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1 Introduction

Ensembles of neural networks (NNs) have long been used to estimate predictive uncertainty (Tib-
shirani, 1996; Heskes, 1996); a small number of NNs are trained from different initialisations and
sometimes on differing versions of the dataset. The variance of the ensemble’s predictions is inter-
preted as its epistemic uncertainty. The appeal of ensembling stems from being a collection of regular
NNs - this makes them both scalable and easily implementable.

NN ensembles have continued to achieve strong empirical results in recent years, for example in
Lakshminarayanan et al. (2017), where it was presented as a practical alternative to more costly
Bayesian NNs (BNNs). The departure from Bayesian methodology is of concern since the Bayesian
framework provides a principled, widely-accepted approach to handling uncertainty.

Several recent works have explored links between ensembles and Bayesian inference. Variants of
an ensembling scheme known to be consistent for Bayesian linear regression have been applied
directly to NNs (Lu and Van Roy, 2017; Osband et al., 2017). In this extended abstract we derive
and implement a modified ensembling scheme specifically for NNs, which provides a consistent
estimator of the Bayesian posterior in wide NNs - regularising parameters about values drawn from a
prior distribution.

2 Randomised MAP Sampling

Recent work in the Bayesian community, and independently in the reinforcement learning community,
has begun to explore an approach to Bayesian inference that will be novel to many readers. Roughly
speaking, it exploits the fact that adding a regularisation term to a loss function returns maximum a
posteriori (MAP) estimates of parameters with normally distributed priors centred at zero (MacKay,
1992). For a regression problem this loss is of the form,

Lossregularise =
1

N
||y − ŷ||22 +

1

N
||ΓΓΓ1/2θθθ||22, (1)

where y is a vector of targets, ŷ is the NN’s predictions, θθθ is a flattened vector of NN parameters, and
ΓΓΓ is a diagonal square regularisation matrix with it’s kth diagonal element representing the ratio of
data noise variance to prior variance for parameter θk. Data noise is assumed normally distributed
and homoskedastic in this work.

Injecting noise into this loss, either to targets or regularisation term, and sampling repeatedly (i.e.
ensembling), produces a distribution of MAP solutions which can approximate the true posterior.
This can be an efficient method to sample from high-dimensional posteriors (Bardsley et al., 2014).

Whilst it is straightforward to select the noise distribution that produces exact inference in linear
regression models, there is difficulty in transferring this idea to NNs. Directly applying the noise
distribution from the linear case to NNs has had some empirical success, despite not reproducing
the true posterior (Lu and Van Roy, 2017; Osband et al., 2018). A more accurate, though more
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computationally demanding solution, is to wrap the optimisation step into an MCMC procedure
(Bardsley, 2012; Bardsley et al., 2014). We name this family of schemes randomised MAP sampling.

2.1 Normally Distributed Prior and Likelihood

We consider randomised MAP sampling for the case of multivariate normal prior and (normalised)
likelihood, N (µµµprior,ΣΣΣprior), N (µµµlike,ΣΣΣlike). The posterior, also multivariate normal, is given by
Bayes rule, N (µµµpost,ΣΣΣpost) ∝ N (µµµprior,ΣΣΣprior) · N (µµµlike,ΣΣΣlike). The MAP solution is simply
µµµpost, for which a standard result exists,

µµµpost = (ΣΣΣ−1like + ΣΣΣ−1prior)
−1(ΣΣΣ−1likeµµµlike + ΣΣΣ−1priorµµµprior). (2)

In randomised MAP sampling we are interested in injecting noise so that Var[µµµpost] = ΣΣΣpost.
Previous work analysing linear regression found that injecting noise into both µµµprior and µµµlike can
provide a consistent estimator of the true posterior. However, beyond the linear case this approach
fails as manipulation of µµµlike via targets, y, is complex and creates conflicts amongst parameters.

If instead µµµprior is chosen as the sole noise source, this problem is avoided. In order to inject this
noise, let us replace µµµprior with some noisy random variable, θθθ0, and denote µµµMAP

post (θθθ0) the resulting
MAP estimate,

µµµMAP
post (θθθ0) = (ΣΣΣ−1like + ΣΣΣ−1prior)

−1(ΣΣΣ−1likeµµµlike + ΣΣΣ−1priorθθθ0), (3)

which could be found in practise by minimisation of a slightly modified ‘anchored’ loss function,

Lossanchor =
1

N
||y − ŷ||22 +

1

N
||ΓΓΓ1/2(θθθ − θθθ0)||22. (4)

Derivation of the noise distribution required for θθθ0 is found from eq. 3, setting E[µµµMAP
post (θθθ0)] = µµµpost

and Var[µµµMAP
post (θθθ0)] = ΣΣΣpost. We find θθθ0 ∼ N (µµµ0,ΣΣΣ0) with,

µµµ0 = µµµprior, ΣΣΣ0 = ΣΣΣprior + ΣΣΣ2
priorΣΣΣ

−1
like. (5)

3 Application to NNs

Although the previous section’s result is of interest, evaluating eq. 5 requires knowing the likelihood
covariance, ΣΣΣlike. Estimating this for a NN is far from simple: NNs are unidentifiable, their likelihood
variances and correlations vary greatly across parameters, and shift during training. This impasse
can be solved in a surprising way. From eq. 5 we see that diag(ΣΣΣ0) ≥ diag(ΣΣΣprior). In fact,
with increasing NN width, H , the term ΣΣΣ2

priorΣΣΣ
−1
like tends to a zero matrix (see appendix for proof).

Therefore choosing this lower bound and setting ΣΣΣ0 = ΣΣΣprior is valid for wide NNs.

Stepping back, we note ΣΣΣ0 ≈ ΣΣΣprior is only true in the case the posterior is dominated by the prior
distribution rather than the likelihood. This occurs in BNNs because the role of priors is slightly
abused as a source of regularisation in an over-paramatised model. This observation is significant
as it allows us to relax our assumption that the prior and likelihood be normally distributed.
Instead, we can say that our method is valid provided the posterior is dominated by the prior.

A surprisingly simple result remains: a wide NN minimising the loss function in eq. 4, and with
θθθ0 ∼ N (µµµprior,ΣΣΣprior), provides a consistent estimator of the posterior.

3.1 Number in the Ensemble

If each NN is a single posterior sample, it might be expected that an inordinate number are required
to capture the true posterior parameter distributions. But the parameter distributions themselves are of
little interest in the context of a NN, it is the predictive distribution that is of sole interest. In this way
we move from doing inference in parameter space to output space. Given that each NN provides
an independent sample from a posterior predictive distribution, a relatively small number of NNs can
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Figure 1: Predictive distributions produced by various inference methods (columns) for various
activation functions (rows), e.g. bottom right is a RBF NN with inference by our method.

give a good approximation. An ensemble size of 5-10 worked well in experiments. This number does
not increase with dimensionality of input or output.

4 Experiments

In figure 1 we compare predictive distributions produced by popular Bayesian inference methods in
wide (100 node) single-layer NNs, with our method, on a toy regression problem. We used several
non-linearities for which analytical GP kernels exist - ReLU, ERF (sigmoidal) and RBF. GP and HMC
produce ‘gold standard’ Bayesian inference, and we judge the remaining methods, which are scalable
approximations, to them. ‘VI’ denotes mean-field variational inference with Gaussian approximating
distributions. ‘MC Dropout’ refers to the popular method proposed in Gal & Ghahramani (2015).
‘Our method’ implements the scheme described in this work, with ten NNs per ensemble.

The predictive distributions produced by our method appear good, if slightly wavy, approximations
of gold standard inference. However, there does appear to be a tendency to over predict the variance.
It captures uncertainty in interpolated regions significantly better than VI and MC Dropout, neither of
which account for correlations between parameters.

These plots illustrate one more important point. An example of when ensembling fails to perform
Bayesian inference was provided by Gal (2016) [p. 27]: an ensemble of RBF NNs would output zero
with high confidence when predicting far from the training data, and this would not be the case for
the equivalent RBF GP which was the squared exponential (SE) kernel. However, the RBF GP is not
the SE kernel except in the special case of infinite variance priors (Williams, 1996). Figure 1, bottom
left, shows an actual RBF GP with finite variance. In fact the GP outputs zero with high confidence
far from the data, as do all methods.

Table 1 (appendix) gives results of our method on ten standard benchmarking datasets (Hernández-
Lobato and Adams, 2015). Our method outperforms Deep Ensembles (Lakshminarayanan et al.,
2017) on datasets where the primary source of uncertainty was epistemic. Code of our implementation
is available at https://github.com/TeaPearce.

5 Conclusion

This paper considered a method to produce Bayesian behaviour in NN ensembles by leveraging
randomised MAP sampling. It departs only slightly from the usual handling of NNs, with parameters
regularised around values drawn from a prior distribution. We showed that for NNs of sufficient width,
each produces a sample from the posterior predictive distribution. Qualitative and benchmarking
experiments were encouraging. Our ongoing work considers extending the presented theory to
classification tasks as well as other architectures such as convolutional NNs.
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A Appendix

A.1 Proofs

Theorem A.1. ΣΣΣ2
priorΣΣΣ

−1
like tends to a zero matrix with increasing H .

Proof. First we consider priors, ΣΣΣprior. It is usual to scale prior covariance in BNNs according to
1/H (Neal, 1997). This means the term of interest, ΣΣΣ2

priorΣΣΣ
−1
like ∝

1
H2ΣΣΣ−1like, which clearly decreases

with H .

Secondly, increasing H creates more parameters and hence a higher probability of strong correlations
amongst them - a phenomenon known as multicollinearity. This has the effect of increasing the
magnitude of ΣΣΣlike (see also Cheng et al. (2018)). Hence ΣΣΣ−1like decreases.

Both these results suggest, limH→∞ΣΣΣ2
priorΣΣΣ

−1
like → 0.

A.2 Benchmark Results

Table 1: Regression benchmark results for a Bayesian ensemble of five NNs

RMSE NLL
Deep Ens. Bay. Ens. GP1 Deep Ens. Bay. Ens. GP1

N D σ̂2
ε State-Of-Art Our Method Gold Standard State-Of-Art Our Method Gold Standard

High Epistemic Uncertainty
Energy 768 8 1e-7 2.09 ± 0.29 0.35 ± 0.01 0.60 ± 0.02 1.38 ± 0.22 0.96 ± 0.13 0.86 ± 0.02
Naval 11,934 16 1e-7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -5.63 ± 0.05 -7.17 ± 0.03 -10.05 ± 0.02
Yacht 308 6 1e-7 1.58 ± 0.48 0.57 ± 0.05 0.60 ± 0.08 1.18 ± 0.21 0.37 ± 0.08 0.49 ± 0.07

Medium Epistemic & Aleatoric Uncertainty
Kin8nm 8,192 8 0.02 0.09 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 -1.20 ± 0.02 -1.09 ± 0.01 -1.22 ± 0.01
Power 9,568 4 0.05 4.11 ± 0.17 4.07 ± 0.04 3.97 ± 0.04 2.79 ± 0.04 2.83 ± 0.01 2.80 ± 0.01
Concrete 1,030 8 0.05 6.03 ± 0.58 4.87 ± 0.11 4.88 ± 0.13 3.06 ± 0.18 2.97 ± 0.02 2.96 ± 0.02
Boston 506 13 0.08 3.28 ± 1.00 3.09 ± 0.17 2.86 ± 0.16 2.41 ± 0.25 2.52 ± 0.05 2.45 ± 0.05

High Aleatoric Uncertainty
Protein 45,730 9 0.5 4.71 ± 0.06 4.36 ± 0.02 *4.34 ± 0.02 2.83 ± 0.02 2.89 ± 0.01 *2.88 ± 0.00
Wine 1,599 11 0.5 0.64 ± 0.04 0.63 ± 0.01 0.61 ± 0.01 0.94 ± 0.12 0.95 ± 0.01 0.92 ± 0.01
Song Year 515,345 90 0.7 8.89 ± NA 8.82 ± NA **9.01 ± NA 3.35 ± NA 3.60 ± NA **3.62 ± NA

1 For reference only (not a scalable method). * Trained on 10, 000 rows of data. ** Trained on 20, 000 rows of data, tested on 5, 000 data points.
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