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Abstract

We propose a neural network architecture for domain adaptation in reinforcement
learning. The architecture allows learning similar latent representations for similar
observations from different environments without access to a one-to-one correspon-
dence between the observations. The model achieves the alignment between the
latent codes via learning shared dynamics for different environments and matching
marginal distributions of latent codes. Furthermore, a single policy trained upon
the latent representations from one environment acts optimally simultaneously for
different environments.

1 Introduction

Reinforcement learning algorithms struggle to adapt quickly to new environments [Tzeng et al., 2015,
Tobin et al., 2017]. In this paper, we consider a problem of leveraging representations learned in
a source task S in a new, target task T . We assume that the source and target tasks have similar
dynamics in a hidden space. As an example of such a source-target pair, consider an Atari game with
observations xS as a source environment, and a target environment with observations xT that were
obtained by inverting colors of xS .

We propose a model that learns similar latent representations for similar pairs of observations xS
and xT from different domains. The model uses shared dynamics in a latent space and adversarial
matching of latent codes as a way to align the latent representations. Given the aligned latent
space, the model aims to learn a policy upon latent representations that is optimal for both of the
environments.

The related work includes [Gamrian and Goldberg, 2018] training a mapping in an unsupervised way
directly between observations from source and target domains using CycleGANs [Zhu et al., 2017].
Ilse et al. [2019] proposes an architecture based on variational autoencoders [Kingma and Welling,
2013] that learns separately target-specific, domain-specific and reconstruction-specific features. A
series of papers [Sadeghi and Levine, 2016, Tobin et al., 2017] proposes to increase the robustness of
models by augmenting training datasets with randomized observations. The distinction of our model
is exploiting the temporal structure of reinforcement learning and leveraging the assumption that
source and target tasks may have similar dynamics in some hidden space.

We evaluate the proposed model on a pair of toy environments and demonstrate that the model
can learn alignment between latent codes for different domains. Furthermore, a single policy upon
the latent representations trained on data only from the source task acts optimally in both of the
environments. We release PyTorch code at github.com/nikishin-evg/dyn_aae.
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Figure 1: An illustration demonstrating the ef-
fects of introducing shared dynamics and the
adversarial loss. Top left: aggregated posteriors
qS(z) and qT (z). Top right: unaligned codes in
matched qS(z) and qT (z). Bottom left: disjoint
qS(z) and qT (z). Bottom right: aligned space.
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Figure 2: An instance of the proposed architec-
ture. During training on the source environ-
ment, DS(z) distinguishes between samples
from qS(z) and a prior distribution. During
training on the target environment, qη(z′|z, a)
is fixed andDT (z) distinguishes between sam-
ples from qS(z) and qT (z).

2 Domain adaptation using shared latent dynamics

The proposed model is based on variational autoencoders [Kingma and Welling, 2013]. We introduce
an encoder-decoder pair qφS (z|x), pθS (x|z) for a source environment S and an encoder-decoder
pair qφT (z|x), pθT (x|z) for a target environment T . Without additional requirements, latent codes
for different domains would be irrelevant to each other. Thus we further extend the mode by two
mechanisms that force latent codes for S and T to be aligned.

Adversarial posterior matching The first mechanism forces latent codes from different environ-
ments to belong to the same region of a latent space. As proposed in [Makhzani et al., 2015], we use a
discriminator network D(z) instead of KL regularization for matching latent codes. Let q(z) denote
an aggregated posterior q(z) =

∫
qφ(z|x)pdata(x)dx induced by an encoder qφ(z|x). A discriminator

D(z) is trained to classify latent codes sampled from the aggregated posterior q(z) and from a prior
distribution p(z). The discriminator D(z) is then used in a loss for encoder to guide the encoder to
match q(z) to p(z).

During training the model on a source the choice of a prior distribution is arbitrary, for example, a
standard gaussian. During the adaptation phase, we choose a prior to be the aggregated posterior qS(z)
of the encoder for the source domain, forcing the aggregated posteriors qS(z) and qT (z) induced by
encoders from different domains to be matched.

Shared latent dynamics Matched aggregated posteriors for two domains is a necessary but not a
sufficient condition for learning aligned latent representations for both of the domains. As illustrated
in Figure 1, aggregated posteriors qS(z) and qT (z) can be concentrated in the same region of a latent
space, however, similar observations xS and xT would be encoded into different latent codes.

We further extend the model by introducing a neural network qη(z′|z, a) that learns the transition
dynamics in the latent space. During training on the source, the parameters of dynamics are learned
along with the parameters of other parts of the model through an additional x′ reconstruction loss.
Total loss for training the model—except DS(z)—on the source task is given by:

EqφS (z|x)
[
log pθS (x|z) + logDS(z) + Eqη(z′|z,a) log pθ′S (x

′|z′)
]
→ max

φS ,θS ,θ′S ,η
. (1)

During the adaptation phase, we freeze the parameters η of the dynamics, and only train encoder-
decoder parts and qφT (z|x), pθT (x|z), pθ′T (x′|z′) using the following loss:

EqφT (z|x)
[
log pθT (x|z) + logDT (z) + Eqη(z′|z,a) log pθ′T (x

′|z′)
]
→ max

φT ,θT ,θ′T
, (2)

where a discriminator DT (z) is trained to distinguish samples from qS(z) and qT (z). We summarize
the proposed model for learning aligned representations for S and T in Figure 2.
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Algorithm 1 Unsupervised Domain Adaptation with Shared Latent Dynamics
Input: DS , DT— transitions (x, a, x′) from source and target domains.
1. Learning the latent space for source domain.

Train qφS (z|x), pθS (x|z), qη(z′|z, a), pθ′S (x′|z′) on samples from DS to optimize loss 1.
DS(z) is trained to distinguish between samples from qS(z) and a prior distribution.

2. The adaptation phase for the target domain.
Train qφT (z|x), pθT (x|z), pθ′T (x′|z′) using the freezed qη(z′|z, a) on samples from DT to
optimize loss 2.
DT (z) is trained to distinguish between samples from qS(z) and qT (z).

3. Application phase: train a policy πξ(a|z) on samples from DS and use in the target task T .

The final goal of learning the aligned representations is to be able to have a single policy upon the
latent space that will be optimal for both of the domains. Given a trained qφS (z|x), we train a policy
upon latent codes πξ(a|z) on samples from S (e.g. collected following a previously trained policy)
by optimizing

EqφS (z|x) log πξ(a|z)→ max
ξ
.

Given a trained qφT (z|x), we apply the policy πξ(a|z) to the target task T . We summarize the
proposed domain adaptation procedure in Algorithm 1.

3 Experiments

To evaluate the proposed model we design an artificial environment as follows:

1. observations x are given by MNIST digits dataset;

2. the action space consists of 3 actions: {−1, 0,+1}. −1 rotates an image by 90 degrees
anticlockwise, 0 does not change an image, +1 rotates an image by 90 degrees clockwise;

3. the next observations x′ are obtained after applying an action;

4. the reward +1 is given if an agent executes a correct action for a given x and 0 otherwise.

We randomly assign a correct action for every digit assuming that it corresponds to some optimal
policy. For example, −1 will be assigned as an optimal action to all "4" digits in the dataset, 0 to all
"6" digits and so on. To obtain the target environment, we invert the pixel values of all images in the
dataset, while correct actions stay the same.

3.1 Learning aligned latent representations

After training both source and target parts of the model, we examine the alignment of latent codes
between the domains. We demonstrate on Figure 3 that latent codes of digits from T are reconstructed
into the same digits from S. Even though the dynamics network was trained on samples from S, its
outputs are successfully reconstructed into x′ for both domains.

3.2 Learning a policy upon latent spaces

We train a policy πξ(a|z) upon a learned latent space using the data collected in the source environ-
ment DS . A policy πξ(a|z) trained on the latent space obtained using the proposed model achieves
near-optimal reward on the target dataset DT .

Const VAE Adversarial Dynamics Model

Reward 0.40± 0 0.40± 0.03 0.45± 0.06 0.54± 0.07 0.81± 0.21

Table 1: Average rewards achieved by a constant policy (Const) and policies upon latent represen-
tations obtained by different models: without adversarial matching and shared dynamics (VAE),
without shared dynamics (Adversarial), without adversarial matching (Dynamics), and the proposed
model.
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Figure 3: Cross-domain reconstructions. 1st row: samples of images from the target task T . 2nd row:
outputs of pθT (x|z) after sampling from qφT (z|x). 3rd row: outputs of pθ′T (x′|z′) after sampling
from qφT (z|x) and qη(z′|z, a). 4th row: outputs of pθS (x|z) after sampling from qφT (z|x). 5th row:
outputs of pθ′S (x′|z′) after sampling from qφT (z|x) and qη(z′|z, a). We observe the same effects for
samples from the source domain.

If we remove the adversarial mechanism and use KL regularization with standard gaussian, aggregated
posteriors tend to be divided into two non-intersecting subregions of the latent space (a random forest
classifier [Breiman, 2001] with default hyperparameters distinguishes samples from qS(z) and qT (z)
with test accuracy close to 1).

If we remove the shared latent dynamics from the model then only aggregated posteriors are matched.
We find that it is insufficient for learning the alignment and observe that similar digits from different
domains have different latent codes (for example, a digit 0 from one domain may be reconstructed
into digit 1 from another domain).

We compare rewards achieved in the target environment by policies upon different latent spaces in
Table 1.

4 Conclusion

In this paper, we proposed a method for domain adaptation via matching latent representations of
observations from different domains in an unsupervised manner. We demonstrated that the learned
latent codes are decoded into similar observations from different domains and result near optimal
actions in both of the domains.

The method is applicable under the assumption that there exist some latent representation capable of
describing observations from both of the domains. We plan to apply the model to Atari games and
experimentally explore the applicability of the model to more types of differences between source
and target domains.
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