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Abstract

Although variational autoencoders (VAEs) represent a widely influential deep
generative model, many aspects of the underlying energy function remain poorly
understood. In particular, it is commonly believed that Gaussian encoder/decoder
assumptions reduce the effectiveness of VAEs in generating realistic samples. In
this regard, we rigorously analyze the VAE objective, differentiating situations
where this belief is and is not actually true. We then leverage the corresponding
insights to develop a simple VAE enhancement that requires no additional hyperpa-
rameters or sensitive tuning. Quantitatively, this proposal produces crisp samples
and stable FID scores that are actually competitive with a variety of GAN models,
all while retaining desirable attributes of the original VAE architecture.

1 Introduction

Our starting point is the desire to learn a probabilistic generative model of observable variables x € x,
where x is a r-dimensional manifold embedded in R?. Note that if » = d, then this assumption
places no restriction on the distribution of = € R? whatsoever; however, the added formalism is
introduced to handle the frequently encountered case where @ possesses low-dimensional structure
relative to a high-dimensional ambient space, i.e., r < d. In fact, the very utility of generative
models of continuous data, and their attendant low-dimensional representations, often hinges on this
assumption (Bengio et al., 2013). It therefore behooves us to explicitly account for this situation.

Beyond this, we assume that x is a simple Riemannian manifold, which means there exists a
diffeomorphism ¢ between x and R", or more explicitly, the mapping ¢ : x — R” is invertible and
differentiable. Denote a ground-truth probability measure on x as fi4¢ such that the probability mass
of an infinitesimal da on the manifold is f14¢(dx) and fX Lgt(dz) = 1.

The variational autoencoder (VAE) (Kingma & Welling| 2014} Rezende et al., 2014) attempts to
approximate this ground-truth measure using a parameterized density pg(x) defined across all
of R? since any underlying generative manifold is unknown in advance. This density is further
assumed to admit the latent decomposition pg(x) = [ pg w|z) (z)dz, where z € R" serves as a
low-dimensional representation, with x ~ r and prlor p(z) = N(z|0,I).

Ideally we might like to minimize the negative log-likelihood — log py () averaged across the ground-
truth measure fig¢, i.e., solve ming fX —log po(x)pge(da). Unfortunately though, the required

marginalization over z is generally infeasible. Instead the VAE model relies on tractable encoder
¢4 (z|x) and decoder py(x|z) distributions, where ¢ represents additional trainable parameters. The
canonical VAE cost is a bound on the average negative log-likelihood given by

£ [ A= logpo(®) + KL [qg(=])]lpo (2[)]} gt (d) > [y ~logpo(@)page(da), (1)

Where the 1nequa11ty follows directly from the non-negativity of the KL.-divergence. Here ¢ can be
viewed as tuning the tightness of bound, while ¢ dictates the actual estimation of 1. Using a few
standard manipulations, this bound can also be expressed as

L(0,¢) = [y {—Eq,z12) logpe (x]2)] + KL [g4(2|2)|[p(2)] } p1ge (), 2)
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which explicitly involves the encoder/decoder distributions and is conveniently amenable to SGD
optimization of {6, ¢} via a reparameterization trick (Kingma & Welling, [2014; Rezende et al., [2014).
The first term in (2)) can be viewed as a reconstruction cost (or a stochastic analog of a traditional
autoencoder), while the second penalizes posterior deviations from the prior p(z). Additionally, for
any realizable implementation via SGD, the integration over x must be approximated via a finite
sum across training samples {x("}?_; drawn from 1. Nonetheless, examining the true objective
L(0, ¢) can lead to important, practically-relevant insights.

At least in principle, ¢4(z|x) and pg(x|2) can be arbitrary distributions, in which case we could
simply enforce gy (z|x) = pg(z|x) o po(x|2)p(2) such that the bound from (1)) is tight. Unfortu-
nately though, this is essentially always an intractable undertaking. Consequently, largely to facilitate
practical implementation, a commonly adopted distributional assumption for continuous data is
that both g4 (z|x) and pg(x|z) are Gaussian. This design choice has previously been cited as a
key limitation of VAEs (Burda et al., 2015} |Kingma et al.,|2016), and existing quantitative tests of
generative modeling quality thus far dramatically favor contemporary alternatives such as generative
adversarial networks (GAN) (Goodfellow et al.| [2014). Regardless, because the VAE possesses
certain desirable properties relative to GAN models (e.g., stable training (Tolstikhin et al., [2018]),
interpretable encoder/inference network (Brock et al.| 2016)), outlier-robustness (Dai et al., [2018)),
etc.), it remains a highly influential paradigm worthy of examination and enhancement.

In Section [2] we closely investigate the implications of VAE Gaussian assumptions leading to a
number of interesting diagnostic conclusions. In particular, we differentiate the situation where r» = d,
in which case we prove that recovering the ground-truth distribution is actually possible iff the VAE
global optimum is reached, and r < d, in which case the VAE global optimum can be reached by
solutions that reflect the ground-truth distribution almost everywhere, but not necessarily uniquely so.
In other words, there could exist alternative solutions that both reach the global optimum and yet do
not assign the same probability measure as fi4;.

Section 3] then further probes this non-uniqueness issue by inspecting necessary conditions of global
optima when r < d. This analysis reveals that an optimal VAE parameterization will provide an
encoder/decoder pair capable of perfectly reconstructing all € x using any z drawn from g, (z|x).
Moreover, we demonstrate that the VAE accomplishes this using a degenerate latent code whereby
only r dimensions are effectively active. Collectively, these results indicate that the VAE global
optimum can in fact uniquely learn a mapping to the correct ground-truth manifold when r < d, but
not necessarily the correct probability measure within this manifold, a critical distinction.

Next we leverage these analytical results in Sectiond]to motivate an almost trivially-simple, two-stage
VAE enhancement for addressing typical regimes when r < d. In brief, the first stage just learns
the manifold per the allowances from Section [3| and in doing so, provides a mapping to a lower
dimensional intermediate representation with no degenerate dimensions that mirrors the r = d
regime. The second (much smaller) stage then only needs to learn the correct probability measure
on this intermediate representation, which is possible per the analysis from Section|2| Experiments
from Section [5] reveal that this procedure can generate high-quality crisp samples, avoiding the
blurriness often attributed to VAE models in the past (Dosovitskiy & Brox, [2016; [Larsen et al.,
2015). And to the best of our knowledge, this is the first demonstration of a VAE pipeline that
can produce stable FID scores, an influential recent metric for evaluating generated sample quality
(Heusel et al.| 2017), that are comparable to GAN models under neutral testing conditions. Moreover,
this is accomplished without additional penalty functions, cost function modifications, or sensitive
tuning parameters. Finally, Section [f] provides concluding thoughts and a discussion of broader VAE
modeling paradigms.

2 High-Level Impact of VAE Gaussian Assumptions

Conventional wisdom suggests that VAE Gaussian assumptions will introduce a gap between £(6, ¢)
and the ideal negative log-likelihood fX —log pg(x) 4 (dx), compromising efforts to learn the
ground-truth measure. However, we will now argue that this pessimism is in some sense premature.
In fact, we will demonstrate that, even with the stated Gaussian distributions, there exist parameters
¢ and 6 that can simultaneously: (i) Globally optimize the VAE objective and, (ii) Recover the
ground-truth probability measure in a certain sense described below. This is possible because, at least
for some coordinated values of ¢ and 6, g, (z|z) and py(z|z) can indeed become arbitrarily close.



Before presenting the details, we first formalize a k-simple VAE, which is merely a VAE model with
explicit Gaussian assumptions and parameterizations:

Definition 1 A k-simple VAE is defined as a VAE model with dim|z] = & latent dimensions, the
Gaussian encoder qg(z|x) = N (z|p,, X)), and the Gaussian decoder pg(x|z) = N (x|, Xz).
Moreover, the encoder moments are defined as p, = f,_ (x;¢) and 3. = .S’ZSZT with S, =
fs.(x; ¢). Likewise, the decoder moments are p, = f, (z;0) and £, = vI. Here y > 0 is a
tunable scalar, while f,,, fs, and f,,, specify parameterized differentiable functional forms that can
be arbitrarily complex, e.g., a deep neural network.

Equipped with these definitions, we will now demonstrate that a k-simple VAE, with £ > r, can
achieve the optimality criteria (i) and (ii) from above. In doing so, we first consider the simpler case
where r = d, followed by the extended scenario with < d. The distinction between these two cases
turns out to be significant, with practical implications to be explored in Section 4]

2.1 Manifold Dimension Equal to Ambient Space Dimension (r = d)

We first analyze the specialized situation where r = d. Assuming py(x) £ g (dz)/dx exists
everywhere in R?, then pgt () represents the ground-truth probability density with respect to the
standard Lebesgue measure in Euclidean space. Given these considerations, the minimal possible
value of (T)) will necessarily occur if

KL [gy(z|)||pe(z|®)] =0 and pg(x) = pg(x) almost everywhere. 3)

This follows because by VAE design it must be that £(0, ¢) > — [ pg.(x) log pg:()de, and in the
present context, this lower bound is achievable iff the conditions from (EI) hold. Collectively, this
implies that the approximate posterior produced by the encoder g4 (z|x) is in fact perfectly matched
to the actual posterior py(z|x), while the corresponding marginalized data distribution py () is
perfectly matched the ground-truth density py:(x) as desired. Perhaps surprisingly, a x-simple VAE
can actually achieve such a solution:

Theorem 1 Suppose that r = d and there exists a density p,(x) associated with the ground-truth
measure [i4; that is nonzero everywhere on ]Rd Then for any Kk > r, there is a sequence of k-simple
VAE model parameters {05, ¢} } such that

tli)m KL [qgr (z]@)||po; (2|2)] =0 and tli}m po: (x) = pyi(x) almost everywhere.  (4)

All the proofs can be found in the appendix. So at least when r = d, the VAE Gaussian assumptions
need not actually prevent the optimal ground-truth probability measure from being recovered, as long
as the latent dimension is sufficiently large (i.e., > 7). And contrary to popular notions, a richer
class of distributions is not required to achieve this. Of course Theorem [I]only applies to a restricted
case that excludes d > r; however, later we will demonstrate that a key consequence of this result
can nonetheless be leveraged to dramatically enhance VAE performance.

2.2 Manifold Dimension Less Than Ambient Space Dimension (r < d)

When r < d, additional subtleties are introduced that will be unpacked both here and in the sequel.
To begin, if both g4(z|x) and ps(x|z) are arbitrary/unconstrained (i.e., not necessarily Gaussian),
then infy g £(0,¢) = —oo. To achieve this global optimum, we need only choose ¢ such that
q¢(z|x) = pe(z|x) (minimizing the KL term from (1)) while selecting § such that all probability
mass collapses to the correct manifold x. In this scenario the density py(x) will become unbounded
on x and zero elsewhere, such that fX —log po(x) gt (dac) will approach negative infinity.

But of course the stated Gaussian assumptions from the x-simple VAE model could ostensibly prevent
this from occurring by causing the KL term to blow up, counteracting the negative log-likelihood
factor. We will now analyze this case to demonstrate that this need not happen. Before proceeding to

!'This nonzero assumption can be replaced with a much looser condition. Specifically, if there exists a
diffeomorphism between the set {x|p,:(x) # 0} and R?, then it can be shown that TheoremE]still holds even
if pge () = 0 for some = € R<.



this result, we first define a manifold density py; (a) as the probability density (assuming it exists) of
gt With respect to the volume measure of the manifold . If d = r then this volume measure reduces
to the standard Lebesgue measure in R? and py(z) = py.(x); however, when d > r a density py;(x)
defined in R? will not technically exist, while Dgt () is still perfectly well-defined. We then have the
following:

Theorem 2 Assume r < d and that there exists a manifold density pg:(x) associated with the
ground-truth measure [i4; that is nonzero everywhere on x. Then for any k > r, there is a sequence
of k-simple VAE model parameters {0}, o7} such that

(i) Jim KL [q4; (z[2)llpo; (2|2)] =0 and  lim [\ —logps; (@)pg(dw) = —00,  (5)

(ii) im e 4 Po; (®)d = p1gi (AN X) (6)
for all measurable sets A C R with Lgt(0A N x) = 0, where OA is the boundary of A.

Technical details notwithstanding, Theorem 2] admits a very intuitive interpretation. First, (5) directly
implies that the VAE Gaussian assumptions do not prevent minimization of £(6, ¢) from converging
to minus infinity, which can be trivially viewed as a globally optimum solution. Furthermore, based
on (6), this solution can be achieved with a limiting density estimate that will assign a probability
mass to most all measurable subsets of R? that is indistinguishable from the ground-truth measure
(which confines all mass to x). Hence this solution is more-or-less an arbitrarily-good approximation
to pug4; for all practical purposes

Regardless, there is an absolutely crucial distinction between Theorem 2] and the simpler case
quantified by Theorem|I] Although both describe conditions whereby the x-simple VAE can achieve
the minimal possible objective, in the » = d case achieving the lower bound (whether the specific
parameterization for doing so is unique or not) necessitates that the ground-truth probability measure
has been recovered almost everywhere. But the r < d situation is quite different because we have not
ruled out the possibility that a different set of parameters {6, ¢} could push £(6, ¢) to —co and yet
not achieve (6). In other words, the VAE could reach the lower bound but fail to closely approximate
fgt- And we stress that this uniqueness issue is not a consequence of the VAE Gaussian assumptions
per se; even if g, (z|x) were unconstrained the same lack of uniqueness can persist.

Rather, the intrinsic difficulty is that, because the VAE model does not have access to the ground-truth
low-dimensional manifold, it must implicitly rely on a density py(z) defined across all of R? as
mentioned previously. Moreover, if this density converges towards infinity on the manifold during
training without increasing the KL term at the same rate, the VAE cost can be unbounded from below,
even in cases where (6] is not satisfied, meaning incorrect assignment of probability mass.

To conclude, the key take-home message from this section is that, at least in principle, VAE Gaussian
assumptions need not actually be the root cause of any failure to recover ground-truth distributions.
Instead we expose a structural deficiency that lies elsewhere, namely, the non-uniqueness of solutions
that can optimize the VAE objective without necessarily learning a close approximation to fi4¢. But to
probe this issue further and motivate possible workarounds, it is critical to further disambiguate these
optimal solutions and their relationship with ground-truth manifolds. This will be the task of Section
where we will explicitly differentiate the problem of locating the correct ground-truth manifold,
from the task of learning the correct probability measure within the manifold.

Note that the only comparable prior work we are aware of related to the results in this section
comes from |Doersch| (2016)), where the implications of adopting Gaussian encoder/decoder pairs
in the specialized case of » = d = 1 are briefly considered. Moreover, the analysis there requires
additional much stronger assumptions than ours, namely, that p,, (x) should be nonzero and infinitely
differentiable everywhere in the requisite 1D ambient space. These requirements of course exclude
essentially all practical usage regimes where d = r > 1 or d > r, or when ground-truth densities are
not sufficiently smooth.

Note that @ is only framed in this technical way to accommodate the difficulty of comparing a measure
Lt Testricted to x with the VAE density pg () defined everywhere in R?. See the appendix for details.



3 Optimal Solutions and the Ground Truth Manifold

We will now more closely examine the properties of optimal x-simple VAE solutions, and in particular,
the degree to which we might expect them to at least reflect the true x, even if perhaps not the correct
probability measure p4; defined within x. To do so, we must first consider some necessary conditions
for VAE optima:

Theorem 3 Let {9;, (;5:‘{} denote an optimal k-simple VAE solution (with k > 1) where the decoder
variance 7y is fixed (i.e., it is the sole unoptimized parameter). Moreover, we assume that jig; is
not a Gaussian distribution when d = T.E] Then for any v > 0, there exists a ¥ < 7 such that

‘C(ej;’v ¢j;/) < ‘6(9:7 (bj;)

This result implies that we can always reduce the VAE cost by choosing a smaller value of v, and
hence, if 7 is not constrained, it must be that v — 0 if we wish to minimize (2)). Despite this necessary
optimality condition, in existing practical VAE applications, it is standard to fix v ~ 1 during
training. This is equivalent to simply adopting a non-adaptive squared-error loss for the decoder and,
at least in part, likely contributes to unrealistic/blurry VAE-generated samples. Regardless, there
are more significant consequences of this intrinsic favoritism for v — 0, in particular as related to
reconstructing data drawn from the ground-truth manifold x:

Theorem 4 Applying the same conditions and definitions as in Theorem[3| then for all  drawn from
lgt, wWe also have that

i f, [fu.(®505) + fs.(x;¢%)e; 03] = %im Fuo [fua (50%); 03] =, Ve eR". (1)

1
~y—0 —0

By design any random draw z ~ gy (z|x) can be expressed as f.. (@; ¢}) + fs. (2; ¢7 )€ for some

€ ~ N(eg|0,I). From this vantage point then, effectively indicates that any = € x will be
perfectly reconstructed by the VAE encoder/decoder pair at globally optimal solutions, achieving this
necessary condition despite any possible stochastic corrupting factor fs_(x; ¢2 )e.

But still further insights can be obtained when we more closely inspect the VAE objective function be-
havior at arbitrarily small but explicitly nonzero values of . In particular, when x = r (meaning =z has
no superfluous capacity), Theorem 4] and attendant analyses in the appendix ultimately imply that the
squared eigenvalues of fg_ (x; qbi) will become arbitrarily small at a rate proportional to 7, meaning

% fs.(x; ¢%) =~ O(1) under mild conditions. It then follows that the VAE data term integrand from

in the neighborhood around optimal solutions, behaves as ~ —2E, . (z|x) [log Pe: (a:|z)} =

QE%; (z|x) [% ||:c — fua [z; 92] ||z} +dlog 2wy =~ Eq% (zjz) [O(1)]+dlog 21y = dlogy+O(1).
®)

This expression can be derived by excluding the higher-order terms of a Taylor series approximation
of fu, | fu. (; ¢%) + fs.(x; %)e; 9,’;} around the point f,,_ (z; ¢3), which will be relatively tight

.- 1 L1112 .
under the stated conditions. But because 2]Eq¢; (z|T) [; ||:B — fua [z, 97] ||2} > 0, a theoretical

lower bound on (8) is given by dlog 27y = dlog v+ O(1). So in this sense (8)) cannot be significantly
lowered further.

This observation is significant when we consider the inclusion of addition latent dimensions by
allowing x > r. Clearly based on the analysis above, adding dimensions to z cannot improve the
value of the VAE data term in any meaningful way. However, it can have a detrimental impact on the
the KL regularization factor in the y — 0 regime, where

2KL [g(2|2)|[p(2)] = trace [S:] + || |I5 — log |E.| ~ —7logy + O(1). ©)

Here 7 denotes the number of eigenvalues {\;(7)}7_; of fs. (x; ¢3) (or equivalently 3.) that satisfy
Aj(y) = 0if v — 0. 7 can be viewed as an estimate of how many low-noise latent dimensions

3This requirement is only included to avoid a practically irrelevant form of non-uniqueness that exists with
full, non-degenerate Gaussian distributions.



the VAE model is preserving to reconstruct . Based on (9), there is obvious pressure to make 7
as small as possible, at least without disrupting the data fit. The smallest possible value is 7 = r,
since it is not difficult to show that any value below this will contribute consequential reconstruction

errors, causing 2B, (z|a) [% |z — fu. [2 03] Hﬂ to grow at a rate of (%), pushing the entire
cost function towards inﬁnityE]

Therefore, in the neighborhood of optimal solutions the VAE will naturally seek to produce perfect
reconstructions using the fewest number of clean, low-noise latent dimensions, meaning dimensions
whereby ¢, (z]x) has negligible variance. For superfluous dimensions that are unnecessary for
representing «, the associated encoder variance in these directions can be pushed to one. This
will optimize KL [¢,(z|z)||p(z)] along these directions, and the decoder can selectively block the
residual randomness to avoid influencing the reconstructions per Theoremd] So in this sense the
VAE is capable of learning a minimal representation of the ground-truth manifold x when r < k.

But we must emphasize that the VAE can learn x independently of the actual distribution fi4; within
X Addressing the latter is a completely separate issue from achieving the perfect reconstruction error
defined by Theorem ] This fact can be understood within the context of a traditional PCA-like model,
which is perfectly capable of learning a low-dimensional subspace containing some training data
without actually learning the distribution of the data within this subspace. The central issue is that
there exists an intrinsic bias associated with the VAE objective such that fitting the distribution within
the manifold will be completely neglected whenever there exists the chance for even an infinitesimally
better approximation of the manifold itself.

Stated differently, if VAE model parameters have learned a near optimal, parsimonious latent mapping
onto x using v ~ 0, then the VAE cost will scale as (d — r) log ~ regardless of 1.4:. Hence there
remains a huge incentive to reduce the reconstruction error still further, allowing -y to push even closer
to zero and the cost closer to —oo. And if we constrain vy to be sufficiently large so as to prevent this
from happening, then we risk degrading/blurring the reconstructions and widening the gap between
¢4(z|x) and pg(z|x), which can also compromise estimation of y,,. Fortunately though, as will
be discussed next there is a convenient way around this dilemma by exploiting the fact that this
dominanting (d — r) log ~y factor goes away when d = r.

4 From Theory to Practical VAE Enhancements

Sections[2]and 3| have exposed a collection of VAE properties with useful diagnostic value in and of
themselves. But the practical utility of these results, beyond the underappreciated benefit of learning
v, warrant further exploration. In this regard, suppose we wish to develop a generative model of
high-dimensional data « € x where unknown low-dimensional structure is significant (i.e., the 7 < d
case with r unknown). The results from Section 3| indicate that the VAE can partially handle this
situation by learning a parsimonious representation of low-dimensional manifolds, but not necessarily
the correct probability measure j14; Within such a manifold. In quantitative terms, this means that a
decoder pg(x|z) will map all samples from an encoder ¢, (z|x) to the correct manifold such that the
reconstruction error is negligible for any « € x. But if the measure p14¢ on x has not been accurately
estimated, then

15(2) = [y 4s(2|)p1ge(dz) % [pa po(z|2)po(x)dz = [hupo(x|2)p(2)dz = N(2(0,1), (10)

where ¢, (z) is sometimes referred to as the aggregated posterior (Makhzani et al.,2016). In other
words, the distribution of the latent samples drawn from the encoder distribution, when averaged
across the training data, will have lingering latent structure that is errantly incongruous with the
original isotropic Gaussian prior. This then disrupts the pivotal ancestral sampling capability of the
VAE, implying that samples drawn from A (2|0, I) and then passed through the decoder py(x|z)
will not closely approximate p4;. Fortunately, our analysis suggests the following two-stage remedy:

1. Given n observed samples {:c(i)}?zl, train a k-simple VAE, with K > r, to estimate the
unknown r-dimensional ground-truth manifold x embedded in R¢ using a minimal number
of active latent dimensions. Generate latent samples {2z}, via 2() ~ g, (z|z(¥). By
design, these samples will be distributed as ¢, (z), but likely not N'(z|0, I).

*Note that inf-~¢ % + logy = oo forany C' > 0.
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Figure 1: Demonstrating VAE properties. (Left) Validation of Theorem and the influence on image
reconstructions. (Center) Validation of Theorem Eﬂ (Right) Motivation for two separate VAE stages
by comparing the aggregated posteriors g, (z) (1° stage) vs. g4 (u) (enhanced 2"¢ stage).

2. Train a second k-simple VAE, with independent parameters {6, ¢’} and latent representation
u, to learn the unknown distribution g4 (2), i.e., treat g, (z) as a new ground-truth distribution

and use samples {z("}7_| to learn it.

3. Samples approximating the original ground-truth pi4; can then be formed via the extended
ancestral process u ~ N (u|0, I), z ~ pg:(z|u), and finally  ~ pg(xz|z).

The efficacy of the second-stage VAE from above is based on the following. If the first stage was
successful, then even though they will not generally resemble A (z|0, I'), samples from g, (z) will
nonetheless have nonzero measure across the full ambient space R”. If x = r, this occurs because
the entire latent space is needed to represent an r-dimensional manifold, and if x > r, then the extra
latent dimensions will be naturally filled in via randomness introduced along dimensions associated
with nonzero eigenvalues of the decoder covariance 3. per the analysis in Section [3]

Consequently, as long as we set k > r, the operational regime of the second-stage VAE is effectively
equivalent to the situation described in Section [2.1)where the manifold dimension is equal to the
ambient dimensionﬂ And as we have already shown there via Theorem the VAE can readily handle
this situation, since in the narrow context of the second-stage VAE, d = r = &, the troublesome
(d — ) log v factor becomes zero, and any globally minimizing solution is uniquely matched to the
new ground-truth distribution g4(2). Consequently, the revised aggregated posterior g4 () produced
by the second-stage VAE should now closely resemble A/ (w]0, I). And finally, because we generally
assume that d > « > r, we have found that the second-stage VAE can be quite small.

S Empirical Evaluation of VAE Two-Stage Enhancement

We initially describe experiments explicitly designed to corroborate some of our previous analytical
results using VAE models trained on CelebA (Liu et al., 2015) data; please see the appendix for
training details and more related experiments. First, the leftmost plot of Figure [I] presents support
for Theorem [3] where indeed the decoder variance ~ does tend towards zero during training. This
then allows for tighter image reconstructions with lower average squared error, i.e., a better manifold
fit as expected. The center plot bolsters Theorem ] and the analysis that follows by showcasing the
dissimilar impact of noise factors applied to different directions in the latent space before passage
through the decoder mean network f,, . In a direction where an eigenvalue \; of 3, is large (i.e., a
superfluous dimension), a random perturbation is completely muted by the decoder as predicted. In
contrast, in directions where such eigenvalues are small (i.e., needed for representing the manifold),
varying the input causes large changes in the image space reflecting reasonable movement along
the correct manifold. Finally, the rightmost plot of Figure [T]displays the singular value spectrum of
latent sample matrices drawn from the first- and second-stage VAE models. As expected, the latter is
much closer to the spectrum from an analogous i.i.d. A'(0, I') matrix. This indicates a superior latent
representation, providing high-level support for our two-stage VAE proposal.

Next we present quantitative evaluation of novel generated samples using the large-scale testing pro-
tocol of GAN models from (Lucic et al., 2018). In this regard, GANs are well-known to dramatically

5Note that if a regular autoencoder were used to replace the first-stage VAE, then this would no longer be the
case, so indeed a VAE is required for both stages.



[ | MNIST Fashion CIFAR-10 CelebA

MM GAN 98+£09 296+£16 72.7+3.6 65.6+£4.2
NS GAN 6.8+£05 265+1.6 585+19 550+3.3
optimized, LSGAN 78£0.6 30.7£22 87.1+£47.5 53.9£28
data-dependent WGAN 6.7£04 21.54+1.6 55.2+23 41.3+2.0
settings WGAN GP 20.3+5.0 2454+21 558£09 303+£1.0
DRAGAN 76+04 277+£12 69.84+20 423+3.0
BEGAN 131£1.0 229£09 714+£16 389409

Best GAN ~ 10 ~32 ~ 70 ~ 49
default VAE (fixed v) 52.04+0.6 84.64+09 160.5+1.1 559+0.6
settings VAE (learned +) 545+1.0 600+11 76.7£08 60.5+0.6
2-Stage VAE (ours) | 126 +1.5 293+1.0 72.94+09 44.4+0.7

Table 1: FID score comparisons. For all GAN-based models listed in the top section of the table,
reported values represent the optimal FID obtained across a large-scale hyperparameter search
conducted separately for each dataset (Lucic et al.,|2018). Outlier cases (e.g., severe mode collapse)
were omitted, which would have otherwise increased these GAN FID scores. In the lower section of
the table, the label Best GAN indicates the lowest FID produced across all GAN approaches when
trained using settings suggested by original authors; these approximate values were extracted from
(Lucic et al.l 2018, Figure 4). For the VAE results, only a single default setting was adopted across
all datasets and models (no tuning whatsoever), and no cases of mode collapse were removed. Note
that specialized architectures and/or random seed optimization can potentially improve the FID score
for all models reported here.

outperform existing VAE approaches in terms of the Fréchet Inception Distance (FID) score (Heusel
et al.}|2017) and related quantitative metrics. For fair comparison, (Lucic et al., 2018)) adopted a
common neutral architecture for all models, with generator and discriminator networks based on
InfoGAN (Chen et al.l 2016); the point here is standardized comparisons, not tuning arbitrarily-large
networks to achieve the lowest possible absolute FID values. We applied the same architecture to
our first-stage VAE decoder and encoder networks respectively for direct comparison. For the low-
dimensional second-stage VAE we used small, 3-layer networks contributing negligible additional
parameters beyond the first stage (see the appendix for further design details)

We evaluated our proposed VAE pipeline, denoted 2-Stage VAE, against baseline VAE models
differing only in the decoder output layer: a Gaussian layer with fixed -y, and a Gaussian layer with a
learned + (the latter is also used by the two-stage VAE). We also present results from (Lucic et al.|
2018)) involving numerous competing GAN models, including MM GAN (Goodfellow et al., 2014),
WGAN (Arjovsky et al., [2017), WGAN-GP (Gulrajani et al.| 2017), NS GAN (Fedus et al.,[2017)),
DRAGAN (Kodali et al., 2017), LS GAN (Mao et al.,2017) and BEGAN (Berthelot et al.,|[2017).
Testing is conducted across four significantly different datasets: MNIST (LeCun et al.,|1998]), Fashion
MNIST (Xiao et al.| [2017), CIFAR-10 (Krizhevsky & Hinton| 2009) and CelebA (Liu et al.| [2015).

For each dataset we executed 10 independent trials and report the mean and standard deviation of the
FID scores in Table No effort was made to tune VAE training hyperparameters (e.g., learning
rates, etc.); rather a single generic setting was first selected and then applied to all VAE models. As
an analogous baseline, we also report the value of the best GAN model for each dataset when trained
using suggested settings from the authors; no single model was optimal across all datasets, so these
values represent performance from different GANs. Even so, our single 2-Stage VAE is still better on
two of four datasets, and in aggregate, better than any individual GAN model. For example, when

81t should also be emphasized that concatenating the two stages and jointly training does not improve the
performance. If trained jointly the few extra second-stage parameters are simply hijacked by the dominant
objective from the first stage and forced to work on an incrementally better fit of the manifold. As expected then,
on empirical tests (not shown) we have found that this does not improve upon standard VAE baselines.

7 All reported FID scores for VAE and GAN models were computed using TensorFlow (https://github
com/bioinf- jku/TTUR). We have found that alternative PyTorch implementations (https://github. com/
mseitzer/pytorch-fid) can produce different values in some circumstances. This seems to be due, at least
in part, to subtle differences in the underlying Inception models being used for computing the scores. Either way,
a consistent implementation is essential for calibrating results across different scenarios.


https://github.com/bioinf-jku/TTUR
https://github.com/bioinf-jku/TTUR
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

averaged across datasets, the mean FID score for any individual GAN trained with suggested settings
was always approximately 45 or higher (see (Lucic et al., 2018, Figure 4)), while our analogous
2-Stage VAE maintained a mean below 40. The other VAE baselines were not competitive.

Table [T also displays FID scores from GAN models evaluated using hyperparameters obtained from a
large-scale search executed independently across each dataset to achieve the best results; 100 settings
per model per dataset, plus an optimal, data-dependent stopping criteria as described in (Lucic et al.}
2018). Within this broader paradigm, cases of severe mode collapse were omitted when computing
final GAN FID averages. Despite these considerable advantages, the FID performance of the default
2-Stage VAE is well within the range of the heavily-optimized GAN models for each dataset unlike
the other VAE baselines. Overall then, these results represent the first demonstration of a VAE
pipeline capable of competing with GANSs in the arena of generated sample quality. Representative
samples generated using our two-stage VAE approach are in the appendix.

6 Discussion

It is often assumed that there exists an unavoidable trade-off between the stable training, valuable
attendant encoder network, and resistance to mode collapse of VAEs, versus the impressive visual
quality of images produced by GANs. While we certainly are not claiming that our two-stage
VAE model is superior to the latest and greatest GAN-based architecture in terms of the realism of
generated samples, we do strongly believe that this work at least narrows that gap substantially such
that VAEs are worth considering in a broader range of applications.

It is also important to recognize that a variety of alternative VAE enhancements have recently been
proposed as well; however, nearly all of these have focused on improving the log-likelihood scores
assigned by the model to test data. In particular, multiple elegant VAE modifications involve replacing
the Gaussian encoder network with a richer class of distributions instantiated through normalizing
flows or related (Burda et al.|[2015; Kingma et al.,[2016; Rezende & Mohamed, |2015}; |van den Berg
et al., [2018). While impressive log-likelihood gains have been demonstrated, this achievement is
largely orthogonal to the goal of improving quantitative measures of visual quality (Theis et al.|
2016), which has been our focus herein. Additionally, improving the VAE encoder does not address
the uniqueness issue raised in Section 2] and therefore, a second stage could potentially benefit these
models too in the right circumstances.

Broadly speaking, if the overriding objective is generating realistic samples using an encoder-decoder-
based architecture (VAE or otherwise), two important, well-known criteria must be satisfied:

(i) Small reconstruction error when passing through the encoder-decoder networks, and

(i) Anaggregate posterior g, (z) that is close to some known distribution like p(z) = N (2|0, )
that is easy to sample from.

Without the latter criteria, we have no tractable way of generating random inputs that, when passed
through the learned decoder, produce realistic output samples resembling the training data distribution.

Criteria (i) and (ii) can be addressed multiple different ways. For example, (Tomczak & Welling,
2018)) replace N(z|0, I) with a richer parameterized class of prior distributions p(z) such that there
exist more flexible pathways for pushing p(z) and ¢,(z) closer together. Consequently, even if
q4(z) is not Gaussian, we can nonetheless sample from a known non-Gaussian alternative. This is
certainly an interesting idea, but it has not as of yet been applied to improving FID scores and only
log-likelihood values on relatively small black-and-white images are reported.

In fact, the only competing encoder-decoder-based architecture we are aware of that explicitly
attempts to improve FID scores comes from (Tolstikhin et al., 2018)), which presents what can be
viewed as a generalization of the adversarial autoencoder (Makhzani et al|2016). The basic idea is
to minimize an objective function composed of a reconstruction penalty for handling criteria (i), and
a Wassenstein distance measure between p(z) and g4 (2) for addressing criteria (if). Two variants
of this approach are referred to as WAE-MMD and WAE-GAN because different MMD and GAN
regularization factors are involved. Both are evaluated using hyperparameters and encoder-decoder
networks specifically adapted for use with the CelebA dataset. Therefore, although FID scores are
reported, they are not really comparable with the Table[T] values because of the different architecture
and testing conditions. That being said, the WAE-GAN version involves GAN-like adversarial



training, and under the reported testing conditions more-or-less defaults to an adversarial autoencoder
with an FID score of 42. This is similar to the other optimized GAN-based models from Table

In contrast, WAE-MMD does not require potentially-difficult adversarial training, just like a VAE as
desired, but the corresponding FID score increases to 55. Again, although not directly comparable
since a specific network structure has been selected for CelebA, this is nonetheless still significantly
higher than our 2-Stage VAE trained using a neutral architecture borrowed from (Lucic et al., [2018)
with default settings. Additionally, both WAE-MMD and WAE-GAN models are dependent on
having a reasonable estimate for x ~ r (at least for the deterministic encoder-decoder models that
were empirically tested), otherwise matching p(z) and g4 (2) is not possible (Tolstikhin et al., 2018).
For the 2-Stage VAE, we only need choose x > r in principle.

As with the approaches mentioned above, the two VAE stages we have proposed can also be motivated
in one-to-one correspondence with criteria (i) and (i7). In brief, the first VAE stage addresses criteria
(7) by pushing both the encoder variance, and the decoder variances selectively, towards zero such that
accurate reconstruction is possible using a minimal number of active latent dimensions. However, our
detailed analysis suggests that, although the resulting aggregate posterior g4 () will occupy nonzero
measure in xk-dimensional space (selectively filling out superfluous dimensions with random noise),
it need not be close to N'(z|0, I). This then implies that if we take samples from A (z|0, I') and pass
them through the learned decoder, the result may not closely resemble real data.

Of course if we could somehow directly sample from ¢, (z), then we would not need to use N'(z|0, I).
And fortunately, because the first-stage VAE ensures that g, (z) will satisfy the conditions of Theorem
we know that a second VAE can in fact be learned to accurately sample from this distribution,
which in turn addresses criteria (ii). Specifically, per the arguments from Section ] sampling
u ~ N (u|0,I) and then z ~ py (z|u) is akin to sampling z ~ g, (2). Such samples can then be
passed through the first-stage VAE decoder to obtain samples of . Hence our framework provides a
principled alternative to existing encoder-decoder structures designed to handle criteria (i) and (ii),
leading to state-of-the-art results for this class of model in terms of FID scores. In any event, we
intend to further explore these issues in an extended journal version, including broader empirical
testing with alternative VAE baselines.
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Appendix

A Comparison of Novel Samples Generated from our Model

Generation results for CelebA, MNIST, Fashion-MNIST and CIFAR-10 datasets are shown in
Figures 25| respectively. When ~ is fixed to be one, the generated samples are very blurry. If
a learnable v is used, the samples becomes sharper; however, there are many lingering artifacts
as expected. In contrast, the proposed 2-Stage VAE can remove these artifacts and generate more
realistic samples. For comparison purposes, we also show the results from WAE-MMD, WAE-
GAN (Tolstikhin et al., 2018) and WGAN-GP (Gulrajani et al., 2017) for the CelebA dataset.

(d) VAE (Fix vy = 1) (e) VAE (Learnable 7) () 2-Stage VAE

Figure 2: Randomly generated samples on the CelebaA dataset (i.e., no cherry-picking).
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Figure 3: Randomly generated samples on the MNIST dataset (i.e., no cherry-picking).
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(a) VAE (Fixy=1) (b) VAE (Learnable ) (c) 2-Stage VAE

Figure 4: Randomly Generated Samples on Fashion-MNIST Dataset (i.e., no cherry-picking).

(@) VAE (Fixy=1) (b) VAE (Learnable ) (c) 2-Stage VAE

Figure 5: Randomly Generated Samples on CIFAR-10 Dataset (i.e., no cherry-picking).
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(a) Ground Truth (b) VAE (Fixy=1) (c) VAE (Learnable )

Figure 6: Reconstructions on CelebA Dataset.

B Example Reconstructions of Training Data

Reconstruction results for MNIST, Fashion-MNIST, CIFAR-10 and CelebA datasets are shown in
Figures [6-9| respectively. On relatively simple datasets like MNIST and Fashion-MNIST, the VAE
with learnable  achieves almost exact reconstruction because of a better estimate of the underlying
manifold consistent with theory. However, the VAE with fixed v = 1 produces blurry reconstructions
as expected. Note that the reconstruction of a 2-Stage VAE is the same as that of a VAE with learnable

v because the second-stage VAE has nothing to do with facilitating the reconstruction task.
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Figure 7: Reconstructions on MNIST Dataset.

=T¢

K
{

W |
L
A
a
»
3
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Figure 8: Reconstructions on Fashion-MNIST Dataset.

e Sl a4 2 .- by by - y
(a) Ground Truth (b) VAE (Fixy=1) (c) VAE (Learnable )
Figure 9: Reconstructions on CIFAR-10 Dataset.

C Additional Experimental Results Validating Theoretical Predictions

We first present more examples similar to Figure [[{center) from the main paper. Random noise is
added to p, along different directions and the result is passed through the decoder network. Each
row corresponds to a certain direction in the latent space and 15 samples are shown for each direction.
These dimensions/rows are ordered by the eigenvalues A; of 3. The larger J; is, the less impact a
random perturbation along this direction will have as quantified by the reported image variance values.
In the first two or three rows, the noise generates some images from different classes/objects/identities,
indicating a significant visual difference. For a slightly larger );, the corresponding dimensions
encode relatively less significant attributes as predicted. For example, the fifth row of both MNIST
and Fashion-MNIST contains images from the same class but with a slightly different style. The
images in the fourth row of the CelebA dataset have very subtle differences. When )\; = 1, the
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(a) MNIST (b) Fashion-MNIST

(c) CelebA

Figure 10: More examples similar to Figure center).
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(a) Hist of A\; on MNIST (b) Hist of A\; on CelebA

Figure 11: Histogram of A; values. There are more values around 0 for CelebA because it is more
complicated than MNIST and therefore requres more active dimensions to model the underlying
manifold.

corresponding dimensions become completely inactive and all the output images are exactly the same,
as shown in the last rows for all the three datasets.

Additionally, as discussed in the main text and below in Section|l} there are likely to be r eigenvalues
of X, converging to zero and xk — r eigenvalues converging to one. We plot the histogram of \;
values for both MNIST and CelebA datasets in Figure @ For both datasets, \; approximately
converges to either to zero or one. However, since CelebA is a more complicated dataset than MNIST,
the ground-truth manifold dimension of CelebA is likely to be much larger than that of MNIST.
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Figure 12: Network structure of the first-stage VAE used in producing Figure(l| and for generating
samples and reconstructions. (Left) The basic building block of the network called a Scale Block,
which consists of two Residual Blocks. (Center) The encoder network. For an input image x, we
use a convolutional layer to transform it into 32 channels. We then pass it to a Scale Block. After
each Scale Block, we downsample using a convolutional layer with stride 2 and double the channels.
After N Scale Blocks, the feature map is flattened to a vector. In our experiments, we used N = 4
for CelebA dataset and 3 for other datasets. The vector is then passed through another Scale Block,
the convolutional layers of which are replaced with fully connected layers of 512 dimensions. The
output of this Scale Block is used to produce the x-dimensional latent code, with k = 64. (Right)
The decoder network. A latent code z is first passed through a fully connected layer. The dimension
is 4096 for CelebA dataset and 2048 for other datasets. Then it is reshaped to 2 x 2 resolution. We
upsample the feature map using a deconvolution layer and half the number of channels at the same
time. It then goes through some Scale Blocks and upsampling layers until the feature map size
becomes the desired value. Then we use a convolutional layer to transform the feature map, which
should have 32 channels, to 3 channels for RGB datasets and 1 channel for gray scale datasets.

So more eigenvalues are expected to be near zero for the CelebA dataset. This is indeed the case,
demonstrating that VAE has the ability to detect the manifold dimension and select the proper number
of latent dimensions in practical environments.

D Network Structure and Experimental Settings

We first describe the network and training details used in producing Figure[T] from the main file, and
for generating samples and reconstructions in the supplementary. The first-stage VAE network is
shown in Figure[T2] Basically we use two Residual Blocks for each resolution scale, and we double
the number of channels when downsampling and halve it when upsampling. The specific settings
such as the number of channels and the number of scales are specified in the caption. The second
VAE is much simpler. Both the encoder and decoder have three 2048-dimensional hidden layers.
Finally, the training details are presented below. Note that these settings were not tuned, we simply
chose more epochs for more complex data sets and fewer for datasets with larger training samples.
For each dataset just a single setting was tested as follows:

e MNIST and Fashion-MNIST: The batch size is specified to be 100. We use the ADAM
optimizer with the default hyperparameters in TensorFlow. Standard weight decay is set
as 5 x 10~%. The first VAE is trained for 400 epochs. The initial learning rate is 0.0001
and we halve it every 150 epochs. The second VAE is trained for 800 epochs with the same
initial learning rate, halved every 300 epochs.

15



e CIFAR-10: Since CIFAR-10 is more complicated than MNIST and Fashion-MNIST, we
use more epochs for training. Specifically, we use 1000 and 2000 epochs for the two VAEs
respectively and half the learning rate every 300 and 600 epochs for the two stages. The
other settings are the same as that for MNIST.

e CelebA: Because CelebA has many more examples, in the first stage we train 120 epochs
and half the learning rate every 48 epochs. In the second stage, we train 300 epochs and half
the learning rate every 120 epochs. The other settings are the same as that for MNIST, etc.

Finally, to fairly compare against various GAN models and VAE baselines using FID scores on a
neutral architecture (i.e., the results from Table[I]), we simply adopt the InfoGAN network structure
consistent with the neutral setup from (Lucic et al.,[2018)) for the first-stage VAE. For the second-stage
VAE we just use three 1024-dimensional hidden layers, which contribute less than 5% to the total
number of parameters. Note that the small number of additional parameters contributing to the second
stage do not improve the other VAE baselines when aggregated and trained jointly.

E Proof of Theorem /(1]

We first consider the case where the latent dimension « equals the manifold dimension r and then
extend the proof to allow for x > 7. The intuition is to build a bijection between x and R" that
transforms the ground-truth distribution p,: () to a normal Gaussian distribution. The way to build
such a bijection is shown in Figure[I3] We now fill in the details.

-1
xX€Ey _’41i_1 &el0,1]" _’4G_ ZER"
pge(x)dx d¢ p(2)dz
Example:
' f
8 = ©
| |
2D Ground Truth [0,1]? 2D normal Gaussian

Distribution

Figure 13: The relationship between different variables.

E.1 Finding a Sequence of Decoders such that pg- () Converges to p,;(z)
Define the function F' : R” — [0, 1]" as
F(iE) = [Fl<w1);F2(w2;xl>7~--7Fr($r;x1:r71)]—r7 (11)
m.

Fz’(mi;ml:i—l) = / pgt($;|$1:i—1)d$;- (12)
x

r—_
i oo

Per this definition, we have that

dF (x) = pg(x)de. (13)
Also, since pg () is nonzero everywhere, F'(+) is invertible. Similarly, we define another differen-
tiable and invertible function G : R” — [0, 1]" as

G(z) = [Gi(21),Ga(22), .., Gr(2,)]T, (14)
Zi
Gi(z) = / N(2:]0,1)dz.. (15)
Then
dG(z) = p(z)dz = N (2]0,I)dz. (16)
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Now let the decoder be

Juo(2:607) = F~loG(), (17
Vo= % (18)
Then we have
po; (x) = /Tpef(fb‘lz)P(Z)dz = /Tf\/(fClF*1 0 G(z),7/I) dG(2). (19)
Additionally, let ¢ = G (zﬂj such that
po; (T) = [071]TN("B\F_1(E)%‘I) d§, (20)

and let ' = F~1(&) such that d€ = dF(x') = pg(x’)dx’. Plugging this expression into the
previous pg~(x) we obtain

po;(x) = | N (zlx', 7/ T) pg(a’)da’. 1)
R’r‘
As t — 00, 7§ becomes infinitely small and N (x|@’, v; I') becomes a Dirac-delta function, resulting
in
Jim py; () = /X 5(a! — @)y (@')da’ = pyu(). @)

E.2 Finding a Sequence of Encoders such that KL [q4: (z|x)||pe; (2|z)] Converges to 0

Assume the encoder networks satisfy

fu(@:9}) = G loF(x)=f,z:0]), (23)

fs. (x5 07) = \/%?‘(,Qz (f (23 07):00) " £, (fuz(w;éf);ﬁz*)) : (24)

where f}, (-) is a d x r Jacobian matrix. We omit the arguments 6; and ¢; in f,_(-), fs.(-) and
fu. () hereafter to avoid unnecessary clutter. We first explain why f,,_ (-) is differentiable. Since
fu. () is a composition of F~1(.) and G(-) according to , we only need to explain that both
functions are differentiable. For F'~1(-), it is the inverse of a differentiable function F'(-). Moreover,

the derivative of F'(x) is py: (), which is nonzero everywhere. So F'~!(-) and therefore f,,, (-) are
both differentiable.

The true posterior pg: (z|x) and the approximate posterior are
N (2|0, N (x| fu. (2), 7 I)
po; ()

eilele) = (2@ (L, Gl £, Glen) ) 26)

respectively. We now prove that g,: (2|)/pe: (z|2) converges to a constant not related to z as ¢
goes to oo. If this is true, the constant must be 1 since both gy: (2|x) and p: (z|x) are probability
distributions. Then the KL divergence between them converges to 0 as ¢ — oo.

po; (z]x) ; (25)

We denote ( b (fue ()" f (fu. (:c))) as X (x) for short. In addition, we define z* =

Ha

fu. (x). Given these definitions, it follows that
q¢f*(z|w) N(z‘Z*7’YZ<2z) pQ;‘(x)
po; (zlz) N (2[0, )N (2| fy, (2), 77 1)

172 (z—29)" 8. (2 - 2%)
exp { — o
t

= (my R s,

=13 | [z = fu.(2)]3
g 25 po; (). 27)
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At this point, let

z=2"+ /7% (28)

According to Lagrangian’s mean value theorem, there exists a z’ between z and z* such that
fuo(Z) = fua(2) + [, (2)(z = 27) = =+ [ (Z)ViZ (29)
where 2z’ = z* 4+ 1,/7;Z is between z and z* and 7 is a value between 0 and 1 (2/ = 2*
ifn = 0and 27 = zif n = 1). Use C(x) to represent the terms not related to z, i.e.,

_-1/2
(QW)d/Lﬁ«(dw)/? ‘EZ’ po: (x). Plug and into and consider the limit given by

lim 4o (2|2) = lim C(x)exp

=00 py: (2|x) t—00 2 2 2

~ T —1_ w112 , N 2112
— 22z |23 | . (Z9) 2l
= C’(m)exp{ 5 e .
;Tss ~lg *[12 =T ¢ s\ T g/ £\ =
x z z z¥) z
= C(w)exp{_z 2Z Z_|_||Z2||2+ um( )2 uz( ) }

_ C@)en { ||z;||§}

The fourth equality comes from the fact that f,, (z*)T e (25) =1, (fuz(:c))T b (fu.(x)) =

3. (x)~!. This expression is not related to z. Considering both q¢: (2|) and pe: (z|x) are probabil-
ity distributions, the ratio should be equal to 1. The KL divergence between them thus converges to 0
ast — oo.

E.3 Generalization to the Case with x > r

When k > r, we use the first r latent dimensions to build a projection between z and = and leave the
remaining x — r latent dimensions unused. Specifically, let f,, (2) = f,., (z1.r), where f,,_ (21.7) is
defined as in and v} = 1/t. Again consider the case that ¢ — oo. Then this decoder can also
satisfy lim;_, o pox () = pg:(x) because it produces exactly the same distribution as the decoder
defined by and (I8). The last x — r dimensions contribute nothing to the generation process.

Now define the encoder as

fo.@r = fil(=) 31

fuo@®)rsrne = 0 (32)
féafw)

fs.(@) = | M (33)
nT

K

where fg_(x) is defined as ti Denote {n;};_, , as a set of x-dimensional column vectors
satisfying

fs.(®)n; = 0 34
n/n; = 1, (35)

Such a set always exists because fsz (z) is a r X k matrix. So the dimension of the null space of

fs.(z) is at least & — r. Assuming that {n;}1_,. 41 are x — 7 basis vectors of null( fs.), then the
conditions (34) and (33) will be satisfied. The variance of the approximate posterior then becomes

S = fs.(@)fs. (@) = |I5@ gSZ(m)T IO_ (36)
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The first  dimensions can exactly match the true posterior as we have already shown. The remaining
x — r dimensions follow a standardized Gaussian distribution. Since these dimensions contribute
nothing to generating «, the true posterior should be the same as the prior, i.e. a standardized Gaussian
distribution. Moreover, any of these dimensions is independent of all the other dimensions, so the
corresponding off-diagonal elements of the covariance of the true posterior should equal 0. Thus the
approximate posterior also matches the true posterior for the last £ — r dimensions. As a result, we
again have limy oo KL [qgs (2]@)||po; (2|z)] = 0.

F Proof of Theorem 2

Similar to Section[E] we also construct a bijection between x and R” which transforms the ground-
truth measure 14; to a normal Gaussian distribution. But in this construction, we need one more step
that bijects between x and R” using the diffeomorphism ¢(-), as shown in Figure[14] We will now
go into the details.

% F G—l
x€Ex /= ue€R ——= {€e[0l]) ————= z€R’
p= —
Pt (X py (dx) par(w)du dé p(z)dz
Example:
t s t
./ | |
2D manifold Diffeomorphism [0,1] 2D normal Gaussian

in 3D space in 2D space

Figure 14: The relationship between different variables.

F.1 Finding a Sequence of Decoders such that —log py: (x) Converges to —oo

©(-) is a diffeomorphism between x and R”. So it transforms the ground-truth probability distribution
Pgt(x) to another distribution py, (u), where u € R". The relationship between the two distributions
is

pst (u)du = ﬁgt(w)ﬂv(dm) |m:g0*1(u) = Ngt(dm)v (37)
where py (d) is the volume measure with respect to X'. Because ¢(-) is a diffeomorphism, both
©(+) and ¢~ 1(-) are differentiable. Thus dz/du is nonzero everywhere on the manifold. Considering
Pgt(x) is also nonzero everywhere, py,(u) is nonzero everywhere.

Analogous to the previous proof, define a function F' : R" — [0, 1]" as

Flu) = [Fi(w), Fa(uziur), o, Fr(upun,—1)] (38)
u;
Fi(ui;urio1) = / Pyt (wi|uii—1)dus. (39)
ngfoo

According to this definition, we have
dF(u) = py(u)du. (40)
Since py; (u) is nonzero everywhere, F'(-) is invertible. We also define another differentiable and

invertible function G : R” — [0, 1]" as (15).
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Now let the decoder mean function be given by
fun(2:07) =

*

T =

o F o), 41)

=6

(42)

Then we have

po; (z) = /Tpeg(w|Z)p(Z)dz

= [ N (ale™ i) ) @3)

We next show that pe- () diverges to infinite as ¢ — oo for any . For a given @, let u* = ¢(x) and
B(u*, \/~;) be the closed ball centered at w* with radius /+;. Then

pre) = [ N (el @i D) ()
t B(U*,ﬁ) ( t ) gt
T —
= / (2777 )2 exp —u Py (u)du. (44)
B(W* 7)) 2
According to the Lagrangian’s mean value theorem, there exists a u’ between w and u* such that
_ 1 e deTH(u . do~ ! (u .
M u) = o) + %|u:u/(u—u ) = @+ SDT()\u:u/(ufu ). (45)

1 T
If we denote A(u') = (d@diu(u)m:u/) (MW u/) we then have that

oo @]; = (u-u)TAW) ZA —ul) " (u) — )
< DDAy | (i —u)? < (AW - [lu— w5 @46)
i J
And after defining
D) = max [A@), >  max _[[A()], 7)

ueB(u*,1) uUeBU /7))
it also follows that
— 2 * *\ Lk * *
|z — ¢ (W], < [[A@)]]; - [lu—ul} < D)y Yue Bu', /). 48)
Plugging this inequality into (@4) gives

@) = ety e {- 20N )

/B(U*,\/T:)

D *
> (2myf) Y2 eXp{— (;‘ )} (uegl(i{;*,l)pgt(u)> /B(w /o du
D *
= G en{- 20 (i ) v (Bl D), @)

u-,1

where V' (B(u*, \/7{)) is the volume of the r-dimensional ball B(u*, /7%). The volume should

be a,.y*’“/ 2 where a, 1s a constant related to the dimension . So
— *x—(d—r)/2 D(U*) . U
po: (x) > (2m) /20702 oxp {—2 uegl(%lm)pgt(u) . (50)

Since (-) defines a diffeomorphism, D(u*) < co. Moreover, (minge g(u-,1) pgt(u)) > () because
Pyt () is nonzero and continuous everywhere. We may then conclude that

tlggo — log pg~ (x) = —oc. (51

for z € X. This then implies that the stated average across X with respect to f14; will also be —oo
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F.2 Finding a Sequence of Encoders such that KL [q4: (z|)||ps; (z|x)] Converges to 0

Similar to (23)) and (24), let the encoder be
Ju(®:07) = Gl oFop(a)=f, ! (@:6]), (52)

o.widi) = i (S Uolomoron) T 1, Golmsopion) - 9

Following the proofs in Section we can prove the KL divergence between gy (2|x) and pg: (z|x)
converges to 0.

F.3 The Relationship between lim; . . py; (x) and p ()

We then prove our construction from @I)) and satisfies (6). Unlike the case d = r where we can
compare py: () and py () directly, here pg: () is a density defined everywhere in R? while /1, is
a probability measure defined only on the r-dimensional manifold x. Consequently, to assess pg: (x)

relative to ji4¢, we evaluate the respective probability mass assigned to any measurable subset of R4
denoted as A. For py: (), we integrate the density over A while for y1,; we compute the measure of
the intersection of A with X, i.e., j4; confines all mass to the manifold.

We begin with the probability distribution given by p- (x):
pe; (x) = /]R po; (z|2)p(2)dz = /RTN (z|p™' o F7' 0 G(2),7 1) dG(z)
= [, Al o P00 dg
= [ X (el @i 1) py(widu
= N (x|, 7)) pge(da’). (54)

T'ex

Consider a measurable set A € R<,

lim po; (x)dx = lim N (x|, ;) pge(de’) | de
t— o0 xreA t—o0 TecA T'eX
—jin [ [ Nalside| e
Jxrex LJxea
:/ Jim { N(w|az’,fyf)da:} pgt(da’). (55)
xex T LJxeAa

The second equation that interchanges the order of the integrations admitted by Fubini’s theorem.
The third equation that interchanges the order of the integration and the limit is justified by the
bounded convergence theorem. We now note that the term inside the first integration, N (x|z’, ~; I),
converges to a Dirac-delta function as v;" — 0. So the integration over A depends on whether &’ is
inside A or not, i.e.,

) - 1 ifa' e A-0A,
35&[ wEAN(‘”'w’%I)dT’} - {o ifz' € A° — 0A. (56)

We separate the manifold x into three parts: x N (A — 0A), x N (A° — 0A) and x N OA. Then
(55) can be separated into three parts accordingly. The first two parts can be derived as

lim [/AN(m|w’,fyfI)dw] pgt(dx’) =

/xn(A—aA) =00 L pgi(de') = pge (x N (A = 0A)),

(57)

/xm(A—aA)

li N x|z~ I)d d’:/ 0 pge(d’) = 0. (58
/Xn(AC—aA) 50 [/A (@l 2 D) w} pot () X(A-0A) Hot(d) )
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For the third part, given the assumption that 11,,(0A) = 0, we have

0< / lim {/ N(:c|w’,7Z‘I)dw] pgt(da’) < / 1 pge(dx’) = pge (x NOA) = 0.
X A XNoA

ﬂ@At*)OO
(59)
Therefore we have
lim /./\/:ccc’, I dw]u dx') =0 (60)
[ adim | [Vl 5T | e
and thus
lim pot(z; v Dde = / lim { N (z|x',~} d:c}u dz’
t—o0 [ 4 gt( t ) w'extﬂ"o oA ( ‘ t) gt( )
pgt (XN (A —0A))+0+40
= pgt(x NA), (61)
leading to ().

Note that this result involves a subtle requirement involving the boundary d A. This condition is only
included to handle a minor, practically-inconsequential technicality. In brief, as a density pg- () will
apply zero mass exactly on any low-dimensional manifold, although it can apply all of its mass to any
region in the neighborhood of x. But suppose we choose some A is a subset of x, i.e, it is exclusively
confined to the ground-truth manifold. Then the probability mass within A assigned by 114 will be
nonzero while that given by py: () can still be zero. Of course this does not mean that pg: () and
ttg¢ do not match each other in any practical sense. This is because if we expand this specialized A
by an arbitrary small d-dimensional volume, then pg: (x) and j14; will now supply essentially the
same probability mass on this infinitesimally expanded set (which is arbitrary close to A).

G Proof of Theorem

From the main text, {63, #>} is the optimal solution with a fixed . The true posterior and the
approximate posterior are

p(2)po- (x|2)
. I et hadintd 62
pe: (z|z) por(@) (62)

G- (z|z) = N (2|p.(2;03), 2. (25 63)). (63)

G.1 Casel:r=d

We first argue that the KL divergence between py- (z|x) and gy (2|x) is always strictly greater than

zero. This can be proved by contradiction. Suppose the KL divergence exactly equals zero. Then
Pe: (z|x) must also be a Gaussian distribution, meaning that the logarithm of po- (z|z) is a quadratic
form in z. In particular, we have

logpe: (zlz) = logN(2[0,1) +log N(z|fy, (2),7I) — logp(z)
1 1
= —§HZI|§ - gllw—fw(Z)H%ﬂLconstant, (64)
where we have absorbed all the terms not related to z into a constant, and it must be that
f,uz (z) =Wz +b, (65)
for some matrix W and vector b. Then we have

i@ = [ wlelzp(=)iz

= N (@|W 2z + b,y )N (2]0, I)dz. (66)
RN
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This is a Gaussian distribution in R? which contradicts our assumption that p,; () is not Gaussian.
So the KL divergence between po- (z|x) and gy (2|x) is always greater than 0. As a result, £(63, ¢7)

cannot reach the theoretical optimal solution, i.e., fX —pgt(x) log pgi(x)da. Denote the gap between
L(03,¢%) and fX —pgt(x) log pg:(x)dx as e. According to the proof in Section [E} there exists a

to such that for any ¢ > ¢, the gap between the proposed solution in Section [E|and the theoretical
optimal solution is smaller than e. Pick some ¢ > ¢, such that 1/¢ < - and let v = 1/t. Then

L8, 6%) < L(07,67) < L(63, ). (67)

The first inequality comes from the fact that {9,’;,, qSi‘Y/} is the optimal solution when ~ is fixed at 7/

while {0}, ¢ } is just one solution with v = 1/t = +’. The second inequality holds because we chose
{07, ¢§ } to be a better solution than {03, ¢ }.

G2 Case2:r<d

In this case, KL [qm (z]x)|[po: (z|:1:)] does not need to be zero because it is possible that

—log Do (x) diverges to negative infinity and absorbs the positive cost caused by the KL diver-
gence. Consider the objective function expression from (2). In can be bounded by

(07, 6%) = /X {~Eq. z12) [logpo: (212)] + KL [g4: (212) [p(2)] } 1100 ()
_ 2 d
2 /x {qus;(zwc) [W t3 log(?m)} } figt(d)
> glog’y > —00. (68)

The first inequality holds discarding the KL term, which is non-negative. The second inequality holds
because a quadratic term is removed. Furthermore, according to the proof in Section [F] there exists a
to such that for any ¢t > ¢,

* * d
L(67,¢7) < 5 log . (69)
Again, we select at > ¢, such that 1/t < «y and let 7’ = 1/¢. Then
L8, 65) < L7 67) < L(65, 67). (70)

H Proof of Theoremd

Recall that
go: (2®) = N (2|fu.(®:03), fs.(®;05) fs. (2505)7) (71
pos(xl2) = N (@l fu.(2:05),91). (72)
Plugging these expressions into () we obtain

1 d
L(03,¢%) = Bz, z12) [%Ilfux(Z) — |3+ 3 log(2m)] + KL [qm (le)llp(z)} (73)

1 d
> 5 Eeonod) (Moo Ui @) + fs.(2)d = 2] + 5 log(2m), (74)

where we have omitted explicit inclusion of the parameters ¢* and 07 in the functions f,_(-), fs. (-)
and f,,, (-) to avoid undue clutter. Now suppose

1 E, o 1) [, i (@) + fs. (@) — 2|3 = 2 # 0. (75)
It then follows that A 4
%g% £(9V, ) = Whgb % + ) log(2my) = +o0, (76)
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which contradicts the fact that £(6%, ¢ ) converges to —oc. So we must have that
. 2
W0 E,_ o 1y [l (@) + f. (@) — 2[l3] = 0. )
Because the term inside the expectation, i.e., || f,,, [fu. (&) + fs. (x)e] — x| |§, is always non-negative,
we can conclude that
li_%fﬂz [fu. (@) + fs.(x)e] = @. (78)

¥
And if we let € = 0, this equation then becomes

tim £, £, (@)) = . 79)

I Further Analysis of the VAE Cost as 7 becomes small

In the main paper, we mentioned that the squared eigenvalues of fs. (z; ¢7) will become arbitrary
small at a rate proportional to ~y. To justify this, we borrow the simplified notation from the proof of
Theorem[d|and expand f,,, (z) at z = f,_(x) using a Taylor series. Omitting the high order terms
(in the present narrow context around the neighborhood of VAE global optima these will be small),
this gives

fua(2) = S, [ ()] + f'l [fu. @) (z = fu) m e+ f, [fu.(@)] (2 = fu.). (80)
Plug this expression and (71)) into (73]), we obtain

£(0.6%) ~ Ezquwz.m)[ 155, U @)} = f DI + § o2
45 (Il @B+ tr (75, (@) 5. (@)T) Lo | . () f. ()| )
- %u (B 2t (2~ fue @) (2~ S @] S, Ui @) S, U )])
+ Dlog(2m1) + 3 {11 @)l + 17 (s, () . (@)T) — log | fs. (@) fs. ()| — 5}
1 1

= tr (. @) 5. @) [5+ 211 U @) 1 U (2]

d
5 log(2m) + 5 {||f,u )3 —log | fs. () fs.(x) | — K} . (81)

From these manipulations we may conclude that the optimal value of fs_(x)fs. (x) must satisfy

57+ 5 A @) £ U @)]| = 5 s @ @) =0, ®2)
So .
fs. @) fs. (@) = [I L0 U@ L U <m>]] | (83)

Note that f/, [fuz( x)] is the tangent space of the manifold x at f,, [f,.(x)], so the rank must

be . fl [fu.(x " fh. [fuz ()] can be decomposed as U ' SU, where U is a k-dimensional
orthogonal matrix and S is a r-dimensional diagonal matrix with r nonzero elements. Denote
dlag[S] = [Sl, Sg, vy ST, 0, ceny 0} Then

-1
ﬁxmygchz{Ung[1+iﬂnwy+i}LmJ}U] ) (84)

Case 1: r = k. In this case, S has no nonzero diagonal elements, and therefore

1
Sy
Ty

fs.(@)fs.(x)" = lUTdiag L:% N

lf] : (85)
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As vy — 0, the eigenvalues of fs.(x)fs.(x)", which are given by ﬁ, converge to 0 at a rate of

O(7).

Case 2: r < . In this case, the first r eigenvalues also converge to 0 at a rate of O(+y), but the
remaining x — r eigenvalues will be 1, meaning the redundant dimensions are simply filled with
noise matching the prior p(z as desired.
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