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Abstract

Deep kernel learning has emerged as a principled framework to simultaneously
forecast and characterize the extent of uncertainty in the forecast in regression
problems. Deep kernel learning uses a deep neural network to learn the kernel
operator of a Gaussian process, which is used to perform the inference. In this
work, we propose a novel way of constructing the deep kernel operator from a set
of mutually orthogonal embeddings, which are learned by a deep neural network.
The proposed approach on one hand reduces the computational complexity of the
deep kernel learning, and simultaneously enables the algorithm to forecast and
characterize uncertainty more accurately for complex functions on the other.

1 Introduction

There have been several approaches to characterize uncertainty in forecasting using deep learning
e.g. Dropout [[1]], Bayesian Neural Network [2], Ensemble-based [3]], Calibration-based [4], Neural
Processes [3]], and Deep Kernel Learning [6, [7, 8]]. Deep kernel learning (DKL) is a combination
of deep neural network (DNN), and Gaussian process (GP). DKL combines the capacity of
approximating complex functions by DNN with the flexible uncertainty estimation framework of GP.
The GP utilizes a kernel operator, which could be perceived as a similarity function to capture the
relationship across various parts of the dataset, to propagate the uncertainty across the dataset. Based
on the geometry of the data, there will be an appropriate functional representation of the kernel
operator e.g. linear, polynomial, rbf, sinusoidal etc. which can optimally represent the geometry. The
selection of the functional representation of the kernel operator is a highly non-trivial task for an
arbitrary dataset, as depending on the geometry of the data, one needs to identify the right functional
form of the similarity or kernel. In the DKL framework, the DNN is used to learn an embedding,
which is acted upon by a radial basis function (rbf) to create the GP kernel [6]. In this way, the
kernel representation is made non-parameteric and can potentially model a richer family of kernels
compared to the standard kernels used in a pure GP formulation. Another challenge of using GP is
the computational complexity, which is O(n?), where n is the size of the training data. In order to
reduce the computational complexity, the authors [[6] have proposed a scheme to approximate the
kernel [6].

In this work, we propose a method to create expressive kernels that are capable of capturing complex
geometry of the dataset while simultaneously being computationally efficient wrt training and
inference. In particular, we construct kernels as a linear combination of a set of simple inner products
between orthogonal embeddings which are learned from a DNN. The kernel decomposition ensures
that each kernel captures the local geometry and the combined kernel captures the combined geometry
of the dataset. This way, we simultaneously do clustering and regression in one framework. In
addition, our proposed technique, by virtue of being a linear combination of orthogonal embeddings,
has a reduced complexity of O(n?) without any approximation of the kernel.
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2 Finite Rank Deep Kernel Learning

We start from the frameworks for the GP and the DKL. Because
of the space limitations, we will briefly review DKL, and refer the
reader to 9] (GP), [6] (DKL) for details. Next, we will describe
our proposed finite rank deep kernel method, and conclude with
experiments that showcase the advantages of the proposed method
in terms of both accuracy and efficiency.

2.1 Hierarchies and Richness of Kernel Operators

We will briefly review the hierarchies of the spaces of symmetric
Figure 1: Hierarchies of ker- and positive definite kernel operators [10]. The Moore Aronszajn
nels. Theorem proves that Reproducing Kernel Hilbert Space (RKHS)

forms the space of the positive definite kernels [10]. Next, we will
consider Mercer kernels, which are formed by a rich subspace of the RKHS, and are continuous
in addition to being symmetric and positive definite. Mercer Theorem provides a decomposition
of such an arbitrary kernel into the eigen functions, as K(z,y) ~ > .-, (;0;(z)0;(y), where
O, forms an continuous orthonormal basis of eigen functions, and the eigen values (;’s decay
asymptotically. A Mercer kernel K (z, y) will be of finite rank R, if it can be expressed as, K (x,y) =

Zle (0, (2)0,.(y). We also note that the rank -1 Mercer kernels forms a smaller subspace of the
Mercer kernels, as it can be observed from Fig. [I] In DKL, the authors propose the use of kernel in the
form rbf (¢(x), ¢(y)), where the d-dimensional embeddings ¢(.) are learned using a neural network.
It can be shown, that rbf is a rank-1 Mercer kernel in the infinite dimension, i.e. in the infinite
dimensional case rbf could be expressed as rbf(x,y) = c¢(x).c(y) for some smooth function ¢(.).
However, to enable efficient inference, the authors have to use a sampling based approximation of this
kernel. An alternative would be to use a rank-1 kernel with a finite dimensional embedding ¢(x)’¢(y),
but this kernel does not have enough representational capacity to capture complex functions.

2.2 Finite Rank Kernels

In this work, our goal is to create a kernel with good representational power that is also effi-
cient wrt inference. To this end, we will use finite rank Mercer kernel (of rank R) K (z,y) =

Zle ¢Or(x,w)dr(y,w). We deploy the DNN (parameterized by w) to learn the ¢,.s, which are
forced to be mutually orthogonal. We will refer to our method as Finite-Rank Deep Kernel Learning
(FRDKL). Next, we will show that this FRDKL kernel simultaneously exhibits the ability to model
complex signals while also being computationally efficient. Specifically, in comparison to DKL,
FRDKL makes up for loss in representational capacity due to using a finite dimensional embedding
through the fact that it employs a finite rank kernel (compared to a rank-1 kernel in DKL). In addition,
the linear representation of the FRDKL kernel allows for O(n?) inference complexity in FRDKL,
which is achieved in DKL only through approximation.

2.2.1 Representational Power

The kernel is modeled as K (x,y) = Zil ¢r(x,w)dr(y, w), where ¢, (y, w)’s will be orthogonal
to one another for different r’s. The DKL algorithm optimizes the negative log likelihood function,
based on the kernel operator, —log p(y|z) ~ y* (K, + ¢*I)~ 'y + log| K, + o*I|. We introduce
a penalty term to the cost, as following : —log p(y|z) + A>_, . . 4., (¢ (2, w) ¢y, (z,w))?,
where, ) is a weight assigned to the orthogonality objective relative to the log likelihood. It is to be
noted that -, . (¢ (, w)T ¢y, (z,w))? is minimized when the embeddings are orthogonal.
By learning this orthogonal representation over a finite rank of embeddings with rank greater than 1,
we are able to more accurately capture the geometry of the underlying signal. In particular, these
orthogonal eigen-functions would capture different local geometries of the dataset, which once
combined would be able to capture the global geometry. Fig. [2a]shows a synthetic dataset, which has
been forecast very accurately by the FRDKL using a d = 5-dimensional embeddings of rank R = 3.
The corresponding orthogonal embeddings are captured by Fig. [2b] It can be observed that the
support of the embedding functions are almost disjoint and as a consequence they are approximately
orthogonal.



2.2.2 Computational Complexity

In this section, we would demonstrate the reduction of the
computational complexity in the proposed method. For
finite number of training data points, we define ¢, =
[@r((x1,w)),...dr((xn,w))], the kernel matrix is defined
as K = Zle ®,.®7.  This orthogonality critically al-
lows us to reduce the computational complexity, by allowing
us to efficiently invert the kernel. Typically, evaluation of

K, (K + 021 ) s the computationally expensive part in GPs
(O(n?)). In our case, by leveraging orthogonality of the embed-
dings to reduce K~ (z,y) to .5 ||®,||"2.®, &7, the term
K. (K + (72]) ~! can be reduced to

R R
K. (K+0%1)7" = <Z <1>35-(<1>25)T> : (Z o2 |||, ¢Z> :
r=1 r=1
which is O(n?) in complexity. The details of the matrix com-
putations could be found in Appendix We will show in
our experiments that DKL, despite using sampling based ap-
proximations, is slower than FRDKL. Finally, we note that in
addition to efficient inference, FRDKL also allows for efficient
training through stochastic gradient descent by virtue of being
able to decompose the loss function over the individual training
points (details could be found in the Appendix [5.3).

3 Simulations

In this section, we will present simulation results for a synthetic
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Figure 2: Forecasts and embed-
dings corresponding to a non-
smooth function. It can be ob-
served that the embeddings, which

the DNN learns, are approximately

sinusoidal dataset, logistic map, and Boston housing dataset.
orthogonal.

We had performed simulation studies for four algorithms - DKL,
Bag of Neural Networks, GP, and FRDKL (proposed method).
In the FRDKL, we have used the rank R = 8. The DNN
architecture, which is used to learn the embeddings, is comprised of 9 hidden layers. The first two
are dense layers with tanh and relu activations with 4 « R number of units, followed by a dropout
layer with dropout probability 0.01. The same layer structure is repeated twice more with number of
units 2 * R and R respectively. For fair comparison we have used the same network architecture for
DKL, by replacing only the output layers activation to rbf. For the bag of NN, we have used the same
network architecture with bag size 25. For an arbitrarily complex high dimensional dataset, we would
require more complex neural networks. It can be shown theoretically that the kernel of an arbitrary
complex high-dimensional dataset could be approximated by a DNN of finite number of layers. The
more complex the geometry of the data, potentially deeper the network would be. The details of this
sufficiency condition can be found in the form of Theorem[5.1]in the Appendix[5.1] The weight of the
orthogonality penalty A (from subsection[2.2.1)) is chosen as 0.3. It can be observed that with increase
in the value of A the embeddings would become more orthogonal with pooer the log-likelihood loss.
The first data set is a sinusoidal function [6]], whose frequency increases as square of x. Figure 3]
contains the plots corresponding to different algorithms for this particular dataset. We have added
heteroscedastic noise to the function, where the noise magnitude increases from the left to right. This
experiment studies the mixed effect of heteroscedastic noise and nonlinear fluctuation in the dataset.
It can be observed that the bag of NN underestimates the confidence intervals near the noisy region.
For DKL and GP, we can observe the confidence intervals fluctuates heavily near the noisy region.
However, in the FRDKL the confidence bounds are relatively stable and can capture regions of high
noise and fluctuations.

The second example shows the simulation results for Logistic map, which can be found in Fig.
We would try to forecast 1-step ahead value of the time series based on past 3 data points. We can
show with the aid of dynamical systems theory that 1-step ahead value could be forecast by a smooth
function based on the 3 past data points. Logistic map is a chaotic but deterministic dynamical system
Tpt1 =T (1 — x,), where z,, € S7. We generate the time series data, generated by the system
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Figure 3: (a-d) Forecasts for sinusoidal data. The uncertainty bounds are 1 — o limits. FRDKL (proposed
method) outperforms competing methods with respect to the negative log likelihood (NLL) although there are
singular data points, where it has not succeeded to capture the uncertainty.
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Figure 4: (a-d) Mean and 1 — o uncertainty bounds for logistic map. FRDKL (proposed method) outperforms

competing methods in terms NNL.



for r = 4.1, which falls in the region of strange attractor [[11]. It can be observed that the GP and
NN output very wide confidence intervals, and these models erroneously identify chaos as noise. For
DKL the bounds are relatively moderate. On the other hand, the proposed FRDKL method correctly
estimates the confidence intervals to capture the chaotic time series with very narrow confidence
bounds.

We have also performed simulations over Boston housing regression dataset [[12}[13}[14] and have
compared DKL and FRDKL. In this dataset, based on variables like per capita crime, non-retail
business acres per town, nitrogen oxides concentration etc. (13 such features in total), we were to
forecast median value of the owner-occupied homes. The dataset has 506 sample data points. We
have made a 60 — 40 split of the dataset into training and test. We have computed the normalized
root mean squared error (NRMSE) as a measure of accuracy, which is computed as the RMSE of a
predictor divided by the standard error of the samples. The NRMSE < 1 would be the threshold for
any predictor performing better than the sample mean. The NRMSE values were found to be 0.41 for
DKL and 0.25 for FRDKL. The average CPU time lapsed for one epoch during the model training
were 0.32 sec for DKL and 0.079 sec for FRDKL. The inference times were 0.03 sec and 0.01 sec for
DKL and FRDKL. In summary, we have demonstrated that FRDKL outperforms competing methods,
including DKL, both in terms of accuracy as well as computational efficiency.

4 Conclusion

We have proposed a novel way of representing the kernel operators in DKL as a finite linear
combination of simpler dot kernels, which we call as Finite Rank Deep Kernel Learning (FRDKL).
We have demonstrated theoretically that our proposed approach would reduce the computational
complexity to O(n2), while still enabling us to produce rich kernels that can model complex datasets.
We have presented simulation studies over one simulated dataset, logistic map, and the Boston
housing dataset, and have found our proposed method to have outperformed competing algorithms.
In the future, we will carry out more detailed experimental studies over additional datasets in the UCI
repository, and also present a scheme for efficient hyper parameter tuning.
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5 Appendices

In this section, we would provide some technical details, computations, and the proofs.

5.1 Sufficiency Condition for Deep Neural Networks to Learn Finite Rank Kernels

We would state a sufficiency condition, which describes that a deep neural network of finite depth
would be sufficient to learn a Mercer kernel of finite rank to arbitrary precision.

Theorem 5.1 ( Deep Neural Network as Universal Approximator of Finite Rank Kernel ) For
any Mercer Kernel K (z,y) = 2511:1 Cr Oy ()04, (y), and an € > 0, there exists an N and a
family of neural network regressors with finite number of hidden units and output layer ¢..,(z,w) s.t.

R>
| K (z,y) — Z Gry (T, w)Pr, (y,w)| <€, YRy >N, and ¥V z,y € X,

T2:1

where, O, (z), and ¢y, (2, w) form sets of mutually orthogonal functions. Theorem 5.1|states that
an arbitrary smooth Mercer Kernel can be approximated arbitrarily close by a multi-layered neural
network. ©,, (z, w)s are the output of the neural network, which forms an embedding, which are
orthogonal to one another. The proof of the Theorem [5.1]could be attained by extending results from
[15], and then extending it for orthogonal eigen-decomposition of the Mercer operators [10].

5.2 Matrix Computations to Reduce Computational Complexity

We would provide the detailed matrix calculations, which would help us reduce the computational
complexity of the matrix inversions, utilizing the orthogonality of the embeddings. We have expressed

the kernel operator as K (x,y) = Zle dr(x, W) (y, w), where ¢,.(y, w) are orthogonal to each

other. For finite number of training data points, we define &, = [¢.((z1,w)), ... ¢r((Tn,w))],
the kernel matrix is defined as K = Zil ®,.®7, which will have the inverse K ~!(z,y) :=
Zle ﬁ@)r ®T as we can show, using the orthogonal embeddings the following,

R R
_ 1
K(z,y) . K Y(z,y) = <§ <I>T.<I>;:F> : <§ I3 ||2.<1>T @f) =1.
r=1 r=1 r

. . -1 . . .
Next, we would derive the expression for (K + 021 ) . We could express identity matrix as

R 1 n—R 1
_ . T . T
T= |\ X ™ ™ 2 e |
i=1 v j=1 "




where 7);’s are orthogonal to each other and form the null space of the subspace spanned by ®;’s.
This construction leads us to the following equation,

=

n—R

2
i=1 ¢
) 0_2 . n—R 0_2
mm“”)zzmw@Q+ZMW%W
i=1 g j=1 "1
R 0_2
= (> @) (> TN o, o7
r=1 r=1 r

It can be observed that the complexity of the K, (K + 021 ) ! computation would be O(n?).

5.3 Decomposition of the Loss Suitable for Stochastic Gradient Descent

Next, we would address the question, whether or not we would be able to decompose the loss
function over the training data points, so that the stochastic gradient descent could be used. We have
observed that the loss function is comprised of the log-likehood and a penalty function for orthogonal
embeddings. The penlaty function is a function of an individual datapoint, and thus we would have to
prove the decomposition of the log-likelihood. We would utilize the orthogonality of the embeddings
once more to reach the decomposition.

—log p(ylz) ~ y" (Ky + 0°1) "y + log| K + 01|,

R -1 R
T <Z<I>T ol —|—021> y+l0g|Z<I>r ol + o%1],

r=1 r=1

n _
1
=47 (H (UQQDT @erJQI)) y+log|H< P, <I>T+J2I)|

r=1

R
1
_yT<H<02q>T<I>Z+021) >y+log|H< o, oI + 2I)|.

r=1
which leads to the decomposition of the loss function into training data points.

5.4 Deep Orthogonal Bayesian Linear Regression

One can draw parallels between the GP and Bayesian Linear Regression (BLR) [9]. BLR can be
shown as equivalent to GP with dot kernel. We can extend the developed technique to BLR, where

the regressor becomes a linear combination of orthogonal embeddings, which would be learned by a
DNN.

R
Yy~ Z (br(x)wr + €,
r=1

where, € is the observation noise with variance o2, and R is the rank of the combined embedding. It
can be shown,

R
felz, X,y ~ N <122 I(I)ryv ¢r($*)A1¢(x*)> )

where @, = ®,.(X),and A = Y.7* | £ ®,®7 + 1. It can be further modified to,
R

felza, X,y ~ N(Z(ﬁr(x*)Ep(I)T(K + o2y
r=1
R
(6r (0220 02) = 6 S0 K+ 1) 0050000 ). (1)

r=1



where, K = Zle ®,%,®,. In (1), using the orthogonality of the embeddings, we could reduce
the complexity of (K + o2I)~!. We can formulate a global optimization problem, which would
optimize the log likelihood of the BLR with orthogonal embeddings, learned by deep neural network.
We could incorporate the orthogonality constraint in the loss function similar to the way it was done
for FRDKL.
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