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Abstract

To combine explicit and implicit generative models, we introduce semi-implicit
generator (SIG) as a flexible hierarchical model that can be trained in the maximum
likelihood framework. Both theoretically and experimentally, we demonstrate that
SIG can generate high quality samples especially when dealing with multi-modality.
By introducing SIG as an unbiased regularizer to the generative adversarial net-
work (GAN), we show the interplay between maximum likelihood and adversarial
learning can stabilize the adversarial training, resist the notorious mode collapsing
problem of GANs, and improve the diversity of generated random samples.

1 Introduction

Generative models consist of a group of fundamental machine learning algorithms that are used to es-
timate the underlying probability distributions over data manifolds. Promoted by recent development
in deep neural networks, deep generative models achieve great success in data simulation, density
estimation, missing data imputation, reinforcement learning and are widely utilized for tasks such as
image super-resolution, compression and image-to-text translation. The goal of generative models is
to minimize the distance between the generative distribution and data distribution under a certain
metric or divergence D

min
φ
D(Pdata(x)||Pmodel(x;φ)) (1)

where Pdata is usually approximated with empirical data distibution P̂data = 1
N

∑N
i=1 δxi based on

observations {xi}1:N .

Depending on the type of Pmodel(x;θ), an existing generative model can often be classified as either
an explicit generative model or implicit one. The former requires an explicit probability density
function (PDF) for Pmodel such that we can both sample data from it and evaluate its likelihood.
Examples for explicit generative models include variational auto-encoders [1], PixelRNN [2], Real
NVP [3], and many Bayesian hierarchical models such as sigmoid belief net [4]. An explicit
generative model has a tractable density that can often be directly optimized by (1). The optimization
target is a distance measure with nice geometric properties, which often leads to stable training and
theoretically guaranteed convergence. However, the requirement of having a tractable density usually
restricts the flexibility of an explicit model, making it hard to scale with increasing data complexity.

An implicit generative model, on the other hand, generates its random samples via a stochastic
procedure but may not allow a point-wise evaluable PDF, which often makes a direct optimization in
(1) become infeasible. Generative adversarial networks (GANs) [5] tackle this problem by introducing
an augmented discriminator and solving a minimax game: a generative network generates random
samples by propagating random noises through a deep neural network, whereas a discriminator
aims to distinguish the generated samples from true data. Under the condition of having an optimal
discriminator, training a vanilla GAN’s generator is equivalent to optimizing (1) where D is set as the
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Jensen-Shannon Divergence. Unfortunately in practice, the overall loss function of GAN is usually
non-convex and practitioners have encountered a variety of obstacles such as gradient vanishing,
mode collapsing, and high sensitivity to the network architecture [5–8].

To incorporate highly expressive generative model while maintaining a well-behaved optimization
objective, we introduce semi-implicit generator (SIG), a Bayesian hierarchical generative model
that mixes a specified distribution P (x |θ) with an implicit distribution Pφ(θ) where the implicit
distribution can be constructed by deterministically transforming random noise zi to θi using a
φ parameterized deterministic transform as θi = gφ(zi), zi ∼ p(z). Intuitively, P (x |θ) can
incorporate our prior knowledge on the observed data, such as the data support, while Pφ(θ) can
maintain the high expressiveness. With the hierarchical structure, SIG can be directly trained by
choosing D as the Kullback-Leibler(KL) divergence and estimating (1) with Monte-Carlo estimation.
We show the SIG optimization objective can intrinsically resist the mode-collapse problem. By
leveraging adversarial training, we apply SIG as a semi-implicit regularizer to generative adversarial
networks, which helps stabilize optimization, significantly mitigates mode collapsing, and generates
high quality samples in natural image scenarios.

2 Semi-implicit generator

Defining a family of parametric distribution Pmodel(x;θ), a classic explicit generative model is
trained by maximizing the log-likelihood as

max
θ

1

N

N∑
i=1

logPmodel(xi;θ), (2)

which is identical to minimize cross-entropy H(P̂data, Pmodel) = −EP̂data(x) logPmodel(x;θ). As-

suming Pdata = P̂data, which is independent of the optimization parameter θ, minimizing this
cross-entropy is equivalent to (1) where D is set as the KL divergence.

Instead of treating θ as a global optimization parameter, we consider θ as local random variable
generated from distribution pφ(θ) with parameter φ. Semi-implicit generator (SIG) is defined in a
two-stage manner

xi ∼ p(x |θi), θi ∼ pφ(θ) (3)

Marginalizing θi out, we can view the generator as Pmodel(xi;φ) =
∫
p(xi |θi)pφ(θi)dθi. Here

p(xi |θi) is required to be explicit but pφ(θi) can be defined by sampling a random variable zi from
fixed distribution p(z) and setting θi = gφ(zi), where gφ : Z → X is a deterministic mapping
represented by neural network with parameter φ. Therefore, typically pφ(θ) cannot be evaluated
pointwisely and the marginal Pmodel(x;φ) is implicit. Notice in this setting, θ is required to be
continuous while x can be sampled from discrete distribution with continuous parameters.

Minimizing the cross-entropy as H(Pdata, Pmodel) is equivalent to minimizing the KL-divergence
with respect to the model parameter as in (1)

min
φ

KL(Pdata(x)||Pmodel(x;φ)) (4)

⇔min
φ

H(Pdata, Pmodel) = −EPdata(x) log
(∫

p(x |θ)pφ(θ)dθ
)

(5)

We show below that SIG can be trained by minimizing an upper bound of the cross entropy in (5).

Lemma 1. Let us construct an estimator for the cross-entropy H(Pdata, Pmodel) as

HM = −Epdata(x)Eθ1,··· ,θM∼pφ(θ) log
1

M

M∑
j=1

p(x |θj), (6)

then for all M , H(Pdata, Pmodel) ≤ HM+1 ≤ HM and H(Pdata, Pmodel) = limM→∞HM . When
M = 1, let θ∗ = argminθ −EPd(x) log[p(x|θ)] then H1 ≥ −Epd(x) log[p(x|θ

∗)] where the
equality is true if and only if pφ(θ) = δθ∗(θ).
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In practice, HM is approximated with Monte-Carlo samples as − 1
N

∑N
i=1 log

1
M

∑M
j=1 p(xi |θj),

where {xi}1:N and {θj}1:M are two sets of Monte Carlo samples generated from Pdata(x) and
implicit Pφ(θ), respectively. When M = 1, the local θi will degenerate to the same θ∗ and the
objective degenerate to (2). To analyze the performance of SIG, we first consider multi-modal data
on which popular deep generative models such as GANs often fail due to mode collapsing. For
theoretical analysis, we first define a discrete multi-modal space as follows.

Definition 1. (Discrete multi-modal space) Suppose (X , ν) is a metric space with metric ν :

X × X 7→ R+, X =
K⋃
i=1

Ui , where Ui ∩ Uj = ∅ for i 6= j. Let the distance between

two sets be D(Ui, Uj) = inf{ν(x, y);x ∈ Ui, y ∈ Uj} and let the diameter of a set be
d(U) = sup{ν(x, y);x, y ∈ U}. Suppose there exists c0 > ε0 > 0 such that mini,j D(Ui, Uj) > c0,

maxi d(Ui) < ε0. Then X =
K⋃
k=1

Uk is a discrete multi-modal space under mesure ν.

Strictly speaking, there could be sub-modes within each Ui, but the above definition emphasizes the
existence of multiple separated regions in the support. Since the loss of a deep neural network is a
nonconvex problem, finding the global optimality condition for φ can be difficult [9, 10]. Thanks to
the structure of SIG as a two-stage model, assuming the implicit distribution is flexible enough, we
can study a simplified optimal assignment problem: assuming that N data points have been sampled
from the true data distribution, how to assign M generated data to the neighborhood of the true data
such that HM defined in (6) is minimized under expectation

min
{m1,··· ,mk}

− 1

N

N∑
i=1

log
1

M

M∑
j=1

Exi∈Uti ,θj∈Uzj [p(xi |θj)], (7)

where the data are assumed to be generated from a discrete multi-modal space X =
K⋃
i=1

Ui, xi ∈ Uti ,

θj ∈ Uzj , ti, zj ∈ {1, . . . ,K} and {mk}Kk=1 are the number of θ’s that are assigned to be in
Uk. Assuming the data distribution is the marginal distribution of a normal-implicit mixture as
xi ∼ N (xi |θi, σ2I), θi ∼ pφ(θ) and Ui are equally spaced, we have the following theorem.

Theorem 1. (SIG for multi-modal space) Suppose Pdata is defined on a discrete multi-modal space

X =
K⋃
i=1

Ui with l2-norm. Suppose there are N data points xi ∼ Pdata, i = 1, · · · , N , among which

nk points belong to Uk. Suppose we need to sample θj ∼ pφ(θ), j = 1, · · · ,M , and mk denotes the
number of θ’s in Uk. Denoting r as a radial basis function (RBF), we let u = E[r(x,θ)] if x,θ ∈ Ui,
and v = E[r(x,θ)] if x ∈ Ui, θ ∈ Uj , i 6= j. Then the objective in (7) is convex and the optimum
mk to maximize (7) satisfies m∗k

M = nk
N + (nkN −

1
K ) Kv

(u−v) . In particular, m∗k 6= 0 if nk > N
K

1
1+u−v

Kv

.

Corollary 1. Assume x ∼ N (µx, σ
2I) and θ ∼ N (µθ, σ

2I). Let u = E exp(−‖x−θ‖
2

2σ2 ) if µx =

µθ and v = E exp(−‖x−θ‖
2

2σ2 ) if ‖µx − µθ‖ = cσ, then v
u−v = 1

ec2/6−1
.

The ideal proportion for m
∗
k

M would be nk
N , and (nkN −

1
K ) Kvu−v plays the role as bias. In the normal-

implicit mixture case, as shown in Corollary 1, if x ∈ Uti , θ ∈ Uzj are approximately normal
distributed, v

u−v can be exponentially small for well separated modes. This indicates that SIG has a
strong built-in resistance to model collapsing.

There is an interesting connection between SIG and variational auto-encoder (VAE) [1, 11]. VAE
tries to maximize the evidence lower bound as ELBO = Ex∼pdata(x)[−KL(q(z |x)||pmodel(x, z))],
which is the same as maximizing

−KL(q(z |x)pdata(x)||pmodel(x, z)), (8)

for which the optimal solution is q(z |x)pdata(x) = pmodel(x, z) = p(x | z)p(z). Therefore, VAE
imposes the constraint that there exits a recognition network/encoder q(z |x), which is inferred by
minimizing the KL divergence from pmodel(x, z) = p(x | z)p(z), the joint distribution of the model,
to p̂data(z,x) = q(z |x)pdata(x), the joint distribution specified by the data distribution and encoder.

3



In SIG, we maximize

−KL(pdata(x)||
∫
p(x | z)p(z)dz) = −KL(

∫
q(z |x)pdata(x)dz||

∫
p(x | z)p(z)dz), (9)

where q(z |x) can be any valid probability density/mass function. VAE tries to match the joint
distribution between the data combined with its encoder and the model, whereas SIG only cares
about matching the marginal model distribution and the data distribution. It is clear that SIG does not
require a specific encoder structure and hence provides more flexibility.

In experiments, we find that SIG can generate high-quality data samples on relatively simple data
manifolds such as MNIST, but observe that the richness of its generated images can be hard to scale
well with high data complexity, such as CelebA dataset with 200K 409× 687 RGB images. More
specifically, when setting M = 100, we find the effect of “mode averaging” on generated images
for complex data. We suspect that M needs to scale with data complexity such that HM is close to
H(Pdata, Pmodel) and this is the price we pay for SIG to have a stable training with a strong resistance
against mode collapsing. While SIG performs well on relatively simple data but suffers from “mode
averaging” on complex natural images, the generative adversarial network (GAN) has shown the
ability to generate high quality samples with large scale observed data, but suffers from “model
collapsing” even on a simple mixture of Gaussians. To benefits from both worlds, we apply SIG as a
regularizer in adversarial learning, which can produce realistic samples, while strongly resisting both
the mode collapsing and unstable optimization problems that are notorious for the training of GANs.

3 Generative adversarial network with semi-implicit regularizer

Generative adversarial network (GAN) [12] solves a minimax problem

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z))] (10)

It is shown in [5, 13] that if the generator loss is changed from Ez[log(1 − D(G(z))] to
1
2Ez exp(σ

−1(D(G(z)))), with ideally optimal discriminator, the generator loss (10) is identical to
the SIG loss (4), which means SIG can be considered as training with the GAN’s objective, using the
optimal discriminator in the update of the generator. The discriminator in GAN can be considered as
an augmented part of the model to avoid density evaluation and indirectly feed the information of the
real data to optimizing the generator. With the help of the discriminator, the weak fitting of generator
to real data brings high expressive samples that go beyond memorizing inputs. However, recently
extensive research in both practical experiments [8,14] and theoretical analysis [15–17] show that the
lack of capacity, insufficient training of the discriminator, and the mismatches between the generator
and discriminator in both network types and structures are the root causes of a variety of obstacles in
GAN training. It also has been observed in [12] and highlighted in [6, 14] that the optimal generator
for a fixed discriminator is a sum of delta functions at the x’s, where the discriminator assigns the
highest value, which eventually collapses the generator to produce a small family of similar samples.
In comparison, SIG is trained by maximizing likelihood without using a discriminator, which can be
considered as a strong fitting between real data and generated samples directly. This encourages us
to combine the two models and apply SIG as a regularizer in a GAN model, which is referred to as
GAN-SI.

For GAN-SI, the discriminative loss is

min
γ
−Ex∼Pd logDγ(x)− Ez∼p(z) log(1−Dγ(Tφ(z))) (11)

and generator loss is a linear combination of the original GAN loss and SIG loss as

min
φ
−Ez∼g(z)[logDγ(Tφ(z))− λEx∼Pd log

∫
p(x |θ)pφ(θ)dθ], (12)

where γ are the discriminator network parameters, θ = Tφ(z) is the deterministic transform for the
implicit distribution in SIG. We choose p(x |θ) asN (x;θ, σ2I) for image generation, and set λ ≥ 0
as a hyperparameter to balance the strength between the GAN and SIG objectives. In practice, we set
λ such that the GAN’s generator loss and the cross-entropy term in (12) are on the same scale. The
neural networks are set according to the DCGAN [8].

Since SIG can be considered as training GAN with a theoretically optimal discriminator, by adjusting
λ, we are able to interpolate between the standard GAN training and true generator loss, therefore
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balancing the discrimination-generalization trade-off in the GAN dynamics [16]. This idea is related
to Unrolled GAN [14] in which the discriminator parameter is temporarily updated K times before
updating the generator and the look-forwarded discriminator parameters are used to train the current
generator. By adjusting the unrolling steps K, Unrolled GAN can also interpolate between the
standard GAN (K = 0) and optimal discriminator GAN (K =∞). However in Unrolled GAN, the
discriminator for (K =∞) is not the theoretically optimal discriminator but a fully optimized one
that is still influenced by the network design and data complexity. The effectivity of Unrolled GAN in
improving stability and mode-coverage is explained by the intuition that the training for the generator
with looking ahead technique can take into account the discriminator’s reaction in the future, thus
helping spread the probability mass. But there is no theoretical analysis provided yet. Moreover, the
interpolation is non-linear, a few orders of magnitude slower as shown by [18], which makes picking
K not easy. Training GAN with a semi-implicit regularizer benefits from both theoretical explanation
and low extra computation, and shows the improved performance on reducing mode collapsing and
increasing the stability of optimization in multiple experiments.

4 Related work

Using a two-stage model is related to Empirical Bayes (EB) [19, 20]. A Bayesian hierarchical
model can be represented as xi ∼ p(xi |θi),θi ∼ p(θi |φ),φ ∼ p(φ), where p(φ) is a hyper-prior
distribution. In EB, the hyperprior p(φ) is dropped and the data is used to provide information about
φ such that the marginal likelihood

∏
i p(xi |φ) is maximized. Previous learning algorithms for EB

are often based on simple methods such as Expectation-Maximization and moment-matching. SIG
can be considered as a parametric EB model where the neural network parameters are represented by
φ and the training objective is to find the maximum marginal likelihood (MMLE) solution of φ [21].

Without an explicit probability density, the evaluation of GAN has been considered challenging. There
have been several recent attempts to introduce maximum likelihood to the GAN training [22, 23].
Flow-GAN [23] constructs a generative model based on normalizing flow, which has been proven as
an effective way to expand the distribution family in variational inference. Normalizing flow, however,
requires the deterministic transformation to be invertible, a constraint that is often too strong to allow
it to generate satisfactory random samples by its own. Therefore, its main use is to be combined with
GAN to help improve its sample quality.

There has been significant recent interest in improving the vanilla GAN objective. For example,
the measure between the data and model distributions can be changed to the KL-divergence [13] or
Wasserstein distance [6]; variational divergence estimation and density ratio estimation approaches
have been used to extent the measure to a family of f -divergence [24, 25]; a mutual information
term has been introduced into the generator loss to enable learning disentangled representation and
visual concepts [26]; and based on a heuristic intuition, two regularizers with an auxiliary encoder
are introduced to stabilize the training and improve mode-catching, respectively [27].

A variety of GAN research focuses on solving the mode collapse problem via new methodology and/or
theoretical analysis. Encoder-decoder GAN architectures, such as MDGAN [27], VEEGAN [18],
BiGAN [28], and ALI [29], use an encoding network to learn reversed mapping from the data to
noise. The intuition is that training an encoder can force the system to learn meaningful mapping that
can transform imbedded codes to data points from different modes. Unrolled GAN [14], as discussed
in the previous section, interpolates between the vanilla GAN discriminator and optimal discriminator
that resists model collapsing. AdaGAN [30] takes a boosting-like approach which is trained on
weighted samples with more weights assigned to missing modes. From a theoretical perspective, it is
shown that if the discriminator size is bounded by p, even the generator loss is ε close to optimal, the
output distribution can be supported only on O(p log p/ε2) images [31]. A simplified GMM-GAN is
used to theoretically show that the optimal discriminator dynamics can converge to the ground truth in
total variation distance, while a first order approximation of the discriminator leads to unstable GAN
dynamics and mode collapsing [15]. A negative conclusion is made that the encoder-decoder training
objective cannot learn meaningful latent codes and avoid mode collapsing [32]. These theoretical
analyses do support our practice of combining the GAN and SIG objectives.
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5 Experiments

In this section, we first demonstrate the stability and mode coverage property of SIG on synthetic
datasets. The toy examples show SIG can capture skewness, multimodality, and generate both
continuous and discrete random samples that are indistinguishable from the true data. By interpolating
between MLE and adversarial training scheme, we show GAN-SI can balance sample quality and
diversity on real dataset. The evaluation criterion of generative model, however, is not straight-
forward and no single metric is conclusive on its own. Therefore, we exploit multiple metrics to cross
validate each other and emphasize quality and diversity separately. We notice the GAN training is
sensitive to network structure, hyper-parameters, random initialization, and mini-batch feeding. To
make a fair comparison, we share the same network structure between different generative models
in each specific experiment setting and do multiple random trials. The results support the theorem
that SIG can stably cover multi-modes and training GAN-SI adversarially greatly mitigates mode
collapsing in GANs.

5.1 Toy examples

We first show the expressive of SIG with both discrete and continuous true data. For the discrete data,
SIG is set as x ∼ Pois(θ), θ ∼ pφ(θ) where pφ(θ) is implicit distribution generated by mapping from
ten dimensional random noise with a two-hidden-layer multi-layer perceptron (MLP). The top left
figures correspond to Pd = NegativeBinomial(r = 2, p = 0.5) =

∫
Poisson(θ)Gamma(θ; 2, 1)dθ

and bottom left figures correspond to Pd = 1
2Poisson(10) + 1

2NegativeBinomial(r = 0.2, p = 0.9).
For continuous data, SIG is set as x ∼ N (θ, 0.12I),θ ∼ pφ(θ), where the pφ(θ) is the same as that
for the discrete cases. As Figure 1 show, the implicit distribution is able to recover the underlying
mixing distribution such that the samples following the marginal distribution can well approximate
the true data. Vanilla GAN, as comparison, can only generate samples whose similarity to true data is
restricted by the discriminator and cannot recover the original data well.
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Figure 1: Generated samples from SIG with true data coming from: (a)-(b): Negative-Binomial
distribution; the implicit distribution can learn the true mixing distribution Gamma(θ; 2, 1); (f)-
(g): Mixture of Poisson and Negative-Binomial distribution; (c)-(e): Ring+Gaussian noise; (h)-(j):
Gaussian mixture arranged in a ring.

5.2 Mixture of Gaussians

We compare different generative models on a 5× 5 Gaussian mixture model. For fair comparison, all
the models share the same generative network: a two-hidden-layer MLP with size 100 and rectified
linear units (ReLU) activation function. The discriminator for GAN has a fully connected layer with
size 100, and the encoder for VAE and VeeGAN is a two-hidden-layer MLP with size 100.

Detecting mode collapsing on a large dataset is challenging but can be accurately measured on
synthetic data. To quantitatively evaluate the sample quality, we sample 50,000 points from trained
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generator and count it as high quality sample if it is within three standard deviations away from
any of the mixture component centers. A center that is associated with more than 1000 high quality
samples will be counted as a captured mode. The proportion of high quality samples at each mode,
together with the proportion of low quality samples, form a 26 dimensional discrete distribution Pg .
We calculated the KL divergence KL(Pg||Pd). All results are reported based on the average and
standard error of five independent random trials.

Figure 2: Comparison of generated sample for Gaussian mixture model by vanilla GAN, modified
GAN to reduce mode collapsing(Unrolled GAN, VeeGAN), VAE and SIG.

Table 1: Comparison of mode-capturing ability on mixture of Gaussian. ’Modes’ is the number of
captured modes out of 25. ’KL’ is KL(Pmodel||Pdata). For ’Modes’ and ’Proportion of high quality
samples’, the higher the better; for ’KL’, the lower the better.

GAN VAE VeeGAN Unrolled GAN SIG
Modes 4.0±3.08 25±0 23.2±0.84 6.2±8.6 25±0

Proportion of high
quality samples 0.36±0.16 0.83±0.02 0.82±0.03 0.42±0.13 0.91±0.04

KL 2.87±0.78 0.32±0.07 0.38±0.08 1.97±0.60 0.14±0.07

As shown in Table 1, SIG captures all the modes and generates the highest proportion of high quality
samples, whose distribution is closest to the ground truth. It also achieves the shortest running time
and highest stability using a single neural network.

We notice, however, SIG generalization ability may not scale well with increasing data complexity,
as shown in Figure 3. To generate natural images, we train SIG adversarially and notice the proposed
GAN-SI can stabilize GAN training and mitigate the mode collapsing problem.
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(a) (b) (c)

Figure 3: (a): SIG can generate low complexity data well. The input data is from unevenly distributed
GMM, where the components in the 1st, 3rd, and 5th columns has twice more data than the 2nd and
4th. SIG generates samples well aligned with the true distribution. (b): SIG generated MNIST digits.
(c): SIG scales not well when the data is as complex as CelebA.

5.3 Stacked MNIST

To measure the performance of combining MLE and adversarial training schemes on discrete mul-
timode data, we stack 3 randomly chosen MNIST images on the RGB color channels to form a
28 × 28 × 3 image (MNIST-3) [14, 18, 27, 30]. MNIST-3 contains 1000 modes corresponding to
3-digit between 0 and 999. Similar to [14] and [30] we find the missing modes problem of GAN
on MNIST3 is sensitive to the network architecture and the randomness in training process due to
the instability. Therefore, we choose three different network sizes (denoted as S, M, and L), run
each experiment five times and use exactly the same generator and discriminator for DCGAN and
DCGAN-SI.

The inception score (IS) [7] is a widely used criterion for GAN evaluation. It is applied to data x
with label y using a pre-trained classifier. Low entropy H(y|x) of conditional distribution p(y |x)
and high entropy H(y) of marginal distribution p(y) are considered to represent high image quality
and diversity respectively.

IS = exp(E[KL(p(y |x)||p(y))]) = exp(H(y)− E[H(y|x)]) (13)

As the IS by itself cannot fully characterize generative model performance [33, 34], we provide more
metrics for evaluation: High quality image means the proportion of images that can be classified by
the trained classifier with a probability larger than 0.7; Mode is the number of digit triples that have
at least one sample; KL is KL(Pg||Pd) where Pd = ( 1

1000 , · · · ,
1

1000 ).

Table 2: High quality image and exp(H(y|x)) reflect sample quality while exp(H(y)), Mode and
KL reflect sample diversity. For Inception score, High quality image, exp(H(y)), higher is better;
for exp(H(y|x)) and KL, lower is better.

IS High quality exp(H(y|x)) exp(H(y)) Mode KL

DCGAN(S) 2.9±0.52 0.63±0.14 1.96±0.32 5.1±1.19 21.0±8.12 4.99±0.24
DCGAN-SI(S) 4.33±0.59 0.6±0.07 2.05±0.2 8.78±0.41 279.2±296.52 2.63±1.0

DCGAN(M) 5.59±0.36 0.7±0.03 1.71±0.09 9.51±0.31 811.8±116.24 0.75±0.35
DCGAN-SI(M) 5.93±0.47 0.72±0.04 1.65±0.11 9.75±0.11 969.0±29.19 0.3±0.13

DCGAN(L) 4.71±1.12 0.67±0.08 1.78±0.17 8.25±1.32 389.8±477.24 2.95±2.33
DCGAN-SI(L) 6.05±0.68 0.73±0.06 1.62±0.17 9.75±0.12 957.0±32.74 0.36±0.12

5.4 Sample quality and diversity on CIFAR10

We test the semi-implicit regularizer on the CIFAR-10 dataset, a widely studied dataset consisting of
50,000 training images with 32× 32 pixel from ten categories. The image diversity is high between
or within each category. We combine semi-implicit regularizer with two popular GAN frameworks
DCGAN [8] and WGAN-GP [35] to balance the quality and diversity of generated samples.

We train each model for 100K iterations with mini-batch size 64. The optimizer is Adam with
learning rate 0.0002. The inception model we use is based on pre-trained Inception Model [36] on
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Table 3: Inception scores for models on CIFAR-10

Real data Unsupervised, standard CNN
DCGAN DCGAN-SI WGAN-GP WGAN-GP-SI

11.24 ± .12 6.16 ± .14 6.85± .06 6.43 ± .07 6.67 ± .11

ImageNet. As shown in Appendix Figure 6, the images generated by DCGAN include duplicated
images indicating the existence of mode collapsing which does not seem to happen with regularized
DCGAN-SI, and this is reflected in the improvement of inception score as shown in Table 3.

6 Conclusions

We propose semi-implicit generator (SIG) as a flexible and stable generative model. Training under
well-understood maximum likelihood framework, SIG is proposed either as a black-box generative
model or as unbiased regularizer in adversarial learning. We analyze the inherent mode-capturing
mechanism and show its advantage over several state-of-the-art generative methods in reducing mode
collapse. Combined with GAN, semi-implicit regularizer provides an interplay between adversarial
learning and maximum likelihood inference, leading to a better balance between sample quality and
diversity.
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Semi-implicit generative model: supplementary material

A Proofs

Proof of Lemma 1. Assume integerK > M > 0 and I is the set of all sizeM subsets of {1, · · · ,K}.
Let I be a discrete uniform random variable that takes outcome {i1, · · · , iM} in I with probability
P (I = {i1, · · · , iM}) = 1

(KM)
. We have EI 1

M

∑
j∈I p(x|θj) =

1
K

∑K
j=1 p(x|θj). Then we have

HK =− Ex∼Pd(x)Eθ1,··· ,θK∼pφ(θ) log
1

K

K∑
j=1

p(x|θj)

=− EPdataEθ1,··· ,θK∼pφ(θ) logEI
1

M

∑
j∈I

p(x|θj)

≤− EPdataEθ1,··· ,θK∼pφ(θ)EI log
1

M

∑
j∈I

p(x|θj)

=− EPdataEθ1,··· ,θM∼pφ(θ) log
1

M

M∑
j=1

p(x|θj) = HM

By law of large number log 1
M

∑M
j=1 p(x|θj) converges to log

∫
p(x|θ)p(θ)dθ a.s. as M →∞ so

HM → H(Pdata, Pmodel). When M = 1, assume θ∗ = argminθ −EPd(x) log[p(x|θ)] then

−EPd(x) log[p(x|θ)] ≥ −EPd(x) log[p(x|θ
∗)]

Multiply both sides by pφ(θ) and integrate over θ, we have

−Eθ∼pφ(θ)Epd(x) log[p(x|θ)] ≥ −Epd(x) log[p(x|θ
∗)]

The minimal is reached when implicit distribution degenerates to the point probability mass pφ(θ) =
δθ∗(θ) where θ∗ maximizes average log-likelihood over data.

Proof of Theorem 1. Suppose Pdata is defined on a discrete multi-modal space X =
K⋃
i=1

Ui. For

xi ∼ Pdata, i = 1, · · · , N , assume xi ∈ Uti ; for θj ∼ Pφ(θ), j = 1, · · · ,M , assume θj ∈ Uzj ,
where ti, zj denote the mode label of true data and generated data center respectively. Then we have
nk =

∑N
i=1 1{ti = k} and mk =

∑M
j=1 1{zj = k} for k = 1, · · · ,K.

min
{m1,··· ,mk}

− 1

N

N∑
i=1

log
1

M

M∑
j=1

E[p(xi |θj)]⇔ min
{m1,··· ,mk}

−
N∑
i=1

log

M∑
j=1

E exp−
‖xi−θj‖2

2σ2 (14)

Notice
∑K
k=1 nk = N ,

∑K
k=1mk =M . By definition of X , if x,θ ∈ Uk, r(x,θ) = exp−

‖x−θ‖2

2σ2 ≥

exp−
ε20
2σ2 and if x ∈ Ui,θ ∈ Uj i 6= j, r(x,θ) = exp−

‖x−θ‖2

2σ2 ≤ exp−
c20
2σ2 . With the definition

of u and v in theorem 1, we have u ≥ exp− ε20
2σ2 > − c20

2σ2 ≥ v. Then we have objective (14) as a
constrained optimization problem with Lagrange multiplier β

min
{m1,··· ,mk}

−
N∑
i=1

log

M∑
j=1

Er(xi,θj) + β(

K∑
k=1

mk −M)

=−
N∑
i=1

log(mtiu+ (M −mti)v) + β(

K∑
k=1

mk −M)

=−
K∑
k=1

nk log(mk +Mv −mkv) + β(

K∑
k=1

mk −M)
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Taking the gradient with respect to (m1, · · · ,mk) and set to zero gives

∂

∂mk
−

K∑
k=1

nk log(mk +Mv −mkv) + β(

K∑
k=1

mk −M)

=
−nk(u− v)

mk(u− v) +Mv
+ β = 0, for k = 1, · · · ,K

Together with constraint
∑K
k=1mk =M , we have

m∗k
M

=
nk
N

+ (
nk
N
− 1

K
)

Kv

(u− v)
(15)

The Hessian H = diag( nk(u−v)2
(mk(u−v)+M)2 ) � 0 shows convexity and m∗k

M is global minimum. Let the
right-hand-side greater than 0, the condition for mode k not vanishing is nk > N

K
1

1+u−v
Kv

Proof of Corollary 1. Assume x ∼ N (µx, σ
2I), θ ∼ N (µθ, σ

2I). Let z = x−θ√
2σ

and µ = µx−µθ
then z ∼ N ( µ√

2σ
, I). Let χ = zTz, then χ follows noncentral chi-squared distribution χ ∼ χ(N,λ)

where N is the dimension of z, λ = µTµ
2σ2 is noncentrality parameter. By moment genrating function

(MGF) of noncentral chi-squared distribution, we have

Ee−
‖x−θ‖2

2σ2 = Ee−z
T z

=Ee−χ =MGFχ(−1)
=3−N/2e−λ/3 (16)

For u, µ = 0, λ = 0 and for v, ‖µ‖ = cσ, λ = c2

2 . Plugging into (16), we have u = 3−N/2,
v = 3−N/2e−c

2/6, therefore v
u−v = 1

ec2/6−1
.

B Algorithm for GAN-SI

Algorithm 1: Mini-batch training of GAN-SI
1 while not converged do
2 Sample xi ∼ Pdata(x) for i ∈ {1, · · · , N} ;
3 Sample zj ∼ g(z) for j ∈ {1, · · · ,M} ;
4 Set θj = Tφ(zj) for all j ;
5 gγ ← −∇γ

[
1
N

∑N
i=1 logDγ(xi) +

1
M

∑M
j=1 log(1−Dγ(θj))

]
;

6 gφ ← −∇φ
[

1
M

∑M
j=1 logDγ(θj)− λ

1
N

∑N
i=1 log

1
M

∑M
j=1 p(xi |θj)

]
;

7 γ ← γ − ηgγ , φ← φ− ηgφ
8 end
9 The first order optimization is used as Adam [37] in our experiments.

C Network architecture and samples for MNIST-3

The generator network is defined with parameter Kg to adjust network size

Number of output Kernel size Stride Padding
Input z ∼ N(0, I256) -

Fully connected 4*4*64 -
Transpose Convolution 64*Kg 4 1 VALID
Transpose Convolution 32*Kg 4 2 SAME
Transpose Convolution 8*Kg 4 1 SAME

Convolution 3 4 2 SAME
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The discriminator network is defined with parameter Kd to adjust network size

Number of output Kernel size Stride Padding
Input is image batch with size 28*28*3 -

Transpose Convolution 8*Kd 4 2 VALID
Transpose Convolution 16*Kd 4 2 SAME
Transpose Convolution 32*Kd 4 1 SAME
Flat+Fully connected 1 -

For the network work size denoted as (S), (M), (L), the (Kg,Kd) pair is chosen as (1, 0.5), (1, 1),
(2, 1) respectively.

D Additional figures

DCGAN(S) DCGAN(M) DCGAN(L)

GAN-SI(S) GAN-SI(M) GAN-SI(L)

Figure 4: MNIST-3, highest inception score cases among 10 independent trials

DCGAN(S) DCGAN(M) DCGAN(L)

GAN-SI(S) GAN-SI(M) GAN-SI(L)

Figure 5: MNIST-3, lowest inception score cases among 10 independent trials
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(a)DCGAN

(b)DCGAN-SI

Figure 6: Randomly generated images by DCGAN and DCGAN with semi-implicit regularizer.
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