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Abstract

We develop a generalised notion of disentanglement in variational auto-encoders (VAEs) by
casting it as a decomposition of the latent representation, characterised by i) enforcing an
appropriate level of overlap in the latent encodings of the data, and ii) regularisation of the
average encoding to a desired structure, represented through the prior. We motivate this
by showing that a) the 3-VAE disentangles purely through regularisation of the overlap in
latent encodings, and b) disentanglement, as independence between latents, can be cast as a
regularisation of the aggregate posterior to a prior with specific characteristics. We validate
this characterisation by showing that simple manipulations of these factors, such as using
rotationally variant priors, can help improve disentanglement, and discuss how this char-
acterisation provides a more general framework to incorporate notions of decomposition
beyond just independence between the latents.

1 Introduction

An oft-stated motivation for learning disentangled representations of data with deep generative mod-
els is a desire to achieve interpretability [4, 8]—particularly the decomposability [see §3.2.1 in 19] of
latent representations to admit intuitive explanations. Most work on disentanglement has constrained
the form of this decomposition to capturing purely independent factors of variation [1, 3, 6-8, 10—

, 16, 28, 29], typically evaluating this using purpose-built, artificial, data [7, 10, 12, 16], whose
generative factors are themselves independent by construction. However, the high-level motivation
for achieving decomposability places no a priori constraints on the form of the decompositions—just
that they are captured effectively.

The conventional view of disentanglement, as recovering independence, has subsequently motivated
the development of formal evaluation metrics for independence [10, 16], which in turn has driven
the development of objectives that target these metrics, often by employing regularisers explicitly
encouraging independence in the representations [10, 11, 16].

We argue that this methodological approach is not generalisable, and potentially even harmful, to
learning decomposable representations for more complicated problems, wherein such simplistic rep-
resentations will be unable to accurately mimic the generation of high dimensional data from low di-
mensional latent spaces. To see this, consider a typical measure of disentanglement-as-independence
[e.g. 10], computed as the extent to which a latent dimension d € D predicts a generative fac-
tor k € K with each latent capturing at most one generative factor. This implicitly assumes D > K,
as otherwise the latents are not able to explain all of the generative factors. However, for real data,
the association is more likely D < K, with one learning a low-dimensional abstraction of a com-
plex process involving many factors. Such complexities necessitate richly structured dependencies
between latent dimensions—as reflected in the motivation for a handful of approaches [5, 1 1, 15, 25]
that explore this through graphical models, although employing mutually-inconsistent, and not gen-
eralisable, interpretations of disentanglement.

Here, we develop a generalisation of disentanglement—decomposing latent representations—that
can help avoid such pitfalls. Note that the typical assumption of independence implicitly makes a
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choice of decomposition—that the latent features are independent of one another. We make this ex-
plicit, and exploit it to provide improvement to disentanglement simply through judicious choices of
structure in the prior, while also introducing a framework flexible enough to capture alternate, more
complex, notions of decomposition such as sparsity [26], hierarchical structuring, or independent
subspaces.

2 Decomposition: A Generalisation of Disentanglement
We characterise the decomposition of latent spaces in VAEs to be the fulfilment of two factors:

a. An “appropriate” level of overlap in the latent space—ensuring that the range of latent values
capable of encoding a particular datapoint is neither too small, nor too large. This is, in general,
dictated by the level of stochasticity in the encoder: the higher the encoder variance, the higher
the number of datapoints which can plausibly give rise to a particular encoding.

b. The marginal posterior g4(2) =2 E,, x)[¢s(z | )] (for encoder g4(z | ) and true data distribu-
tion pp(x)) matching the prior pg(z), where the latter expresses the desired dependency structure
between latents.

The overlap factor (a) is perhaps best understood by considering the extremes—too little, and the
latent encodings effectively become a lookup table; too much, and the data and latents don’t convey
information about each other. In both cases, the meaningfulness of the latent encodings is lost. Thus,
without the appropriate level of overlap—dictated both by noise in the true generative process and
dataset size—it is not possible to enforce meaningful structure on the latent space.

The regularisation factor (b) enforces a congruence between the (aggregate) latent embeddings of
data and the dependency structures expressed in the prior. We posit that such structure is best
expressed in the prior, as opposed to explicit independence regularisation of the marginal poste-
rior [7, 16], to enable the generative model to express the captured decomposition; and to avoid
potentially violating the self-consistency between encoder, decoder, and true data generating distri-
bution. Furthermore, the prior provides a rich and flexible means of expressing desired structure,
by defining a generative process that encapsulates dependencies between variables, analogously to
a graphical model.

Critically, neither factor is sufficient in isolation. An inappropriate level of overlap in the latent
space (a) will impede interpretability, irrespective of how well the regularisation (b) goes, as the
latent space need not be meaningful. On the other hand, without the pressure to regularise (b) to the
prior, the latent space is under no constraint to exhibit the desired structure.

Deconstructing the 3-VAE: To show how existing approaches fit into our proposed framework,
we now consider, as a case study, the 3-VAE [12]—an adaptation of the VAE objective (ELBO) to
learn better-disentangled representations. We introduce new theoretical results that show its empir-
ical successes are purely down to controlling the level of overlap, i.e. factor (a). In particular, we
have the following result, the proof of which is given in Appendix A, along with additional results.

Theorem 1. The 3-VAE target

Ls(x) = By, (z|a) [log po(x|2)] — BKL(ge(2]x)]|ps(2)) (M
can be interpreted in terms of the standard ELBO, L(x)(mg pg,qs), for an adjusted target
79 5(x, 2) £ po(x | 2) f5(2) with annealed prior f5(z) = pg(z)ﬂ/Fﬁ as

Ls(x) = L(z) (m9,8,4¢) + (B — 1)Hg, + log Fj 2
where Fg £ [ po(2)Pdz is constant given j3, and H,, is the entropy of q4(z | ).

Clearly, the second term in (2), enforcing a maxent regulariser on the posterior gy (2 | ), allows the
value of [ to affect the overlap of encodings in the latent space; for Gaussian priors this effect is
exactly equivalent to regularising the encoder to have higher variance. The annealed prior’s effect
though, is more subtle. While one could interpret its effect as simply inducing a fixed scaling on
the parameters (c.f. Appendix A.1), which could be ignored and ‘fixed’ during learning, it actually
has the effect of exactly counteracting the latent-space scaling due to the entropy regularisation—
ensuring that the scaling of the marginal posterior matches that of the prior.

Taken together, these insights demonstrate that the 3-VAE’s disentanglement is purely down to con-
trolling the level of induced overlap: it places no additional direct pressure on the latents to be
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Figure 1: Reconstruction loss vs disentanglement metric [16] for 5-VAE (i.e. (3) with a = 0) trained
on the 2D Shapes dataset [21]. Shaded areas represent 95% confidence intervals for disentanglement
metric estimate, calculated using 100 separately trained networks. See Appendix B for details. [Left]
Using an anisotropic Gaussian with diagonal covariance either fixed to the principal component
values or learned during training. Point labels represent different values of 3. [Right] Using pjj(z) =
[I; STUDENT-T(z;; v) for different degrees of freedom v with 8 = 1. Note that pj; (z) — N (2;0,1)
as v — 00, and reducing v only incurs a minor increase in reconstruction loss.

independent, it only helps avoid the pitfalls of inappropriate overlap. Amongst other things, this
explains why larger values of § are not universally beneficial for disentanglement, as the level of
overlap can be increased too far. It also dispels the conjecture [6, 12] that the 5-VAE encourages the
latent variables to take on meaningful representations when using the standard choice of an isotropic
Gaussian prior: for this prior, each term in (2) is invariant to rotation of the latent space. Our re-
sults show that the -VAE encourages the latent states to match true generative factors no more
than it encourages them to match rotations of the true generative factors, with the latter capable of
exhibiting strong correlations between the latents. This view is further supported by our empirical re-
sults (see Figure 1), calculated by averaging over a large number of independently trained networks,
where we did not observe any gains in disentanglement (using the metric from Kim and Mnih [16])
from increasing 5 > 1 with an isotropic Gaussian prior trained on the 2D Shapes dataset [21].

A new objective: Given the characterisation set out above, we now develop an objective that
incorporates the effect of both factors (a) and (b). From our analysis of the 5-VAE, we see that its
objective (1) allows expressing overlap, i.e. factor (a). To additionally capture the regularisation (b)
between the marginal posterior and the prior, we add a divergence term D(gy(2), p(2)), yielding

Lo p(®) = Eg,(z1a) [logpo(x | 2)] — B KL(gs(z | ) || p(2)) — aD(gp(2),p(2))  B3)

where we can now control the extent to which factors (a) and (b) are enforced, through appropriate
setting of 8 and « respectively.

Note that such an additional term has been previously considered by Kumar et al. [18], with
D(gy(2),p(z)) = KL(gs(2) || p(2)), although for the sake of tractability they rely instead on mo-
ment matching using covariances. There have also been a number of approaches that decompose
the standard VAE objective in different ways [e.g. 2, 11, 13] to expose KL(p(z) || ¢4(2)) as a com-
ponent, but, as we discuss in Appendix C, this is difficult to compute correctly in practice, with
common previous approaches leading to highly biased estimates whose practical behaviour is very
different than the divergence they are estimating. Wasserstein Auto-Encoders [27] formulate an
objective that includes a general divergence term between the prior and marginal posterior, which
are instantiated using either maximum mean discrepancy (MMD) or a variational formulation of
the Jensen-Shannon divergence (a.k.a GAN loss). However, we find that empirically, choosing the
MMD’s kernel and numerically stabilising its U-statistics estimator to be tricky, and designing and
learning a GAN to be cumbersome and unstable. Consequently, the problems of choosing an ap-
propriate D(gy(2), p(2)) and generating reliable estimates for this choice are tightly coupled, with
a general purpose solution remaining an important open problem in the field; further discussion is
given in Appendix C.

3 Experiments

Prior for axis-aligned disentanglement First, we show how subtle changes to the prior distribu-
tion can yield improvement in terms of a common notion of disentanglement [see §4 in 16]. The



most common choice of prior, an isotropic Gaussian, py(z) = N(z;0,I), has previously been jus-
tified by the correct assertion that the latents are independent under the prior [12]. However, an
isotropic Gaussian is also rotationally invariant and so does not constrain the axes of the latents
space to capture any meaning. Figure 1 demonstrates that substantial improvements in disentan-
glement can be achieved by simply using either a non-isotropic Gaussian or using a product of
Student-t’s prior, both of which break the rotational invariance.

Clustered prior We next consider an alternative decomposition one might wish to impose, namely
a clustering of the latent space. For this, we use the “pinwheels” dataset from [ 5] and use a mixture
of four equally-weighted Gaussians as our prior. We then conduct an ablation study to observe the
effect of varying « and 8 in £, s(x) (as per (3)) on the learned representations, taking the divergence
to be KL (p(2)||¢s(z)) (see Appendix B for details). As shown in Figure 2, our framework allows
one to impose this alternate decomposition, allowing control of both the level of overlap and the
form of the marginal posterior.
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Figure 2: Density of aggregate posterior ¢,(z) for different values of a and 3. [Top] & = 0, 8 €
{0.01,0.3,0.5,1.0,1.2}. [Bottom] 8 = 0, a € {1,2,3,5,8}. We see that increasing [ increases
the level of overlap in g4(2), as a consequence of increasing the encoder variance for individual
datapoints. When £ is too large, the encoding of a datapoint loses meaning. Also, as a single
datapoint encodes to a Gaussian distribution, g, (z|x) is unable to match py(z) exactly. Because
¢s(z|x) = ¢4(z) when S — oo, this in turn means that overly large values of /5 actually cause a
mismatch between ¢, (z) and pg(z) (see top right). Increasing «, instead always improves the match
between ¢4 (2) and pg(2). Here, the finiteness of the dataset and the choice of divergence results in
an increase in the overlap with increasing «, but only up to the level required for a non-negligible
overlap between the nearby datapoints, such that large values of a do not cause the encodings to
lose significance.
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A Proofs and Additional Results for the Disentangling the 5-VAE

Hoffman et al. [14] showed that the 3-VAE target (1) can be interpreted as a standard evidence lower
bound (ELBO) with the alternative prior 7(z) o q(z)~?p(2)?, where g(z) = L3 q(z|zn),
along with a term down-weighting mutual information and another based on the prior’s normalising
constant.

We derive the following alternate expression for the 3-VAE.
Theorem 1. The 3-VAE target
Ls(x) = By, (z/a) [log po(z|2)] — BKL(gs(2[x)]|pe(2)) (M
can be interpreted in terms of the standard ELBO, L(x)(mgg,qs), for an adjusted target
m9.5(x, 2) = po(x | 2) f5(2) with annealed prior f5(z) = pg(z)ﬁ/FB as
Ly(w) = L(z) (79,8,44) + (B — 1) Hy, + log Fp )

where Fg £ fz pg(z)ﬂdz is constant given (3, and H g, is the entropy of q4(z | x).

Proof. Starting with (1), we have
Ls(x) = Eq, (2w [logpo(x | 2)] + BHy, + BEg, (z/x)[log po(2)]

= Eq¢(z|w)[10gp9($ | Z)] -+ (5 — ].)Hq¢ + Hq¢ + ]Eq¢(z|w) [logpe(z)ﬁ — logFg] -+ IOgFB

=By, (210 [logpo(x | 2)] + (8 — 1) Hy, — KL(gs(2 | ) || f5(2)) + log Fs
= L(x) (10,8,q¢) + (8 — 1)Hy, + log Fs
as required. -

A.1 Special Case — Gaussians

We analyse the effect of the adjusted target in (2) by studying the often-used Gaussian prior, p(z) =
N(z;0,), where it is straightforward to see that annealing simply scales the latent space by 1/1/73,
ie. fa(z) = N(2;0,3/8). Given this, it is easy to see that a VAE trained with the adjusted target
L(x) (79,5, ¢,), but appropriately scaling the latent space, will behave identically to a VAE trained
with the original target £(:z). They will also have identical ELBOs as the expected reconstruction is
trivially the same, while the KL between Gaussians is invariant to scaling both equally.

In fact, including the entropy regulariser allows us to derive a specialisation of (2).
Corollary 1. If pg(z) = N(2;0,%) and q4(z | ) = N (2; py(x), Sp(x)), then,

Lo(@) = £ (e | 2o(=), a0 (= | 2) + Do), (@) - @
where 0" and ¢’ represent rescaled networks such that
po(@| 2) =po(w | 2/v/B), 4o (2[2) = N (25 g0 (@), S ()
pe (@) = \/Bug (), Sy (x) = BSy(z),

A

and where ¢ = @ (1 + log %”) + log F3 is a constant, with D denoting the dimensionality
of z.

Proof. We start by noting that
70.6(@) = Eg(m[Po(@ | 2)] = By [p0 (2| 2/V/B) | = By 0 (@ | 2)] = por (@)

Now considering an alternate form of £(x)(7g g, g4) in (2),
L(x) (79,8, 49) = logmo,p(x) — KL(gs(z | 2) || m9,5(2 | 2))

)
= logpp () = Eq, (2]a) [log (Wﬂ

a(z/ VP | w>p9,<w)>] s

=logpe () — Eg, (212) [log <p9, (x| 2)f3(2/V/B)



We first simplify f5(z/+/5) as

z zéex —}zT “12) = p(2)8P/2.
fo(z/\/B) NI p<2 2 ) p(z)8

Further, denoting z; = z — v/Bug (z), and z; = z;//B = z2/v/B — ey (x), we have

1

_ 15 1
qp(z | x) = 2715, (@) eXP( 55t Se(x) ZT)a

¢ (;B | w) = mexp <—;zfs¢(w)1zi>

giving q¢(z/\/B | az) =qg (2 | x)p P2,
Plugging these back in to (5), we have

(@) (0,51 45) = logpor (#) — Eq sl [log (W)] — £(e) (pors a0,

showing that the ELBOs for the two setups are the same. For the entropy term, we note that

D 1 D 2 1
H,, = Bl (1+log2m) + 510g\5¢(a})| =3 <1 + log ;) + §log\5¢/(a:)|.

Finally substituting for H,, and L(x) (g, s, qe) in (2) gives the desired result. O

Noting that c is inconsequential to the training process, this result demonstrates an equivalence, up to
the scaling of the latent space, between training using the 3-VAE objective and a maximum-entropy
regularised version of the standard ELBO

Lasla) 2 £6) + O Vo5, ©

whenever py(z) and ¢4(z | ) are Gaussian. Note that we are here implicitly presuming suitable
adjustment of neural-network hyper-parameters and the stochastic gradient scheme to account for
the change of scaling in the optimal networks.

More formally we have the following, showing equivalence of all the local optima for the two
objectives.

Corollary 2. If Vg 4L3(x) = 0 then
Voo L (por (@ | 2)p(2), g4 (2 | ) = 0. @)

Provided that Vg 46 and Vg 4 ¢ do not have any zeros distinct to those of Vg La(x), then (7)
holding also implies Vg 4Lz(x) = 0.

Proof. The proof follows directly from Corollary 1 and the chain rule. O

What we now see is that optimising for (6) leads to a pair of networks equivalent to those from
training to the 3-VAE target, except that encodings are all scaled by a factor of /5. While it would
be easy to doubt any tangible effects from the rescaling of the 3-VAE, closer inspection shows that
it still plays an important role: it ensures the scaling of the encodings matches that of the prior. Just
adding the entropy regularisation term will increase the scaling of the latent space as the higher
variance it encourages will spread out the aggregate posterior q4(2) = Ep,(a)[qe(z | )]. The
rescaling of the 3-VAE now cancels this effect, ensuring the scaling of ¢, (z) matches that of p(z).
This is perhaps easiest to see by considering what happens in the limit of large S for the two targets.
With the B-VAE, we see from the original formulation that the encoder must provide embeddings
equivalent to sampling from the prior. The entropy-regularised VAE on the other hand will produce
an encoder with infinite variance. The equivalence between them is apparent when we scale the
encodings of the latter by a factor of 1/+/f3, and recover the encodings of the former, i.e. samples
from the prior.



Encoder Decoder Encoder Decoder

Input 64 x 64 binary image  Input € R° Input € R? Input € R?
4x4 conv. 32 ReLU stride 2 FC. 128 ReLU FC. 100. ReLU FC. 100 ReLU
4x4 conv. 32 ReLU stride 2  FC. 4x4 x 64 ReLU FC. 2x2 FC. 2x2

4x4 conv. 32 ReLU stride 2 4x4 upconv. 64 ReLU stride 2
4x4 conv. 64 ReLU stride 2 4x4 upconv. 64 ReLU stride 2

FC. 128 4x4 upconv. 32 ReLU stride 2
FC. 2x10 4x4 upconv. 1. stride 2
(a) 2D-shapes dataset. (b) Pinwheel dataset.

Table 1: Encoder and decoder architectures.

B Experimental Details

2d-shapes: The experiments from g 3 on the impact of the prior in terms disentanglement are
conducted on the 2D Shapes [2 1] dataset, comprising of 737,280 binary 64 x 64 images of 2D shapes
with ground truth factors [number of values]: shape[3], scale[6], orientation[40], x-position[32], y-
position[32]. We use a convolutional neural network for the encoder and a deconvolutional neural
network for the decoder, whose architectures are described in Table la. We use [0, 1] normalised
data as targets for the mean of a Bernoulli distribution, using negative cross-entropy for log p(z|z).
We rely on the Adam optimiser [17, 24] with learning rate le 4, B1=0.9, B2 =0.999, to optimise
the 5-VAE objective from (2).

When pg(z) = N(z;0,diag(c)), experiments have been run with a batch size of 64 and for 20
epochs. When py(2) = [, STUDENT-T(2;; V), experiments have been run with a batch size of
256 and for 40 epochs. In Figure 1, the PCA initialised anisotropic prior is initialised so that its
standard deviations are set to be the first D singular values computed on the observations dataset.
These are then mapped through a softmax function to ensure that the 3 regularisation coefficient is
not implicitly scaled compared to the isotropic case. For the learned anisotropic priors, standard
deviations are first initialised as just described, and then learned along the model through a log-
variance parametrisation.

We rely on the metric presented in Section (4) and Appendix (B) of [16] as a measure of axis-
alignment of the latent encodings with respect to the true (known) generative factors. Confidence
intervals in Figure 1 have been computed via the assumption of normally distributed samples with
unknown mean and variance, with 100 runs of each model.

Pinwheel We generated spiral cluster data!, with n = 400 observations, clustered in 4 spirals,
with radial and tangential standard deviations respectively of 0.1 and 0.3, and a rate of 0.25. We use
fully-connected neural networks for both the encoder and decoder, whose architectures are described
in Table 1b. We minimise the objective from (3), with ID chosen to be the inclusive KL, with g, (z)
approximated by the aggregate encoding of the dataset

D (q4(2),p(2)) = KL (p(2)llge(2)) = Ep(z) [log(p(2)) — log (Epp(a)las(2 | #)])]

~ Z (logp(zj) — log (Z qs(2; | xz)))

with z; ~ p(z). A Gaussian likelihood is used for the encoder. We trained the model for 500 epochs
using the Adam optimiser [17, 24], with 3; = 0.9 and 3, = 0.999 and a learning rate of 1e~3. The
batch size is set to B = n.

The mixture of Gaussian prior (c.f. Figure 3) is defined as

c
p(z) =Y me N(zlpe, Be) 8)
c=1

C D
= > m [INGE g, o)
c=1 d=1

with D =2,0 =4,%, = .03 Ip, 7. = 1/C and u? € {0,1}.

"http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab.
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Figure 3: PDF of Gaussian mixture model prior, i.e. p(z) as per (8).

C Posterior regularisation

The aggregate posterior regulariser D(¢q(z), p(z)) is a little more subtle to analyse than the entropy
regulariser as it involves both the choice of divergence and potential difficulties in estimating that
divergence. One possible choice is the exclusive Kullback-Leibler divergence KL(g(z) || p(z)), as
previously used (without additional entropy regularisation) by [2, 1 1], but also implicitly by [7, 16],
through the use of a total correlation (TC) term. We now highlight a shortfall with this choice of
divergence due to difficulties in its empirical estimation.

In short, the approaches used to estimate the H[q(z)] (noting that KL(¢(2) || p(z)) = —H[q(2)] —
Eq(2)[log p(2)], where the latter term can be estimated reliably by a simple Monte Carlo estimate)
exhibit very large biases that result in quite different effects from what was intended. In fact, our
results suggest they will exhibit behavior similar to the 5-VAE. These biases arise from the effects
of nesting estimators [22], where the variance in the nested (inner) estimator for ¢(z) induces a bias

in the overall estimator. Specifically, for any random variable Z,

N . Var[Z
Ellog(2)] = log(E[Z]) - “eid) + 0(c) ©
where O(e) represents higher-order moments that get dominated asymptotically if Z is a Monte-
Carlo estimator (see Proposition 1c in Maddison et al. [20], Theorem 1 in Rainforth et al. [23], or
Theorem 3 in Domke and Sheldon [9]). In this setting, Z = §(z) is the estimate used for ¢(z). We
thus see that if the variance of §(z) is large, this will induce a significant bias in our KL estimator.

To make things precise, we consider the estimator used for H[g(z)] in Esmaeili et al. [11] and
Anonymous [2] (noting that the analysis applies equally to those of Chen et al. [7]):

B
N 1 .
Hg(z)| »H= —% > logd(z), (10a)
b=1
. 44 (zb|wb) n—1
where G(zp) = — + W(B=1) Z 4o (zp|xy), (10b)
b #b

each zj, ~ ¢ (z|xp), and {1, ...,z p} is the mini-batch of data being used for the current iteration

and n is the dataset size. Esmaeili et al. [11] correctly show that E[G(2z,)] = G(=zp), with the first
term of (10b) comprising an exact term in ¢(z,) and the second term of (10b) being an unbiased
Monte-Carlo estimate for the remaining terms in G(zy).

To examine the practical behaviour of this estimator when B < n, we first note that the second
term of (10b) is, in practice, usually very small and dominated by the first term. This is borne out
empirically in our own experiments, and also noted in Kim and Mnih [16]. To see why this is the
case, consider that given encodings of two independent data points, it is highly unlikely that the
two encoding distributions will have any notable overlap (e.g. for a Gaussian encoder, the means
will most likely be very many standard deviations apart), presuming a sensible latent space is being
learned. Consequently, even though this second term is unbiased and may have an expectation com-
parable or even larger than the first, it is heavily skewed—it is usually negligible, but occasionally
large in the rare instances where there is substantial overlap between encodings.
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Let the second term of (10b) be denoted 75 and the event that this it is significant be denoted Eg,
such that E[T | ~F,] &~ 0. As explained above, it will typically be the case that P(Fg) < 1. We
now have

E[H] = (1 - P(Es))E[H | ~Es] + P(Es) E[H | Es]
B
= (1-P(Es)) <1Ogn - %ZEUOE; a9(z | ) | ~Es] — E[T2 | ﬁE5]> +P(Es)E[H| Es]
b=1
= (1= P(Es)) (logn — E[log gs(21 | 21) | ~Es] = E[T» | ~Es]) + P(Es)E[H | Es]
~ (1 —P(Es)) (logn — E[log gs(21 | z1)]) + P(Es)E[H | Es]

where the approximation relies firstly on our previous assumption that E[T | =Es] ~ 0 and also
that E[log g4 (z1]z1) | ~Es| ~ E[log ¢4 (z1]|%1)]. This second assumption will also generally hold
in practice, firstly because the occurrence of Eg is dominated by whether two or not similar data-
points are drawn (rather than by the value of 1) and secondly because P(Eg) < 1 implies that

Elloggy(z1 | z1)] = (1 — P(Es)) Ellog g¢(21 | 1) | ~Es] + P(Es) E[log gy (21 | z1) | Es]
~ Elogqs(z1 | 1) | 7Es].

Characterising £ [ﬂ | Es] precisely is a little more challenging, but it can safely be assumed to be
smaller than E[log g4 (21 | «1)], which is approximately what would result from all the x; being the
same as xp. We thus see that even when the event E'g does occur, the resulting gradients should
still be on a comparable scale to when it does not. Consequently, whenever Fg is rare, the (1 —

P(Es))E[H | ~Es] term should dominate and we thus have
E [Iﬂ ~logn — Elloggg(z1 | x1)] = logn + Eyq)[Hge (2 | 2)]]. (11)

More significantly, we see that the estimator mimics the 5—VAE regularisation up to a constant
factor log n, as adding the E, ) [log p(2)] back in gives

—E[H] — Ey(z)[log p(2)] & Ep(a) [KL (g (2[a) || p(2))] — logn. (12)

We should thus expect to empirically see training with this estimator as a regulariser to behave
similarly to the 5—VAE with the same regularisation term whenever B < n. Note that the logn
constant factor will not impact the gradients, but does mean that it is possible, even likely, that

negative estimates for KL will be generated, even though we know the true value is positive.
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