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1 Introduction

There have been tremendous successes in using deep neural networks and in particular CNNs in
critical domains such as skin cancer detection (Haenssle et al., 2018)), retinal disease detection
(De Fauw et al.,[2018]) or brain tumour survival prediction (Lao et al., 2017). However, there are
still a number of technical challenges that need to be addressed. Among the most important ones
are accurate uncertainty representation and the need of huge amounts of annotated data that is often
costly to acquire (Hoi et al., | 2006} Smith et al., [2018]).

Active Learning (AL) is a sound framework (Cohn et al., [1996) that aims to reduce the amount
of labelled data needed for a specific task by acquiring and labelling new unlabelled data points
based on their uncertainty or representativeness, using an acquisition function. One of the most
promising uncertainty based methods is Deep Bayesian Active Learning (DBAL) (Gal et al., |2017),
which uses Monte-Carlo dropout (MC-dropout) as a framework to obtain uncertainty estimates.
The approach presented by Beluch et al.|(2018]) uses ensemble models to obtain better uncertainty
estimates compared to DBAL methods. Finally, density-based approaches try to identify the samples
that are most representative of the entire unlabelled set, albeit at a computational cost (Sener and
Savarese, [2017)).

Our hypothesis is that overconfident predictions for DBAL methods are an outcome of the mode
collapse phenomenon in variational inference methods (Blei et al., 2017} |Srivastava et al., [2017)),
and that by combining the expressive power of ensemble methods with MC-dropout we can obtain
better uncertainties without trading representativeness. In our work we find evidence for the mode
collapse phenomenon and link it to over-confident classifications. Finally, we present Deep Ensemble
Bayesian Active Learning (DEBAL) which confirms our intuition about using ensemble models to
address mode collapse and enhance the MC-Dropout technique.

Deep Bayesian Active Learning. A probabilistic neural network is given by a model f(x; @) with
a prior p(@) (usually Gaussian) over the parameter space 6 and a likelihood p(y = c|x,0). By
obtaining the posterior distribution over 8, one can make predictions y* about new data points x*:

p(y* |X*a X7 Y) = EGN;D(B\X,Y) [f((L', 9)]

Bayesian uncertainty is obtained via MC-dropout, a scalable method that replaces p(0|X, Y) with the
dropout distribution §(80) and has been shown to be equivalent to approximate variational inference
(Gal, 2016). Two examples of AL acquisition functions used in our work are:

e MaxEntropy (Shannon, 2001). H[y|z,0] = — > _p(y = c|x, 0)logp(y = c|z,0)
e Bayesian Active Learning by Disagreement (BALD) (Houlsby et al.,[2011).

I(y, 6], 6) = Hlylw: X, Y] ~ Eqop(op.v) | Hlyl, 0]]

The first one captures epistemic uncertainty only, which is a consequence of insufficient learning of
model parameters due to lack of data, whilst the second one also captures the genuine stochasticity in
the data (noise), and is known as aleatoric uncertainty (Smith and Gal} 2018}, |Depeweg et al.| 2017).
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Figure 1: Test accuracy as a function of size of the incremental training set during AL. Effect of using
an ensemble of three similar models (stochastic or deterministic) instead of one single MC-Dropout
network. Left: MNIST. Right: CIFAR-10

Using the Bayesian MC-Dropout framework, with class conditional probability p(y|x, 0), we rewrite
the stochastic predictive entropy with K MC-Dropout forward passes at test time:

Hly|z, 0] = —Z( Zp y = [z, 6) )log( Zp y = cl, 0k)>

2 DEBAL: Deep Ensemble Bayesian Active Learning

We confirm the performance of |Gal (2016) using BALD on MNIST and CIFAR10, but observe a
lack of diversity in the data acquired during the AL process. Further experiments debunked the
hypothesis that images belonging to some specific classes are more uncertain and difficult to classify,
due to resemblance of data from other classes. Additional experiments linked over-sampling to
negative effects on classification performance at test time. Our experimental evidence reinforces
the argument presented in Smith and Gal| (2018)), where the authors argue that the MC-Dropout
technique suffers from over-confident predictions. This behaviour arises from its inability to capture
the full posterior distribution of the data. To address the mode collapse issue, we propose DEBAL,
a stochastic ensemble of M/ MC-Dropout models, with M/ << K. Each member of the ensemble
is characterized by a different set of weights 6,, trained independently and uniformly weighted at
prediction time. Our predictions are further averaged by a number of MC-Dropout forward passes,
giving rise to what we call a stochastic ensemble. The predictive entropy for our stochastic ensemble
becomes:

Hly|a; X, Y] = =) (%% > ply = cla, Gm,k))log(%% SN plyle, )
c m  k m k

, where 0, ;. denotes the model parameters for ensemble model member m in the k*" forward pass.

2.1 Results

For both datasets, DEBAL shows significant improvements in classification accuracy. Although we
illustrate only BALD in similar results were obtained for other acquisition functions. We
hypothesize that the supreme performance of the stochastic ensemble method is a result of higher
quality uncertainty estimates obtained during AL.

To validate our claims, we observe how DEBAL and single MC-Dropout behave on both seen
and unseen datasets (distributions), using the NotMNIST dataset of letters A-J from different fonts
(Bulatov}, 201T)) as the unseen distribution. For the known distribution left) both methods
produce low uncertainty for the majority of the test samples, as expected. However, for the single
MC-Dropout network the distribution is characterized by fatter tails (both extremely confident and
extremely uncertain about a significant number of images). The ensemble method, however, results
in a clustered distribution of uncertainty. This further illustrates that stochastic ensembles learn a
more representative part of the input space.
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Figure 2: Histogram of BALD uncertainty of MNIST (left) and NotMNIST (right) images (2,000
random but balanced test set). Uncertainty obtained from single MC-Dropout and ensemble MC-
Dropout methods at the end of the AL process.
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Figure 3: Left: MNIST uncertainty calibration. Expected fraction and observed fraction. Ideal output
is the dashed black line. MSE reported in paranthesis. Calibration averaged over 3 different runs.
Right: Deterministic ensemble trained on data acquired by stochastic ensemble.

On the unseen distribution right) the broad uniform distribution of uncertainty from the
single network shows the existence of images that the classifier is both extremely certain and uncertain
about. This implies that the features learned previously are only partially transferable to the unseen
dataset. For the ensemble, on the other hand, the uncertainty is much smaller and centered on a few
values. Features learned during the initial training on MNIST are more general, thus transferable.
This behaviour is a desirable and realistic one when evaluating a similar but new dataset.

Deterministic vs stochastic ensemble. Further experiments on both seen and unseen distributions
show that the additional improvement in DEBAL over its deterministic counterpart is due to the
stochastic method’s ability to better capture uncertainty. Moreover, we compare the two methods in
terms of uncertainty calibration by looking whether the expected fraction of correct classifications
matches the observed proportion left). Results show that the stochastic ensemble method
leads to a better calibrated uncertainty. Finally, training the deterministic ensemble with data acquired
by the stochastic one leads to an overall increase in performance, further reinforcing our hypothesis
that DEBAL has a better quality of uncertainty right).

3 Conclusion and Future Work

In this work, we focused on the mode collapse problem for DBAL in the context of image classifica-
tion. We improved on state of the art by leveraging the expressive power and statistical properties
of model ensembles. We linked the performance improvement to a better representation of data
uncertainty resulting from our method. We are currently testing our method on a medical imaging
dataset, with promising initial results. For future work, DEBAL’s superior uncertainty representation
could be used to address one of the major issues of deep networks in safety-critical applications:
adversarial examples.
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