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Abstract

Kernel sparsity (“dying ReLUs”) and lack of diversity are commonly observed
in CNN kernels, which decreases model capacity. Drawing inspiration from
information theory and wireless communications, we demonstrate the intersection
of coding theory and deep learning through the Grassmannian subspace packing
problem in CNNs. We propose Grassmannian packings for initial kernel layers
to be initialized maximally far apart based on chordal or Fubini-Study distance.
Convolutional kernels initialized with Grassmannian packings exhibit diverse
features and obtain diverse representations. We show that Grassmannian packings,
especially in the initial layers, address kernel sparsity and encourage diversity,
while improving classification accuracy across shallow and deep CNNs with better
convergence rates.

1 Introduction

Filter level sparsity, commonly known as “dying kernels” or “dying
ReLUs” are common phenomena in Convolutional Neural Networks
(CNNs). This phenomenon has been attributed to adaptive optimiz-
ers (Adam, Adagrad, Adadelta), high L2 or weight decay, and the
usage of the ReLU activation function [14, 11, 18]. Attempts to
mitigate the dying ReLU issue with Leaky ReLUs have not been en-
tirely effective, with minor overall impact on the emergent sparsity
[14].

Figure 1: Left: sparse filters in
CNNs; Right: diverse, non-sparse
Grassmannian kernels.

While kernel sparsity or pruning could benefit CNNs for faster inference and smaller models [6, 15,
9, 4], sparsity in the lower layers could be detrimental as the first few layers, especially the first layer,
are “sensitive to initialization” are critical to forming good predictions [20]. Since the initial layers
learn simple patterns and subsequent layers build upon initial layers to develop complex features,
sparsity in initial layers would decrease model capacity.

Besides sparsity, kernel diversity has garnered much attention: Zeiler et. al. proposed a set of best
practices to improve upon Alexnet with different kernel sizes, stride-lengths and feature-scale clipping
[19] to prevent specific filters from “dominating”. Capturing distinctive features, especially in lower
level layers, ensures that each filter learns something different and improves computational capacity
that the CNNs dispense at the classification problem[5].

Here, we seek to address two problems, namely sparsity and lack of diversity of kernels, especially for
the most important first few layers. We propose Grassmannian subspace packings as an initialization
to project channel information onto a space where the basis vectors are maximally distant to capture
as much diversity as possible and increase model capacity. We refer to the latter as “channel expander”
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layers. We demonstrate that models with first-layer Grassmannian kernels achieve better accuracy
and convergence rate with diverse, non-sparse kernels, which improves model capacity.

2 Grassmannian line and subspace packings

Grassmannian subspace packing [2] in experimental mathematics and information theory has been
used in beamforming techniques for physical layer wireless communications, limited feedback
codebook-based downlink beamforming schemes and sparse signal reconstruction [12, 10, 16].

Set theoretic definition. The real Grassmann manifold G(m, k) is define as the set of all k-
dimensional subspaces in Rm, where G(m, k) = {W ⊂ Rm | dim(W ) = k}. The Grassmannian
N-subspace packing problem is the problem of finding a set ofN k-dimensional subspaces inG(m, k)
that maximize the minimum pairwise distance between subspaces in the set under some metric [3].

For an N packing problem of G(m, k), let Ωm×k denote the set of subspaces in Rm×k. We find
Ωm×k where the minimum distance between any wi,wj ∈ Ωm×k(i 6= j) is maximized. The two
popular distance metrics being chordal distance and Fubini-Study distance, which are defined below.
With the restriction that k ≤ m, for two k-dimensional subspaces S and T ,

dchord(S,T ) :=

√
sin2 θ1 + · · ·+ sin2 θk

=
[
k − ||S ∗ T ||2F

] 1
2 .

(1)
dFS(S,T ) := arccos

( ′∏
k

cos θ′k

)
= arccos |detS ∗ T |.

(2)

For our experiments, we use generate a codebook matrix for subspace packing based on Fubini-
Study distance which has better experimental results1[13]. We first generate a codebook matrix,
W = {w1|w2|...|wN};wi ∈ Ωm×k. W is a rank-k codebook characterized by the minimum
distance of packing δ(W),

δ(W) := min
i6=j

d(wi,wj) (3)

We seek to find W = {wi}Ni=1 that maximizes δ(W),

max
{wi},wi∈G(m,k)

min
i 6=j

d(wi,wj) (4)

The Rankin bound [1] provides the theoretical upper bound of the maximum of the minimum pairwise
distances between subspaces and is given by,

δ(W) ≤

√
(m− k)N

m(N − 1)
(5)

Grassmannian packing seeks to answer "what is the best way to optimally pack N k-dim subspaces in
an M-dim space?". For the first convolutional kernel with width = 3, height = 3 (9 parameters per
channel) with input channels = 3, output channels = 32, we ask:

"How can we optimally pack 9 3-dim subspace in a 32-dim space,
such that any two subspaces (kernels) are maximally separated?"

3 Experiments

We first generate Grassmannian codebooks for subspace packings, and load the codebook as CNN
kernels. We compare accuracy and rate of convergence of shallow CNNs and deep CNNs. For a
shallow 4-conv CNN, we trained 3 models: Kaiming-initialized CNNs, the same CNN but with
Grassmannian as first layer (frozen and trainable). These models had their first layer initialized as
G(32, 3, 9) for CIFAR10 and CIFAR100, and G(32, 1, 9) for single-channel MNIST and KMNIST2.

For deep CNNs, we used ResNet18 architecture and initialized the first layer with G(64, 3, 49)3. We
trained ResNet with batch size of 64, SGD optimizer with learning rate of 0.01, momentum of 0.9,
with a learning rate decay by a factor of

√
10 every 10 epochs [8]. Besides having Kaiming-initialized

baseline, first-layer Grassmann and first-layer frozen Grassmann, we also scaled the Grassmann as per

1https://www.mathworks.com/matlabcentral/fileexchange/41652-grassmannian-design-package.
2The first conv layer has parameters (width 3, height 3, 1 or 3 input channels and 32 output channels).
3The first layer of ResNets are conv kernels (width 7, height 7, 3 input channels and 64 output channels).
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Kaiming init, such that the activations are correctly scaled that facilitates learning without vanishing
gradients [7]. We scale the Grassmannian basis such that the magnitude is of factor

√
2/din. Since

the scaling factor is constant, the directions of Grassmannian subspace basis vectors are preserved.

We check for convergence rate by examining first-epoch accuracy of shallow CNNs on MNIST,
KMNIST, CIFAR10 and CIFAR100, as well as accuracy, kernel sparsity and diversity. As adaptive
optimizers and weight decay could affect sparsity, we test on different optimizers such as SGD,
Adadelta and Adam, and with/without weight decay of 0.0001.

4 Results and Discussions

Grassmannian models achieve higher accuracy on the 10 class Imagenette problem with ResNets,
even when Grassmannian kernels are frozen upon initialization. With weight decay, Grassmannian
kernels achieve the highest accuracy out of the four, whereas Kaiming-scaled Grassmannian packings
outperforms the rest without weight decay, as per Table 1.

Table 1: ResNet18 on 10-class ImageNette with SGD optimizer, with and without weight decay.
Validation Accuracy (%)

Model Without Decay With Decay

Baseline 90.7 90.4
Grassmannian 92.4 91.8
Grassmannian, Frozen 90.8 91.6
Grassmannian, Kaiming-Scaled 92.8 91.5

Grassmannian initialization also improves convergence for both shallow (Figure 6) and Deep CNNs
(Figure 3), with both frozen and trainable Grassmannian models achieving higher first-epoch accuracy
(Table 2). Grassmannian subspace initialization, where each convolutional filter was assigned the
subspace basis vectors for their corresponding Grassmannian packing scheme, outperformed the
baseline on every dataset.

Table 2: Faster Convergence of Shallow CNN, first epoch accuracy.
Validation Accuracy (%)

Model MNIST KMNIST CIFAR10 CIFAR100

Baseline 90.9 59.7 33.6 2.57
Grassmannian, Frozen 91.9 66.2 40.5 4.73
Grassmannian 92.6 66.4 41.1 4.70

Interestingly, we see a marginal improvement over Grassmannian initialization by simply rendering
the Grassmannian initialization untrainable. We postulate that in certain cases, simply projecting the
input feature maps to be as far apart as possible as opposed to using another trainable convolutional
layer is enough for later layers to make better use of their own capacity, at least in early training.

Figure 2: Distribution of mean, mariance and norm over the 64 kernels of first layer of ResNet.

Qualitative inspection of the kernels (Figure 7) reveal that Grassmannian kernels learn diverse features
with a mixture of edge, color and pattern detectors in each kernel, without any kernel dominating
that shows improved diversity and fewer sparsity. While baseline and Grassmannian packings gave
mean close to 0, intra-kernel variance and norms are higher for Grassmannian packings, indicating
diversity and fewer sparsity with the distribution across kernels shown in Figure 2.

3



Interestingly, trainable Grassmannian packings outperform baseline which outperforms frozen Grass-
mannian packings when adaptive optimizers are used (especially Adam, see Figure 5). Since Adam
contributes to sparsity [14, 18], it is at odds with Grassmannian packings that are against sparsity and
for diversity. Nonetheless, most models such as ResNet, RandWire, NASNet and DenseNet achieve
SOTA results through SGD with a careful learning rate scheduler, which could further benefit from
Grassmannian packings due to their demonstrated performance using SGD [17].

5 Conclusion

In this work, we showed that the use of Grassmannian packings for first layer initialization improved
performance in the contexts of shallow networks and deep networks, even with untrainable Grassman-
nian kernels, across multiple datasets. Grassmannian kernels are best used with SGD optimization
and works with weight decay or otherwise. Our results suggest improvement of the model’s capacity
to learn by simply initializing the first layer filters to be maximally distant and capture as many
diverse features as possible. In the future, we hope to extend this analysis to explore the several other
options for metric used in the Grassmannian packing, and search for ways to inform the choice in
metric.
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Appendix

Figure 3: ResNet with and without weight decay, with Grassmannian achieving better convergence
and better final accuracy with everything else kept constant. Last image: zooming into last few
epochs for ResNet with weight decay.

Table 3: Final Accuracy of ResNet-56 on CIFAR-10 with first layer Xavier, Grassmannian trainable,
and Grassmannian Frozen.

INITIALIZATION TEST ACC
STANDARD, XAVIER 91.85

GRASSMANNIAN, FIXED 91.98
GRASSMANNIAN, TRAINABLE 92.31
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Figure 4: Illustration of how the first conv layer is initialized with Grassmannians, with visualizations
of Grassmannian packings. Left: 5-packing of G(3, 1), which answers “how should 5 laser beams
passing through a single point in R3 be arranged so as to make the angle between any two of the
beams as large as possibe". Right: 2-packing of G(3, 2). These concepts can be extended to higher
dimensions.

0.30 0.35 0.40 0.45 0.50

Accuracy after 1 epoch

0

5

10

15

20

25

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(a) SGD

0.45 0.50 0.55 0.60 0.65

Accuracy after 1 epoch

0

5

10

15

20

25

30

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(b) Adadelta

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Accuracy after 1 epoch

0

5

10

15

20

25

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(c) Adam

Figure 5: Distributions of 30 runs of first-epoch test accuracy at the first epoch with different
optimizers on the same shallow CNN architecture, comparing initialization of first layer using
standard Xavier initialization, frozen Grassmannian packings, and trainable Grassmannian packings.
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Figure 6: Distributions of 30 runs of first-epoch test accuracy at the first epoch with SGD with
different datasets, comparing initialization of first layer using standard Xavier initialization, frozen
Grassmannian packings, and trainable Grassmannian packings.
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(a) Grassmannian, no weight decay. (b) Kaiming-scaled Grassmannian, no weight decay.

(c) Grassmannian, weight decay. (d) Kaiming-scaled Grassmannian, weight decay.

Figure 7: Visualizations of Trainable Grassmannian Kernels of ResNet trained using SGD, with and
without weight decay after training for 80 epochs on ImageNette.

Standard Init
Grassmannian, Frozen
Grassmannian, Trainable

Figure 8: Comparison of standard initialization and Grassmannian initialization of first layer as both
trainable and untrainable parameters on ResNet56 trained on CIFAR-10. Grassmannian approaches
have a faster convergence with marginally better test accuracy with Adam optimizer used in all 3
cases.
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