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Abstract

Likelihood-free inference refers to inference when a likelihood function cannot be
explicitly evaluated, which is often the case for models based on simulators. While
much of the literature is concerned with sample-based ‘Approximate Bayesian
Computation’ methods, recent work suggests that approaches relying on deep
neural conditional density estimators can obtain state-of-the-art results with fewer
simulations. The neural approaches vary in how they choose which simulations to
run and what they learn: an approximate posterior or a surrogate likelihood. This
work provides some direct controlled comparisons between these choices.

1 Introduction

In this paper, we consider Sequential Neural Posterior Estimation [15, 17, SNPE], Sequential Neural
Likelihood [19, SNL], and Active Sequential Neural Likelihood [14, ASNL], three recent approaches
to likelihood-free inference which leverage neural conditional density estimators to learn either a
surrogate likelihood or approximate posterior directly. With each of the three models, we perform
Bayesian inference over the parameters of the neural density estimators to prevent overfitting on small
data sets, and in one case, investigate whether exploiting this uncertainty can lead to more efficient
learning. Moreover, the modular nature of these methods allows us to perform direct comparison
between them; though the implementation details of each have differed in the existing literature, here
we use the same mixture density network architecture [1, MDN] for each method, and train each
MDN using stochastic variational inference (SVI).

To our knowledge, this work provides the first head-to-head comparison of these sequential neural
methods, and allows us to determine whether ‘uncertainty as a guiding principle’ leads to more
efficient or accurate inference for this problem. We find that, for our experiments, learning a surrogate
likelihood is more efficient than learning the approximate posterior directly, and that using an active
learning component based on Bayesian model uncertainty performs as well as the heuristic used by
SNL, but provides no meaningful improvement.

2 Problem & Methods

Formally, we are provided with a parametrized stochastic simulator p(x |θ), which generates obser-
vations x given parameters θ. It is possible to sample from p(x |θ), but not evaluate this likelihood
explicitly. Given a single observed data point x0, we seek plausible settings of the simulator parame-
ters θ which generated that data. That is, we are interested in inferring the posterior distribution over
parameters p(θ |x0). We are free to choose a suitable prior p(θ).

Each of the models under consideration proceeds in a sequential manner, alternating between the
following two steps:
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1. Generating data from the simulator. A priori, and unlike standard machine learning tasks, we
are provided with just a single observation x0. We must choose parameter settings θ, and then
rely on the simulator to generate pairs

{(
θ(n),x(n)

)}
N
n=1 as training data.

2. Improving the posterior approximation. Once training data has been gathered, we can use it
to improve our posterior approximation. The choice of method will determine whether we model
the forward relationship θ → x (learn a surrogate likelihood, or emulator), or the inverse x→ θ
(learn a recognition network that gives the posterior directly).

Sequential Neural Posterior Estimation (SNPE). These methods fit a parametrized approximate
posterior distribution qφ(θ |x0) to the true posterior p(θ |x0). In each round, the simulator is run
using parameters sampled from the current approximate posterior [17, SNPE-A]. Here we use the
particular method by Lueckmann et al. [15], which we denote SNPE-B.

Sequential Neural Likelihood (SNL). In contrast to SNPE, SNL learns a parametrized surrogate
likelihood qφ(x0 |θ) ≈ p(x0 |θ). SNL also samples the parameters to simulate next from the current
approximate posterior, which requires an additional inference step, such as Markov chain Monte
Carlo using the surrogate likelihood. SNL also allows for easier use of other neural density estimators,
so Papamakarios et al. [19] use a state-of-the-art method MAF [18]. Here we test whether SNL would
still outperform SNPE-B if using the same neural architecture (in this case an MDN).

Active Sequential Neural Likelihood (ASNL). Concurrently with SNL, Lueckmann et al. [14]
proposed likelihood-free inference with emulator networks, a method which corresponds to SNL
with an active learning component. We refer to this as active SNL, or ASNL. Rather than sampling
from the approximate posterior each round to generate parameters θ, an acquisition function guides
the choice of parameter at which to simulate next. The acquisition function exploits uncertainty in the
approximate posterior, meaning we require a method to quantify uncertainty for the neural density
estimator used as a surrogate likelihood. Lueckmann et al. [14] use the MaxVar rule of Järvenpää
et al. [10], given by θ? = argmaxθ Vφ[qφ(x0 |θ)p(θ)].

3 Experiments

We compare the three methods across three inference tasks (see appendix A for general details,
appendix B for ASNL specific discussion, and appendix C for additional results).
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Figure 1: Comparison of true parameter log probability under the learned posteriors. Lower is better.

Table 1: Wall-clock time (in hours) per experiment with 104 simulations.

Gaussian Lotka–Volterra M/G/1

SNL 7.48 8.27 7.83
ASNL 91.73 89.39 70.16
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4 Discussion

Learning the likelihood rather than the posterior is a design choice. Both SNL and ASNL
achieve a higher log probability for the true parameters than SNPE-B on both the toy problem and
Lotka–Volterra, while all three methods exhibit similar performance on M/G/1 (see fig. 1). This
suggests learning the likelihood seems preferable to learning the posterior, all other model choices
equal. However, the Gaussian task was chosen such that the likelihood was tractable, but the posterior
was complex and multimodal. As such, it could be argued that the neural density estimator for
SNPE-B in this task should have been made more powerful to compensate.

Additionally, in both the Lotka–Volterra and M/G/1 models, we model summary statistics of the
data, and not the observations themselves. Since summary statistics are generally much lower-
dimensional than their associated observations, the burden on the neural density estimators modelling
the likelihood is lessened. In contrast, direct posterior modelling with SNPE might converge faster
than SNL when observations are relatively high-dimensional, and we need only learn a distribution
over low-dimensional simulator parameters.

On the other hand, the advance of general-purpose neural density estimators [5, 18], in addition to
task-specific models for images [22] and audio [21], may mean that modelling the high-dimensional
observations directly is more achievable than it once was. We might expect the final layers of such
deep models to represent something akin to the summary statistics manually chosen for the data here.

Quantifying uncertainty in neural networks is a difficult problem. The success of any active
learning component in these sequential neural methods is likely heavily dependent on the choice of
uncertainty quantification. In this scenario, exploiting model uncertainty with active learning requires
the ability to accurately and robustly quantify uncertainty over neural density estimators. Generally,
this is a difficult problem, not just for neural density estimators, but also for the wider field of deep
learning. Tools for uncertainty quantification in neural networks range from approximate Bayesian
inference approaches like SVI [3, 9, 12], expectation propagation [8], and Hamiltonian Monte
Carlo [16, HMC], to ensemble methods [13]. Recent work [2, 4, 7] has highlighted the concepts
of aleatoric (referring to stochasticity inherent to our data) and epistemic uncertainty (traditional
model uncertainty), discussing methods to disentangle these two confounding factors in deep learning.
Despite this progress, robust, general-purpose uncertainty estimation for neural networks is still an
open challenge for machine learning researchers.

Practical considerations influence our machine learning methods. The active exploration of
ASNL, though in theory more principled, does not seem to perform better than the sampling-based
heuristic of SNL in practice. While being maximally efficient with simulations is preferable in
principle, practical concerns may mean that wall-clock time is a more desirable metric. In this
particular likelihood-free inference scenario, it could be argued that compute time taken by the ASNL
acquisition function might be better allocated to additional simulation time for SNL, or a more
complex neural density estimator (see table 1).

In our experiments, the neural density estimators are small enough that a gold standard like HMC
might be used to perform inference. However, we found HMC difficult to integrate with the models
under consideration, being sensitive to initialization, and requiring manual tuning per round of
training. We are also unaware of any work in which HMC is used to perform approximate inference
over a neural density estimator, and it may be the case that HMC requires specific tuning for this
scenario. In contrast, SVI performed well as a plug-in method, though the approximate posterior
distribution it can represent is limited. Once more, there is a trade-off between less expressive but
practical methods, and more complex, flexible methods which may be difficult for practitioners to
tailor for their particular problems.

Conclusions. Broadly, we find:

• Even when restricting SNL to use the same SVI-MDN architecture as SNPE-B, SNL learns faster
on the given tasks, and unlike SNPE-B, SNL allows for easy integration of other advanced neural
density architectures. Future comparisons might focus on higher-dimensional data, which may
lead to different conclusions.

• The heuristic exploration of SNL seems just as effective as the more principled exploration of
ASNL. While these neural networks are useful for Bayesian inference tasks, whether principled
uncertainty estimates are useful for guiding exploration remains to be seen.
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A Experimental details

A.1 Bayesian MDN

The neural density estimator and its training procedure are fixed across methods for fair comparison.
In all experiments, we use an MDN with a single hidden layer of 50 hyperbolic tangent units. The
mixture distribution consists of 5 full-covariance Gaussian densities. We learn a diagonal Gaussian
distribution over the weights and biases of the MDN using SVI and the local reparameterization trick
[12], and use a standard normal prior. The density estimators are trained across 10 rounds using
stochastic gradient descent with the Adam optimizer [11], with 1000 epochs per round.

A.2 Posterior inference

Both SNL and ASNL require an additional inference step to generate samples from the surrogate
likelihood and prior. Following Papamakarios et al. [19], we used slice sampling, which performed
robustly on each of our experiments.

In the interest of fair comparison, we used a kernel density estimate to approximate the log probability
of the true parameters under the learned posterior, even though exact density evaluation of the
posterior is available with SNPE-B. For each trained model, the kernel density estimate was based on
5000 samples from the posterior.

A.3 Inference tasks

Gaussian toy problem. The Gaussian problem outlined by Papamakarios et al. [19] describes a toy
simulator with a tractable (indeed, Gaussian) likelihood. Despite this simplification, the posterior
is complex and multimodal. Such a model can be used to compare the advantages of learning the
likelihood versus learning the approximate posterior directly.

Lotka–Volterra. The Lotka–Volterra model [23] describes the evolution of a predator-prey popula-
tion over time. Four parameters θ govern the birth and death rates of each population. The model is
simulated using the Gillespie algorithm [6], and observations x are 9-dimensional summary statistics
of the generated population time series. We follow the experimental setup of Papamakarios and
Murray [17].

M/G/1 Queue. The M/G/1 queue model [20] describes how a server processes a waiting queue of
customers. Its three parameters θ govern how long the server takes to respond to a customer and the
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frequency of customer arrivals. Observations x are 5 equally-spaced quantiles of the distribution of
inter-departure times. Again, we follow the experimental setup of Papamakarios and Murray [17].

B ASNL Details

B.1 Modifications

Lueckmann et al. [14] use an ensemble method [13] to quantify uncertainty over the parameters of
their density estimator, whereas we use SVI to maintain fair comparison to other methods. Their
method also describes gathering a single data point at a time using the acquisition function, which we
found not to provide a sufficient training signal for the neural density estimator. Instead, we allowed
ASNL to generate as much data per round as given to SNPE-B and SNL, again for fair comparison.

B.2 MaxVar implementation

The MaxVar acquisition function determines parameters θ? at which to simulate by

θ? = argmax
θ

Vφ[qφ(x0 |θ)p(θ)], (1)

where the variance is taken with respect to the posterior distribution over neural density estimator
parameters φ. This acquisition function focuses on areas of the parameter space where our estimate
of the posterior varies the most. In each of our experiments, the prior on simulator parameters is box
uniform (i.e. constant), so that the criterion can be equivalently written

θ? = argmax
θ

Vφ[qφ(x0 |θ)]. (2)

We can approximate the function f(θ) = Vφ[qφ(x0 |θ)] by sampling an ensemble of neural density
estimators from the variational posterior q(φ | D), whereD =

{(
θ(n),x(n)

)}
N
n=1, and computing the

sample variance of their density estimates for a particular value θ. However, neural density estimators
generally yield log-densities, and in practice we found that the magnitude of these log-quantities was
such that simply taking the exponent led to numerical issues. Fortunately, it is possible to sidestep
this problem.

Computing probabilistic expressions in a numerically stable manner using log-quantities often
involves the log-sum-exp trick. Given log-quantities {ak}Kk=1, the log-sum-exp trick rewrites the
naive computation as

log

K∑
k=1

exp ak = max
k

ak + log

K∑
k=1

exp

[
ak −max

k′
ak′

]
. (3)

On the right hand side of this equation, the largest value in the summand is now 1, when ak =
maxk′ ak′ . Any terms which now underflow are negligible when added to a value of at least 1, and
so can safely be ignored.

We can also approximate a log-expectation of exponents with the log-sum-exp trick, since

logE[exp a] ≈ log

[
1

K

K∑
k=1

exp ak

]
= log

1

K
+ log

K∑
k=1

exp ak, (4)

and this will prove useful in evaluating the MaxVar acquisition function.

Recall that we wish to find θ which maximizes f(θ) = Vφ[qφ(x0 |θ)]. This is the same θ which
maximizes g(θ) = logVφ[qφ(x0 |θ)], since the logarithm is monotonic. However, we only have
sample values log qφ(x0 |θ), where φ ∼ q(φ | D). Phrasing the problem more generally for a
non-negative random variable ea, we wish to approximate logV[ea] in a numerically stable fashion,
given log-samples a which may have large magnitude.

First rewrite

logV[ea] = logE
[
(ea − E[ea])2

]
(5)

= logE[exp(2 log |ea − E[ea]|)], (6)
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which is a log-expectation of exponents, and can be stably approximated by eq. (4). It remains to
evaluate log |ea − E[ea]| in a stable manner, given that we have access to log-samples a. To this end,
write E[ea] = eb, where b = logE[ea] can also be approximated by eq. (4), so that

log|ea − E[ea]| = log
∣∣ea − eb∣∣ (7)

= log
∣∣ea(1− eb−a

)∣∣ (8)

= a+ log
(
1− eb−a

)
for a > b. (9)

Without loss of generality, we can assume a > b, and the above expression can also leverage the
numerically stable log-one-plus function. Thus, the final expression is given by

logV[ea] = logE
[
exp
(
2
(
a+ log

(
1− eb−a

)))]
, (10)

where b = logE[ea], a = log qφ(x0 |θ), expectations are taken with respect to the distribution
over neural density estimator parameters φ, and all log-expectation-exponent calculations can be
approximated using eq. (4). We minimize the negative of this function using the L-BFGS-B optimizer
[24] with constraints given by the box uniform priors on simulator parameters, and initializing each
optimization run with a sample from the prior.

C Additional Results

Though there seems to be no meaningful difference in the accuracy of the approximate posterior
distributions learned by SNL and ASNL, it is interesting to compare the distributions of simulator
parameters gathered by each of the methods towards the end of training. SNL, guided by the approxi-
mate posterior, should generate simulator parameters in a neighbourhood of the true parameters, if
training has progressed suitably. From fig. 2, it seems as if this is exactly the case.

In fig. 3, ASNL exhibits different behaviour. Note first the difference in range on each of the axes;
SNL generates parameters very close the true parameters, while SNL generates parameters across the
entire range of the box uniform prior [−5, 2]4. Though ASNL indeed focuses on neighbourhoods of
the true parameters, it is also interested in other areas of parameter space. In particular, it generates
many parameter settings near the boundary of the prior, and this is in line with results reported by
Lueckmann et al. [14]. In some cases, it may be that this behaviour is desirable. While SNL is
constrained to gather parameters where the likelihood is high, ASNL is free to explore the entire
parameter space.

7



1.0

0.8

0.6

0.4

2

0.4

0.2

0.0

0.2

3

4.9
5

4.8
0

4.6
5

4.5
0

4.3
5

1

4.9
5

4.8
0

4.6
5

4.5
0

4.3
5

4

1.0 0.8 0.6 0.4

2

0.4 0.2 0.0 0.2

3

4.9
5

4.8
0

4.6
5

4.5
0

4.3
5

4

Figure 2: Simulator parameters generated using SNL before the final round of training for the Lotka–
Volterra model. True parameters shown in orange. Since SNL generates parameters by performing
MCMC on the current product of the approximate likelihood and prior, most of the gathered samples
lie near the true parameter settings towards the end of training (compare to fig. 3).
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Figure 3: Simulator parameters generated using ASNL before the final round of training for the
Lotka–Volterra model. True parameters shown in orange. ASNL generates simulator parameters
using the MaxVar acquisition function, which focuses on regions of parameter space where our
posterior approximation is most uncertain. Like SNL, many of the chosen parameters lie near the true
values, but in contrast to SNL, ASNL seems also to be interested in the behaviour of the approximate
posterior near the boundary defined by the box uniform prior (compare to fig. 2).
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