
Practical Considerations for Probabilistic
Backpropagation

Matt Benatan
IBM Research UK
Sci-Tech Daresbury

Warrington, UK.
matthew.benatan@ibm.com

Edward O. Pyzer-Knapp∗
IBM Research UK
Sci-Tech Daresbury

Warrington, UK.
epyzerk3@uk.ibm.com

Abstract

Probabilistic Backpropagation (PBP) was developed to address the scalability
issue of Bayesian neural networks, and facilitates tractable Bayesian learning of
networks with large structures and large amounts of data. PBP exhibits competitive
performance when compared to both traditional backpropagation and to other state-
of-the-art Bayesian methods. In this paper we provide guidelines for improving
training time for PBP through applying early stopping, mini-batching, and lock-
free asynchronous updates. We also introduce a method for extending PBP to
classification tasks. Performance evaluations carried out on a number of real-world
datasets show that significant enhancements to training time can be achieved via
the proposed methods, and that PBP can be successfully applied for classification.

1 Introduction
Deep learning has achieved state-of-the-art results for machine learning problems across a range of
application contexts [14]. However, the large amounts of data and high complexity of the networks
used makes hyper-parameter optimisation difficult. These methods also do not to capture model
uncertainty, thus model confidence can’t be accounted for. Bayesian neural networks address hyper
parameter optimisation by estimating the model parameters through posterior inference, and in doing
so, they also account for model uncertainty. while they exhibit clear advantages, many Bayesian
neural network methods do not scale well [11][10][9][8].

Probabilistic Backpropagation (PBP) [7] is one of a number of methods that have been proposed for
integrating Bayesian methods with neural networks [4] [15] [6]. PBP works by first obtaining the
likelihood through propagating weights forward through the network, after which it backpropagates
the gradients of the log-marginal likelihood with respect to the parameters of the posterior approxi-
mation. This has proven to be an effective approach for Bayesian learning of network parameters,
and has yielded competitive results when compared to contemporary methods.

In this paper, we introduce methods for adapting early stopping [13], mini-batching [2], and lock-free
asynchronous updating [12] for PBP, before presenting an adaptation of PBP for classification.

2 Contributions
In this section we detail a number of methods to improve PBP through 1) early stopping, 2) mini-
batching, 3) lock-free asynchronous updating, and 4) adapting PBP for classification.

One noteable implementation detail is as follows: the initial paper details that γi becomes unstable for
α < −30 [7]. In our work, we additionally found that γ becomes unstable for values of α > 8, and

∗Corresponding author

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

that the ideal α bounds for γi are −33 < α < 8. We discovered that using γi for these α values, and
the approximation of γi for α values outside of this range, produce better stability during training.

Generalisation loss (GL) is defined as the ratio between the current validation error, Eva(i), and the
best validation error achieved so far, Eopt(i) [13]. The stopping criterion is defined as the point at
which GL exceeds a threshold, α. In this work, we have adapted the generalisation loss to PBP by
using the reciprocal of the validation likelihood instead of the validation error, as it is the log-marginal
likelihood that is used during backpropagation. We use the likelihood as this ensures positive values,
whereas the log-likelihood can take the form of both positive and negative values. We take the
reciprocal of the likelihood values as they behave similarly to the error term used in the original form
of GL. We therefore define the GL at epoch i as:

GL(i) = 100 ·

(
Lva(i)

−1

Lopt(i)−1
− 1

)
where Lva and Lopt are the current and best validation likelihood values at time t, respectively.

Another approach is to use the training progress (Pk) in combination withGL [13], thus incorporating
information on training set performance. Pk(i) is obtained by dividing the average objective by the
minimum objective w.r.t a sliding window over k epochs. As with GL, we have adapted the original
equation for Pk(i) by using the reciprocal of the likelihoods:

Pk(i) = 1000 ·

(∑i
i′=i−k+1 Ltr(i

′)−1

k ·minii′=i−k+1Ltr(i
′)−1

− 1

)
We then define our stopping criteria, using the quotient of GL(i) and Pk(i):

PQα =
GL(i)

Pk(i)
> α.

The last early stopping method explored here is patience [2], whereby the validation error is monitored,
and training is halted if this fails to improve for some k epochs. In this work, we use validation
log-likelihood in place of validation error.

Another method to improve PBP training time is lock-free asynchronous updating [12]. This simply
involves running each training step in parallel within each epoch, and updating values in the network
asynchronously as and when each step has completed.

Similarly to [5], we present a modification of PBP for classification tasks. In computing the log-
marginal likelihood for PBP, a loss, L, is incorporated:

−0.5 ·

(
log(vf) + L

vf

)
where vf is the linear activation of the variance weights from the final layer, and L is the squared
loss defined as (y − y′)2, where y′ is the linear activation of the mean weights from the final layer
and y is a target value. To adapt PBP for classification, we represent our class targets as one-hot
vectors, replace PBP’s linear activation on the final layer’s mean weights with a softmax activation,
and replace the squared loss with a cross-entropy loss [3].

3 Results
3.1 Early Stopping

For the early stopping investigations we have used five datasets from the original paper. For these,
a PBP network with one hidden layer of 50 units is used. For the baseline, we set the number of
epochs to 40; for each other test, we set the maximum number of epochs to 500. The α values used
for the GL and PQ methods were set to 1.0 and 0.01 respectively for all datasets, and k is set to 10
for all early stopping methods. Training is run 20 times for each early stopping method and dataset,
randomly reinitialising the train/test split each time.

2

Test RMSE Test LL
Dataset N Baseline GL PQ Patience Baseline GL PQ Patience

Boston 506 3.35 3.68 3.6 3.49 −2.76 −2.75 −2.73 -2.71
Energy 768 2.01 1.56 1.47 1.78 −2.25 -1.80 −1.83 −2.05
Concrete 1030 5.77 6.07 5.76 5.74 −3.19 −3.23 −3.19 -3.18
Wine 1599 0.63 0.62 0.63 0.62 −0.95 −0.95 −0.96 -0.94
Yacht 308 0.92 1.37 1.18 0.75 −1.56 −1.78 −1.59 -1.11

Table 1: Mean results from early stopping tests.

Figure 1: Scatter-plot of early stopping results for all datasets.
Orange: baseline. Green: results from method. Lines denote medians.

As demonstrated in Table 1 and Figure 1, the best results are often achieved when using patience.
However, all of the early stopping methods frequently stop training before the number of epochs used
in the baseline - with GL typically stopping between 10 and 20 epochs, while suffering only minor
RMSE and log-likelihood (LL) performance degradation. PQ and patience often take longer to reach
the stopping criterion, but achieve better RMSE and LL results. This indicates that there is a trade-off
when selecting early stopping methods: GL can reduce training time and maintain good performance,
while the other two methods can improve performance, but may take longer to train.

3.2 Mini-Batching

This set of investigations looks at the effects of mini-batching on six openly-available datasets of
varying size [16][1]: Malaria (18,924), kin8nm (8192), Combined Cycle Power Plant (9568), Year
Prediction MSD (515,345), Naval Propulsion (11,934), and Protein Structure (45,730). The same
network structure as the first investigation was used, apart from the two largest datasets - Protein
Structure and Year Prediction MSD - which use one hidden layer of 100 units, as per the original
PBP paper [7]. Training was repeated ten times for each mini-batch size and dataset. The mean
test-set log-likelihood and training duration were used to construct Figure 2. We normalize for
hardware-specific timings by presenting results as a comparison to baseline training times.

Figure 2: Scatter plot of mini-batching test-set results.

As demonstrated in Figure 2, increasing the batch size greatly improves training time, obtaining a
speed-up of >5x on all datasets, with the largest dataset, Year Prediction MSD, obtaining a speed-
up of over 7.5x. The improved training time comes at the cost of reduced performance for some

3

datasets, particularly at mini-batch sizes of 32 and 64, however this reduction in performance may be
outweighed by the improved training time depending on the application.

3.3 Combined Methods

We combined the early stopping and mini-batching methods described above with the method for
lock-free asynchronous updates described in [12], and applied these to the two largest datasets: Year
Prediction MSD and Protein Structure. We used the GL method for early-stopping, and used a
mini-batch size of 16, as these parameters provided the greatest speedup with minimal degradation in
performance. We compare a baseline with no mini-batching, early stopping or asynchronous updates
to 1) mini-batching and early stopping, 2) mini-batching, early stopping and 2 asynchronous workers,
and 3) mini-batching, early stopping and 4 asynchronous workers. The following uses the mean
results from 5 runs of each configuration.

Figure 3: Scatter plot of results from combined methods.

As demonstrated in Figure 3, significant speedup can be attained when combining these three
approaches - with a speedup of >11x the baseline with four workers when compared to none of the
additional methods.

3.4 Classification

Here, we demonstrate the results of applying PBP classification to a number of classification tasks
with varying dimensionality: three binary classification tasks, and one multi-class classification task -
all sourced from the UCI ML Repository [1].

Classification Performance
Dataset Size n classes d Accuracy Precision Recall F-score

Digits 1797 10 64 0.921 0.921 0.916 0.915
Breast Cancer 569 2 30 0.977 0.974 0.978 0.975
Tic-Tac-Toe 958 2 9 0.879 0.833 0.91 0.853
Phishing 11055 2 30 0.951 0.95 0.952 0.951

Table 2: PBP classification results.

4

Figure 4: Bar chart comparing PBP performance with neural network (green) and random forest (orange)
classifiers.

We compare PBP with two other classifiers. The first is a feedforward neural network (NN) with the
same architecture as the PBP model (one hidden layer of 20 neurons) trained using backpropagation
with an Adam optimizer. The second is a random forest classifier with 10 trees and a maximum
tree-depth of 10. The PBP and NN methods are each trained for 40 epochs for fair comparison. As
shown in Table 2 and Figure 4, the classification variant of PBP can be successfully applied to a range
of tasks, achieving strong classification results in both binary and multi-class applications. These
results significantly outperform the NN, achieving similar performance to the random forest, but with
the addition of a high quality model for uncertainty.

4 Conclusion
We have introduced a number of practical considerations for PBP, and have examined how the
proposed methods impact PBP’s performance, training time, and its application to classification tasks.

The early stopping methods provide a number of ways to improve training - either with respect to
training duration, or with respect to performance - while replacing the epochs hyperparameter with a
better defined parameter, α, which is more suitable to place a prior over.

We have also demonstrated that mini-batching can be successfully applied to significantly reduce
training time for PBP. Additionally, we show that the combination of early stopping, mini-batching,
and the lock-free asynchronous update strategy can achieve a significant reduction in training time
while maintaining strong performance.

Lastly, we demonstrated that PBP can be successfully adapted for classification tasks using the
proposed method, and that this is effective for both binary and multi-class classification problems.

References
[1] UCI Machine Learning Repository.

[2] Y. Bengio. Practical recommendations for gradient-based training of deep architectures.
arXiv:1206.5533 [cs], June 2012. arXiv: 1206.5533.

[3] D. Campbell, R. A. Dunne, and N. A. Campbell. On The Pairing Of The Softmax Activation
And Cross–Entropy Penalty Functions And The Derivation Of The Softmax Activation Function.

[4] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. arXiv:1506.02142 [cs, stat], June 2015. arXiv: 1506.02142.

[5] S. Ghosh, F. Maria Delle Fave, and J. Yedidia. Assumed Density Filtering Methods for Learning
Bayesian Neural Networks. Phoenix, AZ, USA, Feb. 2016.

[6] A. Graves. Practical Variational Inference for Neural Networks. NIPS’11, pages 2348–2356,
USA, 2011. Curran Associates Inc.

[7] J. M. Hernández-Lobato and R. P. Adams. Probabilistic Backpropagation for Scalable Learning
of Bayesian Neural Networks. arXiv:1502.05336 [stat], Feb. 2015. arXiv: 1502.05336.

[8] G. E. Hinton and D. van Camp. Keeping the Neural Networks Simple by Minimizing the
Description Length of the Weights. COLT ’93, pages 5–13, New York, NY, USA, 1993. ACM.

5

[9] P. Jylänki, A. Nummenmaa, and A. Vehtari. Expectation Propagation for Neural Networks with
Sparsity-promoting Priors. arXiv:1303.6938 [stat], Mar. 2013. arXiv: 1303.6938.

[10] D. J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks. Neural
Computation, 4(3):448–472, May 1992.

[11] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996.

[12] F. Niu, B. Recht, C. Re, and S. J. Wright. HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. arXiv:1106.5730 [cs, math], June 2011. arXiv: 1106.5730.

[13] L. Prechelt. Early Stopping-But When? pages 55–69, London, UK, UK, 1998. Springer-Verlag.

[14] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
Jan. 2015.

[15] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary,
Prabhat, and R. P. Adams. Scalable Bayesian Optimization Using Deep Neural Networks.
arXiv:1502.05700 [stat], Feb. 2015. arXiv: 1502.05700.

[16] T. Spangenberg, J. N. Burrows, P. Kowalczyk, S. McDonald, T. N. C. Wells, and P. Willis. The
Open Access Malaria Box: A Drug Discovery Catalyst for Neglected Diseases. PLoS ONE,
8(6):e62906, June 2013.

6

	Introduction
	Contributions
	Results
	Early Stopping
	Mini-Batching
	Combined Methods
	Classification

	Conclusion

