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We address the challenge of identifying optimal hyperparameters for training neural networks by
stochastic optimization. This is a broad topic, so we begin by establishing a set of assumptions and
conditions to make the problem more concrete.

We specity a loss function £ that is a function of the parameters (or weights) of the model, and a
training set Syin Of size Nyin. The total loss L. is obtained by summing all the individual losses
L(s) of training samples indexed by s. We optimize L, either by stochastic gradient descent (SGD)
or SGD + momentum. We fix a batch size B, a learning rate € and, in the case of SGD + momentum,
a momentum m. We do not consider annealing or any other kind of parameter schedule.

Given this set-up, we ask what the expectation value of a performance measure P, such as test set
accuracy, becomes at late times, i.e., we may define

Poo (£7 Strain; €, B, m) = tliHl E['P(ﬁ, Strain; €, B, m; t)] . (1
—00
We then formulate a definition of optimal hyperparameters
(€, B,m)op = argmax Poo (L, Sirain; €, B, m) . )
(e,B,m)

It was demonstrated in [[11] that the macroscopic behavior of stochastic optimization is governed by
a combination g of the introduced hyperparameters, where
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Thus our goal will be to find optimal values for g given the loss function £ and training set Sy.yip.

for SGD + momentum . 3)

As discussed in [1 29} 5, [11], the continuum limit of stochastic gradient descent is described by the
stochastic differential equation

dw; = =0;Lrdt +d&;,  E[d&dE]|w,e = 29F;j(w)dt, “4)

where w; is used to denote the parameters of the neural network, and d¢; is random noise. Thus the
noise in stochastic gradient descent in the continuum limit is completely governed by the matrix g F’,
where F' is the covariance matrix of the gradient of the loss function with respect to the sample:

1 0 1 0 1
B = N 2 0w (261~ ) g (800 5t)- ®

We approximate F' by the empirical Fisher information matrix F of L over the training set.
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Table 1: Network Architectures

Layers (L) Widths (V;) Total
1 [16, 32, 64, 128, 256, 512, 1024, 2048] 8

2 [64, 128, 256, 512, 1024]> 25

3 [128, 256, 512, 102413 64

When F is isotropic, i.e., when its eigenvalues are all identical and have value I', gI" is a local
temperature of the system. In systems with an isotropic and constant Fisher information matrix, the
optimal value of g can be obtained by matching this temperature to a characteristic loss scale. In
particular, when g¢I' is set to 1, we expect the SGD to sample weights from the Bayesian posterior [9].

In realistic neural networks, it can be shown that F' is far from isotropic, and a comparable theoretical
analysis is difficult to carry out. We however report on an empirical formula that is able to give an
estimate of the optimal value of g for fully-connected networks at critical initialization conditions
[8, [10]] trained for classification tasks. We find that

gg;tt . FCrit = gggtt ' IEw"’Icm [tr F]/\/ﬁ ~ C (6)

where C'is a constant only dependent on the training set, and P = tr 1 is the number of parameters

of the network. The performance measure we use to define optimality is test set accuracy.
We stress that ggg: is defined purely in terms of performance of the trained network. This should be
distinguished from references to ideal learning rates in the literature, which often are defined as the

maximal learning rate with acceptable convergence properties or numerical stability.

Details and Implications

We train 97 fully-connected networks with ReLLU nonlinearities on classification tasks. The archi-
tectural details are given in Table[T] The networks have an input layer with Ny units, and an output
layer of width N, where Ny, is the number of classes in the task. The loss is given by the cross
entropy between the sample distribution and the distribution given by the softmax of the output layer.

We employ two different weight-parameterization schemes, the standard scheme where the output of
the {-th unit y! is given by
2
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where ¢ is the ReLU function. The final output units are given by zf +1 rather than yZL +,

Alternatively, we can use the neural tangent kernel (NTK) scheme proposed in [4], where
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The networks are initialized to be critical in the wide-limit, so that the expectation values of the

weight-derivatives do not decay with respect to layer depth. Practically, this is done by tuning the
initialization parameters o, and oy, [3, 18, [10]. We set o, = V2 and o3, = 0.0001.

In each case, tr F' ~ tr F can be computed following [6] in the “wide limit”:
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Here, ¢ is an order-1 training set dependent constant.

Assuming a network of depth L and width W, Tt ~ /L in the standard scheme and T ~ /LW 1
in the NTK scheme since P ~ W?2L. Thus, in order to inject the optimal amount of noise into the
gradient descent, the batch size must taken to be

(©))

B o VL/e inthe standard scheme, and B o (VL/e)- W™ inthe NTK scheme,  (10)
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Figure 1: log, (g5n) vs. — logy (I'™) for trained runs

when W becomes large. Since B > 1, this has implications on the stochastic optimization of wide
networks, if one assumes that (6) determines the optimal g value of the continuum limit dynamics.

The consequence of assuming that the result (6) holds for the continuum limit of SGD is that the
implied optimality is not achievable practically for very wide fully connected networks. In the
standard scheme, the learning rate ¢ must decrease with increasing width due to numerical stability.
The relation (I0) then implies that optimal performance is not achievable with growing width, since
the batch size must get indefinitely small in order to generate the optimal amount of noise, which is
not possible. Meanwhile, in the NTK scheme, € can stay constant with respect to the width and still
maintain numerical stability. In this case, however, B o (\/f /€) - W1, which yet again forces the
batch size required to yield the right amount of noise to approach zero in the infinite width limit.

Experiments

We trained the aforementioned networks on two datasets, MNIST [7]] and fashion MNIST (fMNIST)
[12] and searched for hyperparameters that maximize the training set accuracy at "late times."

We trained each network with SGD + momentum, with batch sizes ranging from 32 to 4096. The
learning rate was set to either 0.1 or 0.05 depending on their size for networks parameterized with
the standard scheme, and 10.0 for networks parameterized with the NTK scheme. The momentum
was set uniformly to m = 0.9. For a given learning rate and a batch size, a minimum of 20 training
sessions have been run, at least 5 of which have completed successfully. To observe late time behavior,
we train the networks “sufficiently long,” by giving a lower-bound to a minimum number of epochs
and training steps fit to the dataset and training scheme. An optimal g was found for a network by
selecting the batch size for which the average test set accuracy at the final step of training was the
greatest for a given learning rate.

Figure [1| plots optimal ¢ against I'~! for performance defined over “trained runs.” Each point
represents a single network for which I'~! and optimal g have been obtained. The average is only
taken over runs where the networks have been successfully trained, i.e., reached validation set
accuracy over (.2 at some point in training. Only batch sizes for which 5 or more runs have been



trained have been counted. The data points are color-coded with respect to the test accuracy achieved
by the particular network at optimality. Only networks that are able to achieve test set accuracy better
than 95% for MNIST and 87% for fMNIST have been plotted. Note that larger networks tend to have
larger values of I' "1, thus the trend of data points representing networks with better performance
being on the right-side of the plots. The error bars span the range of batch sizes for which the test set
error is within 68% of the confidence interval of the best test set error, while the lines depicted are
best-fit slope-1 lines, i.e., lines along which gI" is constant, on the log-log plot.

We have performed similar experiments on a class of simple convolutional neural networks (CNNs).
Our preliminary results suggest that in order to apply formula (6)) to CNNs, one should replace the
total parameter count P by the number of parameters in fully connected layers P;.. We hope to study
the optimality conditions for CNNs more thoroughly in future work.
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