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Abstract

In many safety-critical applications such as autonomous driving and surgical robots,
it is desirable to obtain prediction uncertainties from object detection modules to
help support safe decision-making. Specifically, such modules need to estimate the
probability of each predicted object in a given region and the confidence interval
for its bounding box. While recent Bayesian deep learning methods provide a
principled way to estimate this uncertainty, the estimates for the bounding boxes
obtained using these methods are uncalibrated. In this paper, we address this
problem for the single-object localization task by adapting an existing technique
for calibrating regression models. We show, experimentally, that the resulting
calibrated model obtains more reliable uncertainty estimates.

1 Introduction

In safety-critical systems such as self-driving cars, it is desirable to have an object detection system
that provides accurate predictions and reliable, or well-calibrated, associated uncertainties. The
uncertainties in this case come from two sources: the bounding box regressor and the object classifier.
For the bounding box regressor, a p% confidence interval for each coordinate (estimated from the
calibrated uncertainties) should contain the true value p% of the time. Similarly, in classification,
calibration means that predictions with p% confidence are accurate p% of the time. Miscalibration,
in either case, can lead to dangerous situations in autonomous driving. For instance, if the detection
model indicates the 95% confidence interval that the location of a pedestrian is within the sidewalk,
but it is actually a 50% confidence interval, then the vehicle may make hazardous movements.

Recent advances in Bayesian neural networks (BNNs) (Gal and Ghahramani [3], Khan et al. [8],
Kendall and Gal [7]) have provided a framework for estimating uncertainties in deep neural networks
(DNNs). The obtained uncertainty estimates from BNNs, however, requires calibration (Kuleshov
et al. [9], Gal and Ghahramani [3]).

Recent works by Miller et al. [12] and Feng et al. [2] have shown the benefits of modeling uncertainty
for detection accuracy in 2D open-set conditions and the 3D Lidar object detection task, respectively.
However, neither of them has analyzed or focused on the reliability of the estimated localization
uncertainties in terms of calibration. In this paper, we address this issue for the 2D single object
classification and localization (SOCL) task and demonstrate its applicability on the Oxford-IIIT Pet
Dataset (Parkhi et al. [13]). We focus on the localization uncertainty estimates since our experiment
shows that while BNNs produce a calibrated classification uncertainty (similar to McClure and
Kriegeskorte [11]’s results), the estimated localization uncertainty is not calibrated. Specifically, our
contributions are: (1) we show that the estimated localization uncertainties for the bounding box
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coordinates from the BNN model are not calibrated; (2) we adapt Kuleshov et al. [9]’s method for
calibrating regression models and show improvements in this setting.

The remainder of the paper is structured as follows. Section 2 gives the necessary background for
the SOCL task. Section 3 describes the calibration method for localization (see Guo et al. [5] for
calibration in classification). Section 4 shows experimental results demonstrating the method is
effective. Finally, in Section 5 we discuss conclusions and future work.

2 Background: SOCL Task with Uncertainty Estimation

The goal of the SOCL task is to obtain a model that is able to predict the bounding box and class
of an object in a given image. For an image dataset X = {x1,x2, ...,xN}, the associated labels are
Y = {y1,y2, ...,yN}, where each yk = [ck,bk] consists of a one-hot encoded class ck and the
bounding box coordinates bk = {b1k, b2k, b3k, b4k}. We define a DNN fW(x) = ŷ with weights W
such that it predicts both the class probability and coordinates.

Incorporating Uncertainty Based on Kendall and Gal [7]’s method, we incorporate the aleatoric
and epistemic uncertainties into the model by optimizing the weights W with heteroscedastic loss
and dropout training (Srivastava et al. [15]). At test time, we sample the predictions with MC-dropout
and calculate the predictive mean and uncertainties. This results in a BNN model f̄W(x) = [ȳ, σ̄2],
where ȳ = [c̄, b̄] is the predictive mean and σ̄2 = {σ̄2
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4} is the predictive variance (sum of

the epistemic and aleatoric variance) of the coordinates, assuming that they are mutually independent
1. Similarly to Lakshminarayanan et al. [10], we estimate the probability p(bi|x) as a Gaussian:
p(bi|x) = N (b̄i, σ̄

2
i ), for i ∈ 1, 2, 3, 4.

3 Calibration Method for Estimated Localization Uncertainty

We use the cumulative distribution function (CDF) form of p(bi|x) in Section 2 for calibration,
denoted as Pbi|x(z) = Φ(z|b̄i, σ̄2

i ) where Φ(z|µ, γ2) is the CDF of Gaussian distribution N (µ, γ2)

with mean µ and variance γ2. For real value z ∈ R, Pbi|x(z) is the probability that the label bi is
in the (−∞, z] interval. Conversely, for a probability value q, we obtain the output z of the inverse
CDF: P−1bi|x(q) = z, which means that the interval (−∞, z] is a 100q% interval for bi.

Let Ibi|x(q) := I[bi ≤ P−1bi|x(q)] be an indicator function that verifies the condition in the brackets.
Then Pbi|x(z) is calibrated when:

E[Ibi|x(q)] = q (1)

This implies that we expect to see the 100q% confidence interval to cover 100q% of the label data.
Calibrating a regression model means that we adjust Pbi|x(z) such that (1) holds. To obtain a reliable
uncertainty estimate, we carry out two steps: validating the uncertainty estimate and calibrating it.

Validating the Uncertainty Estimates In regression, higher estimated variance should correspond
to higher expected square error. However, in practice, if the model lacks of expressiveness or does
not converge, the resulting uncertainty estimates may not be valid and the calibration process will
not give desired results. Thus, we use scatter plot (representing σ̄2

i and (bi − b̄i)2) as a visualization
method to validate this attribute of the uncertainty estimate before calibrating it.

Calibrating the SOCL BNN We adapt Kuleshov et al. [9] method of calibrating a BNN-based
regressor for the case of bounding box estimation. Given an uncalibrated probabilistic model
f̄W(x) for the SOCL task with Pbi|x(z) = Φ(z|b̄i, σ̄2

i ) for each coordinate and a calibration dataset
X̂, Ŷ, the calibration process trains a calibration model Ri whose input is Pbi|x(z) such that
P̂bi|x(z) = Ri ◦ Pbi|x(z) = Ri ◦ Φ(z|b̄i, σ̄2

i ) is calibrated (see [8] for more details). After obtaining
Ri, we replace Pbi|x(z) by P̂bi|x(z) for localization uncertainty estimation.

1This assumption gives an overapproximation of the bounding box extents, which is sufficient for obstacle
avoidance.
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Figure 1: Reliability diagram and an example. Figure 1(a): reliability diagram for localization
uncertainties before calibration. Figure 1(b): reliability diagram for localization uncertainties after
calibration. Figure 1(c): reliability diagram for classification with MC-dropout and weight scaling.
Figure 1(d) shows an example of bounding box localization with calibrated 95% confidence interval
(blue region) centered around the mean (red). The ground truth is colored in pink

We use [xmin, ymin, xmax, ymax] for encoding the coordinates in our experiments, where xmin,ymin

is the top left and xmax, ymax is the bottom right corner of the bounding box. To estimate the 100q%
confidence interval around the mean, we determine the upper bound and lower bound for each bi by
calculating P̂−1bi|x(r+ q/2) and P̂−1bi|x(r− q/2) accordingly for each coordinate, where r = P̂bi|x(b̄i).
These bounds define a confidence interval as a region in which the bounding box can occur (see blue
region in Figure. 1d).

4 Experiments

In the following setting, we experimentally show the miscalibration problem of localization uncer-
tainty of our model and the improvement after applying the calibration method on the model’s output.
For the completeness of the task, we also show the result for classification.

We use the Oxford-IIIT Pet Dataset (Parkhi et al. [13]), which consists of 3,686 annotated images
in 2 classes depicting cats and dogs, for this task. The bounding box for localization covers the
face of the pet. The dataset is split into 2:0.9:0.9 ratio for training, validation/calibration and testing
respectively. For the model, the VGG-16 architecture (Simonyan and Zisserman [14]) is used as a
base network. The trained model obtained 94.85% classification accuracy and 14.03% localization
error with 0.5 IOU threshold, based on the Imagenet evaluation method (Deng et al. [1]).We validated
the uncertainty estimates (epistemic and aleatoric) and fit the calibration modelRi for each coordinate
as described in Section 3.

Results Figure.1a -1c show the reliability diagram for localization and classification uncertainties
on the test set. The reliability diagram shows the mapping between the expected confidence interval
(from the model) and the actual one (i.e., how many labels are actually within that interval). Perfect
calibration corresponds to the diagonal line in the diagram. Quantitatively, the calibration quality is
evaluated by using the mean squared error (MSE) between the diagonal line and the calibration curve.
Models with lower MSE are better calibrated.

Figure.1a and 1b show the reliability diagram for bounding box coordinates before and after cali-
bration respectively. Consider the curve for xmax in Figure.1a, we can see that the expected 40%
confidence interval corresponds to the 20% actual interval. In this case, the model has underestimated
the uncertainty. On the other hand, the expected 60% confidence interval corresponds to the 80%
actual interval, which implies that the model has overestimated the uncertainty in this range. After
calibration, the estimated uncertainties are reliable, e.g, the expected 20% confidence interval contains
approximately 20% of the true outcome. The calibration process reduces the average MSE from
2.7E-02 to 2.7E-04 for the four coordinates.

We also observed that, in Figure.1c, MC-dropout produces a calibrated classification confidence with
MSE of 3.0E-03, compared to that of 1.6E-02 with the original weight scaling method for network
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trained with dropout (Srivastava et al. [15]), in which we scale the weights according to the dropout
rate at test time, and show the resulting softmax probabilities.

5 Conclusion and Future Work

In this paper, we consider the reliability of estimated localization uncertainty for the 2D SOCL task
in terms of calibration. Our experiment shows that without calibration, the estimated localization
uncertainties are misleading. We adapted an existing method for calibrating regression to the
uncertainty estimates of bounding box coordinates. The result shows that the new uncertainty
estimates are well-calibrated.

In future work, we would like to extend this work to the general 2D and 3D multiple object detection
task and use a more complex dataset such as KITTI (Geiger et al. [4]). Furthermore, we want to
address the calibration problem in the case the coordinates are not mutually independent. Finally,
although the computation cost for calibration step and estimating the aleatoric uncertainty is negligible,
the cost for estimating the epistemic uncertainty is high. To reduce the computation cost for this step,
we want to investigate how model compression technique (Han et al. [6]) can be incorporated for
speeding up the inference rate.
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