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Abstract

Image classification with deep neural networks is typically restricted to images
of small dimensionality such as R224×244 in Resnet models [24]. This limitation
excludes the R4000×3000 dimensional images that are taken by modern smartphone
cameras and smart devices. In this work, we aim to mitigate the prohibitive
inferential and memory costs of operating in such large dimensional spaces. To
sample from the high-resolution original input distribution, we propose using a
smaller proxy distribution to learn the co-ordinates that correspond to regions of
interest in the high-dimensional space. We introduce a new principled variational
lower bound that captures the relationship of the proxy distribution’s posterior and
the original image’s co-ordinate space in a way that maximizes the conditional
classification likelihood. We empirically demonstrate on one synthetic benchmark
and one real world large resolution DSLR camera image dataset that our method
produces comparable results with ∼10x faster inference and lower memory
consumption than a model that utilizes the entire original input distribution.

1 Introduction

Direct inference over large input spaces allows models to leverage fine grained information that
might not be present in their downsampled counterparts. We demonstrate a simple example of such a
scenario in Figure 1, where the task is to identify speed limits. The downsampled image does not
contain the required information to correctly solve the task; on the other hand direct inference over
the original input space is memory and computationally intensive.

In order to work over such large dimensional input spaces, we take inspiration from the way the
human visual cortex handles high dimensional input. Research in neuroscience [47, 23, 53] and
attention for eye-gaze [54] have suggested that human beings enact rapid eye movements (or saccades
[14]) to different locations within the scene to gather high resolution information from local patches.
More recent research [26, 16] has shown that humans and macaque monkeys stochastically sample
saccades from their environment and merge them into a continuous representation of perception.
These saccades are also not necessarily only of the salient object(s) in the environment, but have a
component of randomness attached to them. In this work we try to parallel this stochastic element
through the use of a learnt sampling distribution, conditioned on auxiliary information provided
via a proxy distribution. In this preliminary work we explore proxy distributions that are simply
downsampled versions of the original large input distribution, as in Figure 1.
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Figure 1: (a) original image; (b) bilinearly downsampled image processable by a typical Resnet
model.

2 Related Work

Saliency Methods: The analysis of salient (or interesting) regions in images has been studied
extensively in computer vision [30, 29, 27, 21]. Important regions are quantified by simple low-level
features such as intensity, color and orientation changes. These methods fail to generalize to
complex scenes with non-linear relationships between textures and colors [7]. More recently, deep
convolutional networks have been exploited to directly learn saliency at multiple feature levels (eg:
[37, 8]) as well as to learn patch level statistics [56]. None of these methods directly learn “where” to
look without information about the entire image.

CNN Approaches: Current state of the art CNN models on the other hand separate the entire image,
into cropped regions [58], employ pyramid decompositions [38] over the entire image, or utilize
large pooling [4] / striding operands. These methods are challenging because they are either lossy,
resulting in poor classification accuracy, or they are too memory and computationally intensive (see
Experiments Section 5) as they run convolutional filters over the entire image.

Region Proposal Methods: Another approach to CNN models are region proposal networks such as
R-CNN [18], R-CNN++ [46] and YOLO [45] to name a few. The R-CNN methods generate a set of
candidate extraction regions, either by extracting a fixed number of proposals as in the original work
[18], or by utilizing a CNN over the entire image to directly predict the ROI [46]. They then proceed
to enact a form of pooling over these regions, compute features, and project the features to the space of
the classification likelihood. In contrast to R-CNN, our method uses an informatively learnt posterior
to extract the exact number of required proposals, rather than the 2000 proposals as suggested in the
original work. R-CNN++ on the other hand doesn’t scale with ultra-large dimensional images as
direct inference over these images scales with the dimensionality of the images. Furthermore, the
memory usage of R-CNN++ increases with the dimensionality of the images whereas it does not for
our proposed model.

YOLO on the other hand, resizes input images toR488×488 and simultaneously predicts bounding
boxes and their associated probabilities. While YOLO produces quick classification results, it trades
off accuracy of fine-grained details. By resizing the original image, critical information can be lost
(see Figure 1). Our proposed method on the other hand has no trouble with small details since it has
the ability to directly control its foveation to sample the full resolution image.

Sequential Attention: Sequential attention models have been extensively explored through the
literature, from utilizing Boltzman Machines [36, 13, 3], enacting step-by-step CNN learning rules
[44], to learning scanning policies [1, 5] as well as leveraging regression based targets [25]. Our
model takes inspiration from the recent Attend-Infer-Repeat (AIR) [15] and its extensions (SQAIR)
[35], D.R.A.W [22], and Recurrent Attention Models (RAM) [40, 2]. While RAM based models
allow for inference over large input images, they utilize a score function estimator [20] coupled
with control variates [19]. Our algorithm on the other hand utilizes pathwise estimators [57, 34]
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which have been shown to have lower variance [52] in practice. In contrast to AIR and general
attention based solutions, we do not use the entire image to build our attention map. In addition, as
opposed to adding a classifier in an ad-hoc manner as in AIR and SQAIR, we derive a new principled
lower bound on the conditional classification likelihood that allows us to relate the posterior of
the proxy-distribution to the co-ordinate space of the original input. This direct use of supervised
information in an end-to-end manner allows our model to converge very rapidly (100-300 epochs) vs
AIR which takes 50,000-200,000 epochs [15] to successfully converge.

Interpretability: With the surge of deep learning, understanding the model decision making process
has become more important. While prior work took a post-mortem approach on trained models by
computing gradients of the conditional likelihood with respect to the input image [61, 39, 50, 41],
recent work such as Capsule Networks [48], InfoGAN [11], and numerous others [48, 62, 59, 11]
directly attempt to learn models that are interpretable4. Our model attempts to follow the latter of the
two paradigms by extracting crops of regions that directly maximize the conditional classification
likelihood. In contrast to the existing methods mentioned above we do not parse the entire input
image to provide interpretability.

3 Variational Objective

Figure 2: Graphical Model.

Given an image x ∈ RK×K , a corresponding proxy image c ∈ RJ×J , J � K, and a corresponding
class label y ∈ R, our objective is defined as maximizing log pθ(y|x) for θ. We are only interested
in the case where p(y|c) 6= p(y|x), i.e. the proxy distribution is not able to solve the classification
task of interest . Assuming that c provides no new information for the classification objective,
pθ(y | x) = pθ(y | x, c), and pφ(zi|c,x) = pφ(zi|c), the conditional joint posterior pφ(zi|c,x) is
only a function of the proxy distribution c, we can reformulate our objective as:

log pθ(y | x) = log pθ(y|x, c) = log

T∑
i=1

∫ ∫ (
pθy (yi|oi, zi, c,x)

)
dzidoi

= log

T∑
i=1

∫ ∫ (
pθy (yi|oi, zi, c,x) pθo(oi|zi, c,x) pφ(zi|c)

)
dzidoi

(1)

We have introduced (and marginalized out) two sets of latent variables: zi ∈ R3 and oi ∈ RL×L,
L� J . These correspond to the posteriors zi ∼ p(zi|c), induced by c and a set of dirac distributions,
oi ∼ δ[f(x, zi)], centered at a differentiable function, f , implemented using Spatial Transformer
networks [31]. This differentiable function produces crops, oi, of our large original input, x, using a
posterior sample from p(zi|c). We utilize T such crops to approximate the discriminative regions of
the image x that maximize the log-likelihood, log pθ(y|x).
To produce the crops oi, we utilize Spatial Transfomers (ST) [31]. STs transform the process of
hard-attention based cropping (i.e. indexing into the image) with two differentiable operators: a learnt
affine transformation of the co-ordinate space of the original image, [is js]

T 7→
[
it jt

]T
:

4See [63] for a more thorough treatment of interpretability.
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[
it

jt

]
=

[
s 0 x
0 s y

] [is
js

1

]
=

[
z0 0 z1
0 z0 z2

] [is
js

1

]
(2)

and a differentiable bilinear sampling operator that is independently applied on each channel c:
J∑
n

J∑
m

(
xcnmmax(0, 1− |itnm −m|)max(0, 1− |jtnm − n|)

)

In general the true posterior, pφ(zi|c), is intractable or difficult to approximate [32]. To resolve
this, we posit a variational approximation [55], qφ(zi|c) ≈ pφ(zi|c), and introduce it via a
multiply-by-one constant:

log pθ(y | x) = log

T∑
i=1

∫ ∫ (
pθy (yi|oi, zi, c,x) pθo(oi|zi, c,x) pφ(zi|c)

qφ(zi|c)
qφ(zi|c)

)
dzidoi

(3)
Utilizing Jensen’s inequality, we can reframe the marginalization operand as an expectation:

log pθ(y | x) ≥
T∑
i=1

∫ ∫ (
qφ(zi|c) log

[
pθy (yi|oi, zi, c,x) pθo(oi|zi, c,x)

pφ(zi|c)
qφ(zi|c)

])
dzidoi

=

T∑
i=1

∫ [
Ezi
(
log

[
pθy (yi|oi, zi, c,x) pθo(oi|zi, c,x)

])
−DKL[qφ(zi|c)||pφ(zi|c)]

]
doi

(4)

We also observe that the KL divergence between the true posterior pφ(zi|c) and the approximate
posterior qφ(zi|c) can be re-written in terms of the Evidence Lower BOund (ELBO) [34] and the
marginal data distribution p(c):

−DKL[qφ(zi|c)||pφ(zi|c)] = Ezi [log pθc(ĉ|zi)]−DKL[qφ(zi|c)||p(zi)]− log p(c) (5)

Given that − log p(c) is always a positive constant, we can update our reframed objective in Equation
(4) by plugging in Equation (5):

log pθ(y | x) ≥
T∑
i=1

∑
zi

∑
oi

(
log pθy (yi|oi, zi, c,x) + log pθo(oi|zi, c,x)

+ log pθc(ĉ|zi)−DKL[qφ(zi|c)||p(zi)]
) (6)

This leads us to a Equation (6) which utilizes a empirical estimate of the expectation and
marginalization operands to provide a novel lower bound on log pθ(y|x, c). This lower bound
allows us to classify a set of crops of the original image utilizing location information inferred by
the posterior of the proxy distribution, qφ(zi|c). The equation presented in Equation 6 can also be
extended to classification across a video sequence by replacing the variables {x, c} with a set of
variables {xi, ci}Ti=1.

3.1 Interpretation

Current state of the art research in neuroscience for attention [26, 16] suggest that humans sample
saccades approximately every 250ms and integrate them into a continuous representation of perception.
We parallel this within our model by utilizing a discrete oi ∼ δ[f(x, zi)] for sampling saccades and
continuous latent representations for the concept of perception. An additional requirement is the
ability to transfer this continuous latent representation across glimpses. We overcome this barrier by
utilizing a VRNN (Section 4).
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Figure 3: Implementation of our model.
In addition, [26, 16] show that attention does not always focus on the most salient object in an image,
but at times randomly attends to other parts of the scene. This behavior can be interpreted as a form of
exploration as done in reinforcement learning. Since our sampling distribution qφ(zi|c) is stochastic,
it provides a natural way to explore the space of the original input distribution p(x), without the need
for specific exploration methods such as ε-greedy [51] or weight noise [17].

4 Model

We use an isotropic gaussian VRNN [12] to model our newly derived lower bound (Equation
6). The VRNN makes two crucial modifications to the traditional ELBO: rather that assuming a
non-informative prior, p(zi) is learnt as a function of the previous RNN hidden state, hi−1, and the
decoder, pθc(ĉ|zi), and the encoder, qφ(zi|z), are conditioned on the previous RNN hidden state :

pθp(zi) ∼ N (µi(hi−1;θµp
), σ2

i (hi−1;θσ2
p
))

pθc(ĉ|zi) ∼ N (µi(g(zi),hi−1;θµc
), σ2

i (fp(zi),hi−1;θσ2
c
))

qφ(zi|c) ∼ N (µi(fq(zi),hi−1;φµq
), σ2

i (fq(zi),hi−1;φσ2
q
)))

This dependence on hi−1 allows the model to integrate and relay information about its previous
saccade through to the next timestep. The full VRNN loss function is defined as:

Eqφ(z≤T |c≤T )

( T∑
i=1

log pθ(xi|z≤i,x<i)−DKL(qφ(zi|x≤i,x<i)||p(zi|x<i, z<i))
)

(7)

We implement the VRNN using a fully convolutional architecture where conv-transpose layers are
used for upsampling from the vectorized latent space. The crop classifier is implemented by a
standard fully-convolutional network, followed by a spatial pooling operation on the results of the
convolution on the crops, oi. Adam [33] was used as an optimizer, combined with ReLU activations;
batch-norm [28] was used for dense layers and group-norm [60] for convolutional layers. For more
details about specific architectural choices see our code5 .

5 Experiments

We evaluate our algorithm on two classification datasets where we analyze different induced behaviors
of our model. We utilize Two-Digit MNIST for our first experiment in order to situate our model
against baselines. We then proceed to learn a classification model for the large MIT-Adobe 5k dataset

5https://github.com/jramapuram/variational_saccading.git
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Figure 4: (a,b): Two-Digit-Identification ClutteredMNIST ∈ R2528×2528; (c,d): MIT-5k ∈
R2528×2528.

Image Size: R2528×2528 #params gpu memory
(160 batch-size) time / epoch accuracy

MIT-Adobe-5k
accuracy Two Digit
MNIST Identification

resnet18 - 144 crops 11.4M
79G (naive)
6.5G (checkpoint)6

1052.43s (naive)
1454.05s (checkpoint)

63.6% +/- 0.03 97.3 +/- 0.006

variational saccading 7.4M 4.1G 120 s 62.7% +/- 0.03 95.23 +/- 0.03

Image Size: R100×100 #params gpu memory
(160 batch-size) time / epoch accuracy Two Digit

MNIST Sum
accuracy Two Digit
MNIST Identification

resnet18 - full image 11M 6.6G 59.27s 99.86 +/- 0.01 97.4 +/- 0.003
RAM [40] - - - 91% 93%
DRAM [2] - - - 97.5% 95%
variational saccading 7.4M 2.8G 37s 97.2 +/- 0.04 95.42 +/- 0.002

Table 1: Our model infers ∼ 9-10x faster and utilizes less GPU memory than the baselines in high dimensions.

which involves complicated, dynamic, large resolution DSLR images. We utilize downsampled
original images, c ∈ R32×32, as the proxy distribution for both experimentes. We demonstrate that
our model has comparable accuracy to the best baseline models, but we infer ∼ 9-10x faster and
utilize far less GPU memory than a naive approach. We provide visualizations of the model’s saccades;
this aids in interpretting what region of the original input image aids the model in maximizing the
desired classification likelihood. We utilize resnet18 as our naive baseline and did not observe any
performance uplifts from using larger models for our experiments.

5.1 Two-Digit MNIST

Two-Digit-Cluttered MNIST is a benchmark dataset used in RAM [40], DRAM [2] and as a generative
target in AIR [15] and SQAIR [35]7. The objective with the initial set of experiments is to identity the
digits present in the image (ignoring the distracting clutter), localize them, and predict a multi-class
label using the localized targets. This form of learning, where localization information is not directly
provided, is known as weakly supervised learning [9, 43, 42]. In the first setting we compare our
model to RAM [40], DRAM [2] and a baseline resnet18 [24] model that operates over the entire
image and directly provides classification outputs. As in RAM and DRAM, we also examine a case
where the learning objective is to sum two digits placed in an image (without clutter). In order to
provide a fair comparison we evaluate our model in the original dimension (R100×100) suggested by
the authors [40, 2]. We observe (Table 1 bottom) that our method is on par with RAM and DRAM
and gets close to the baseline resnet18 results.

We extend the Two-Digit-Cluttered MNIST identification experiment from above to new experiment
where we classify large dimensional images, x ∼ R2528×2528. As in the previous experiment
we evaluate our model against a baseline resnet18 model. Resnet models are tailored to operate
over R224×224 images; in order to use large images, we divide an original R2528×2528 image into
R144×224×224 individual crops and feed each crop into the model. We then sum the logit outputs of
the model and run the pooled result through a dense layer. This allows the model to make a single
classification decision for the entire image using all 144 crops:

6Checkpointing caches the forward pass operation as described in [10]. The naive approach parallelizes
across 8 GPUs and splits each of the 144 crops across the GPUs.

7The authors do not use the cluttered version of the two-digit dataset for the AIR variants.
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y = fθd(

144∑
i=1

gθc(xi)) , xi ∈ R224×224 (8)

In Equation 8, fθd is a multi-layer dense network and gθc is a multi-layer convolutional neural
network that operates on individual crops xi. While it is also possible to also concatenate each
logit vector gθc(x) = [gθc(xi), gθc(xi−1), ..., gθc(x0)], and project it through the dense network
fθd(gθc(x)), the tasks we operate over do not necessitate relational information [49] and pooled
results directly aid the classification objective. We visualize saccades (Figure 4), the model accuracy,
training-time per epoch and GPU memory (Table 1) and observe that our model performs similarly
(in terms of accuracy) in higher dimensions, while inferring ∼10x faster and using only 5% of the
total GPU memory in contrast to a traditional resnet18 model.

5.1.1 Robustness to Noisy Proxy Distribution

Figure 5: Top: Effect of noisy proxy distribution on test accuracy. Bottom: Left to right correspond to
noisier versions of the same proxy distribution used in above graph.

Since the proxy distribution is critical to our formulation, we conduct an ablation study using the
two-digit cluttered identification problem from experiment 5.1. We vary the amount of noise in the
proxy distribution as shown in the bottom of Figure 5. The test curves shown on the top of the same
figure demonstrates that our method is robust to noisy proxy distributions. In general, we found
that our method worked even in situations where the proxy distribution only contained a few points,
allowing us to infer positional information to index the original distribution p(x).

5.2 MIT-Adobe 5k

The MIT-Adobe 5k [6] dataset is a large resolution DSLR camera dataset consisting of six classes:
{abstract, animals, man-made, nature, None, people}. While the dimensionality of each image is large,
the dataset has a total of 5000 total samples. This upper-bounds the performance of deep models
with millions of parameters (without the use of pre-training / fine-tuning and other unsupervised

7



techniques). We examine this scenario because it presents a common use case of learning in a
low-sample regime.

We downsample the large original images to x ∈ R3×2528×2528 to evaluate against a baseline resnet
[24] model. The baseline model operates over 144 crops per image as in the previous experiment.
Test saccades (non-cherry picked) of our model are visualized in Figure 4(c,d) ; the glimpses allow
us to gain an introspective view into the model decision making process. Some of the interesting
examples are that of the ‘people’ class: in the example with the child (third to the right in the bottom
row of Figure 4), the model saccades to the adult as well as the child in the image. Other notable
examples are leveraging the spotted texture of Cheetah fur and the snout of the dog. As observable
from Table 1, our model has comparable accuracy to the baseline resnet model, but infers ∼ 9-10x
faster and utilize far less GPU memory than this naive approach.

6 Conclusion

We demonstrate a novel algorithm capable of working with ultra-large resolution images for
classification and derive a new principled variational lower bound that captures the relationship
of a proxy distribution’s posterior and the original image’s co-ordinate space . We empirically
demonstrate that our model works with low memory and inference costs on ultra-large images using
two datasets.
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