from non-diagonal covariances. We refer this as likelihood regularization. In practice,
− log qGP(y|X, θq) is estimated on each mini-batch.

H Further experimental details

We provide further details as supplementary to the main text.

General settings For small datasets we use the posterior GP equations for prediction, otherwise
we use the O(S3) approximation. We use S = 20 for VIP unless noted otherwise. When the VIP is
equipped with a Bayesian NN/LSTM as prior over functions, the prior parameters over each weight
are untied, thus can be individually tuned. Fully Bayesian estimates of the prior parameters are used
in experiments E.2 and E.4.

H.1 Further implementation details for multivariate regression experiments

• Variational Gaussian inference for BNN (VI-BNN): we implement VI for BNN using the
Bayesian deep learning library, ZhuSuan [93]. VI-BNN employs a mean-field Gaussian vari-
ational approximation but evaluates the variational free energy using the reparameterisation
trick [50]. We use a diagonal Gaussian prior for the weights and fix the prior variance to 1.
The noise variance of the Gaussian noise model is optimized together with the means and
variances of the variational approximation using the variational free energy.

• Variational implicit process-Neural Sampler regressor (VIP-NS): we use neural sampler
with two hidden layers of 10 hidden units. The input noise dimension is 10 or 50, which is
determined using validation set.

• Variational dropout (VDO) for BNN: similar to [29], we fix the length scale parameter
0.5 ∗ l2 = 10e−6. Since the network size is relatively small, dropout probability is set as
0.005 or 0.0005. We use 2000 forward passes to evaluate posterior likelihood.

• α-dropout inference for BNN: suggested by [59], we fix α = 0.5 which often gives high
quality uncertainty estimations, possibility due to it is able to achieve a balance between
reducing training error and improving predictive likelihood. We use K = 10 for MC
sampling.

• Variational sparse GPs and exact GPs: we implement the GP-related algorithms using
GPflow [70]. variational sparse GPs uses 50 inducing points. Both GP models use the RBF
kernel.

• About noise variance parameter grid search for VIPs (including VIP-BNNs and VIP-NSs),
VDOs and α-dropout: we start with random noise variance parameter, run optimization on
the model parameters, and then perform a (thick) grid search over noise variance parameter
on validation set. Then, we train the model on the entire training set using this noise variance
parameter value. This coordinate ascent like procedure does not require training the model
for multiple times as in Bayesian optimization, therefore can speed up the learning process.
The same procedure is used to search for optimal hyperparameter ψ of the inverse-Wishart
process of VIPs.

22

H.2 Additional implementation details for ABC experiment

Following the experimental setting of [77], we set the ground truth L-V model parameter to be
θ1 = 0.01, θ2 = 0.5, θ3 = 1.0, θ4 = 0.01. We simulate population data in the range of [0, 30] with
step size 0.05, which result in 600 gathered measurements. We use the first 500 measurements as
training data, and the remaining as test set. For MCMC-ABC and SMC-ABC setup, we also follow
the implementation5 of [77] . MCMC-ABC is ran for 10000 samples with tolerance ε set to be 2.0
which is manually tuned to give the best performance. In MCMC-ABC, last 100 samples are taken as
samples. Likewise SMC-ABC uses 100 particles. Model likelihood is calculated based on Gaussian
fit. VIP (α = 0) is trained for 10000 iterations with Adam optimizer using 0.001 learning rate.

H.3 Additional implementation details for predicting power conversion efficiency of organic
photovoltaics molecules

For Bayesian LSTMs, we put Gaussian prior distributions over LSTM weights. The output prediction
is defined as the final output at the last time step of the input sequence. We use S = 10 for VIP.
All methods use Adam with a learning rate of 0.001 for stochastic optimization. Noise variance
parameter are not optimized, but set to suggested value according to [42].To match the run time of
the fingerprint-based methods, all LSTM methods are trained for only 100 epochs with a batch size
of 250. Among different models in the last few iterations of optimization, we choose the one with
the best training likelihood for testing. Note that in the original paper of variational dropout and
α-dropout inference, K sample paths (K = 1 for VDO and K = 10 for α-dropout) are created for
each training data, which is too prohibitive for memory storage. Therefore, in our implementation,
we enforce all training data to share K sample paths. This approximation is accurate since we use a
small dropout rate, which is 0.005.

H.4 Solar irradiance prediction results in table

Table 6: Interpolation performance on solar irradiance.
Method VIP VDO SVGP GP

Test NLL 0.08±0.02 0.21± 0.04 0.56± 0.23 0.832±0.00
Test RMSE 0.28±0.00 0.29±0.01 0.55±0.08 0.650±0.0

5https://github.com/gpapamak/epsilon_free_inference

23

https://github.com/gpapamak/epsilon_free_inference

	Introduction
	Variational implicit processes
	Experiments
	Conclusions
	Appendix Brief review of Gaussian Processes
	Appendix Brief Review of Variational inference, and black-box energy
	Appendix Implicit stochastic processes
	Examples of implicit stochastic processes
	Well-definedness of implicit processes (finite dimensional case)
	Well-definedness of implicit processes (infinite dimensional case)

	Appendix Details of the Wake-Sleep procedure for VIPs
	Sleep phase: GP posterior as variational distribution
	Wake phase: Bayesian linear regression over random functions
	Computational complexity and scalable predictive inference

	Appendix Further experiments
	Synthetic example
	Multivariate regression
	ABC example: the Lotka–Volterra model
	Bayesian LSTM for predicting power conversion efficiency of organic photovoltaics molecules

	Appendix Related research
	Further discussions on Bayesian neural networks

	Appendix Further details on the derivations
	Inverse Wishart process as prior for kernel function
	Derivation of the upper bound for sleep phase
	Fully Bayesian approximation

	Appendix Further experimental details
	Further implementation details for multivariate regression experiments
	Additional implementation details for ABC experiment
	Additional implementation details for predicting power conversion efficiency of organic photovoltaics molecules
	Solar irradiance prediction results in table

