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Abstract

Multimodal generative models learn a joint distribution of data from different
modalities—a task which arguably benefits from the disentanglement of modality-
specific and modality-invariant information. We propose a factorized latent variable
model that learns named disentanglement on multimodal data without additional
supervision. We demonstrate the disentanglement capabilities on simulated data,
and show that disentangled representations can improve the conditional generation
of missing modalities without sacrificing unconditional generation.

1 Introduction

Learning a joint generative model of multimodal data is promising, because it enables the integration
of unimodal beliefs into a richer joint representation, as well as the conditional generation of missing
modalities [[1]].

Simpler alternatives to (joint) multimodal generative models include unimodal models with late
fusion or with coordinated representations, as well as conditional models that translate between pairs
of modalities. Yet, both alternatives have disadvantages compared to multimodal models: while
unimodal models cannot handle missing modalities, conditional models only learn a mapping between
sources, and neither learn to integrate beliefs from different modalities into a joint representation. In
contrast, multimodal generative models approximate the joint distribution and thus implicitly provide
the marginal (unimodal) and conditional distributions.

In trying to bridge the gap between marginal and conditional models, we propose a multimodal
generative model that disentangles modality-specific and modality-invariant factors of variation. We
argue that such disentanglement is a key component for improving the conditional generation, because
it sifts out shared semantics from modality-specific variations and thus reinforces the composability
of the learned representations. For example, this allows the generation of a missing modality given
an aggregated representation of shared semantics from the present modalities and random samples
from the modality-specific prior. We show that the disentanglement capabilities of our model emerge
naturally under mild assumptions on the data generating process.

We support our claims by demonstrating (1) the disentanglement capabilities of our model and (2) an
improved conditional generation in a controlled setting.

2 Related Work

Multimodal generative models Our model builds on the multimodal variational autoencoder [19]:
a multimodal generative model that efficiently handles missing data. The original model, however, is
limited to shared latent factors, and we extend it by modeling also modality-specific factors to improve
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Figure 1: Graphical model and inference network for the special case of two modalities. Left: A
sample x,,, from modality m is assumed to be generated by modality-specific factors s,, and modality-
invariant factors c. Right: Inference network with the aggregation of beliefs about modality-invariant
factors through a product of experts (PoE). Dashed lines represent simulated missing modalities as
used during training to incite disentanglement.

the conditional generation of missing modalities. Hsu and Glass [7] also use a partitioned latent space
to model modality-specific and modality-invariant factors, but in contrast to their work we provide
a scalable multimodal inference network which arises naturally from the same assumptions and
handles any combination of missing modalities efficiently. Moreover, there are supervised approaches
[20} [17] that are limited to labeled multimodal data.

Disentanglement Our goal is not the unsupervised disentanglement of all generative factors, which
Locatello et al. [12] show to be theoretically impossible with a factorizing prior and claim to be
impossible in general. Instead, we are only concerned with the disentanglement of modality-specific
and modality-invariant sets of factors and argue that such disentanglement is possible given modalities
that share a set of (unknown) generative factors. This is a form of implicit supervision that constitutes
an inductive bias we exploit for the named disentanglement. Previous approaches to disentanglement
through implicit supervision have used grouping information [2} 8] or temporal dependencies [11]],
but do not extend to a multimodal setting which poses further challenges such as modality-specific
objectives.

3 Method

We consider a generative process with a partition into modality-specific and modality-invariant
(shared) latent factors (Figure . A multimodal sample x = (x1, ..., x)r) with data from M modal-
ities is assumed to be generated from a set of shared factors c and a set of modality-specific factors
sm. Consequently, samples from different modalities are assumed to be conditionally independent
given c. In the following, we denote the set of all modality-specific factors of a multimodal sample as
s =(81,...5Mm).

Given a dataset {x(¥) }f\;l of multimodal samples, our goal is to learn a generative model pg(x | ¢, s)
with a neural network parameterized by 6. From the above assumptions on the data generating process
we get the following joint distribution
M
p(x,5,¢) = p(c) ] p(sm)p(@m | ¢, 5m) (1)
m=1

which allows us to consider only the observed modalities for the computation of the marginal
likelihood.

Since we use a decoder that is parameterized by a neural network, the computation of the exact
likelihood is intractable. Therefore, we resort to amortized variational inference and instead maximize
the following evidence lower bound (ELBO)

M

Lerpo(x) = Z [Eq¢c(c| X) g (Sm | Tm) [log pe,,, (Tm | ¢, $m)] — BmDxL (46, (Sm|Tm) || p(sm))}
m=1
= BeDxw (gs.(c| %) || p(c)) @



which is an objective composed of m unimodal ELBOs for the marginal likelihoods and an additional
KL-divergence for the multimodal encoder. The coefficients 3,,, and 3. can be used to balance the
unimodal and multimodal KL-divergences which act as regularizers that constrain the capacity of the
respective latent channel [5]. We use neural networks for the unimodal decoders py,, (., | ¢, Sm),
the unimodal encoders ¢4, (S, | ), as well as for the multimodal encoder gy, (c | x) and denote
the network parameters by the respective subscripts for decoder parameters 6 and encoder parameters
¢. Further, we follow the convention of using isotropic unit Gaussian priors, as well as Gaussian
variational posteriors parameterized by the estimated means and variances from the respective
encoder.

3.1 Multimodal inference network

A key aspect in the design of multimodal models should be the capability to handle missing modalities
efficiently [I]]. In our case, only the multimodal encoder gy, (c| x), depends on all modalities and
should ideally be able to cope with any combination of missing inputs, which would require 2
multimodal inference networks in a naive implementation. A more efficient alternative is offered by
Wu and Goodman [[19]] who use a product of experts [6] to handle missing modalities. Analogously,
we can show that the multimodal posterior in our case is proportional to a product of unimodal
posteriors

1 M
ple] x) o~y ngp(c | Z0m) - 3)

which—for the special case of Gaussian variational posteriors—has an efficient closed-form solution
(see Appendix . Therefore, as in Wu and Goodman [19], M unimodal inference networks suffice
to handle all 2** combination of missing modalities. In contrast to previous work, however, our
model is not restricted to shared latent factors, but extends to modality-specific factors.

3.2 Disentangling c and s,,

To disentangle modality-specific and modality-invariant factors, our key idea is to direct shared
information through the multimodal encoder by computing reconstructions on p(z,, | ¢, s,,) where
¢ ~ gy, (c| %) is computed from x C x \z,, (i.e., a subset of modalities that does not contain ,,).
Intuitively, this should incite the shared representation to be useful across modalities.

We can efficiently compute gy, (c | X) for any subset X by masking modalities at random during
training—a process that is handled efficiently by the product of experts as discussed previously.

There exists a trivial solution that can prevent disentanglement when the model has sufficient capacity.
For instance, if a modality-specific encoder gy, (Sm|%m ) has high capacity, the model can direct
all information—both shared and modality-specific—through the unimodal encoder (instead of the
multimodal encoder) to compute the reconstructions. However, we can constrain the capacity of the
unimodal encoders by increasing 3,,, which also allows us to control the degree of disentanglement
for each modality[T]

To measure the degree of disentanglement between the learned representations ¢ and s,,, we estimate
the total correlation [18]]

TC(Ca Sm) - DKL(q(C7 Sm) H Q(C)Q(Sm)) (4)
q(c, 5m) }

= Ey(es,,) |log o) 5

o o )
N D(c, sm)

~ Eq(c,sm) {log 1- D(c, Sm):| (©)

using the density-ratio trick [14} [16] where a discriminator D is trained to distinguish between
samples from the joint distribution ¢(c, s,,) and samples from the product of marginalsﬂ This

! The trivial solution also applies without the use of X for reconstructions, but with it the multimodal encoder
is regularized more strongly.

*To sample from the joint distribution, we use the aggregate posterior q(c, sm) = = >, 4o (¢, Sm | X),
while for the marginals we use random pairs, e.g., through batch-wise shuffling of samples from the joint.



Figure 2: Conditional generation of the second modality given the first. The first column/row shows
samples from the first/second modality. Modality-specific factors are fixed along the x-axis and
modality-invariant factors are fixed along the y-axis. In blue rows, the modality-specific representation
is drawn from the Gaussian prior; in red rows, it is computed from the respective image of the other
modality (same index, first row).

procedure is very similar to the one used by Kim and Mnih [9]] with the important difference that
we do not estimate the total correlation between all elements in a single latent representation, but
between partitions c, s,,, of the latent space, of which c is shared between modalities.

4 Experiments

To investigate the disentanglement capabilities we use a modified version of the dSprites dataset [[13]]
adapted to a multimodal setting. We create pairs of images (sprites) that share a common factor,
but not any of the other generative factors. In particular, we share the shape information between
modalities, so that one modality consists of sprites of varying shape, size, and orientation, while the
other modality has sprites of varying shape and x/y-position. This allows us to control modality-
specific and modality-invariant factors, and to measure how well the model disentangles them. To
make the problem more difficult, we flip pixels randomly with a probability of 0.1. The resulting
dataset consists of 737280 pairs of sprites and is partitioned into 80/20 percent of training/test data;
only the test set is used for the qualitative and quantitative evaluation. Unless otherwise stated, we fix
Bm = Be = 1 and use 5 latent dimensions for both ¢ and s,,, in all of the following experiments. The
implementation details are described in Appendix [C]

Figure 2] presents the quality of the conditional generation. Given a sample x; from the first modality
(first column), we take its shared representation (i.e., the predicted means from gy, (¢ | 1)) and
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Figure 3: Top: Shape-classification accuracy on generated images. The blue curve shows the
results from the conditional generation of the second modality given the first, and vice versa for the
green line. Bottom: Estimated total correlation between learned representations ¢ and so. For both
plots, points/error-bars represent the means/standard-deviations across 3 runs with different seeds.
B2 € [0.01,0.03,0.1,...,100] are shown on the x-axis which is shared across both subplots and
displayed on a log-scale.

generate the opposite modality through the decoder py, (z2 | ¢, s2). If s2 is sampled from the Gaussian
prior, this process corresponds to the conditional generation of a missing modality, whereas, if s
is computed from an image of the opposite modality (first row), the process resembles an image-to-
image translation. The results are indicative of an effective disentanglement, visible in the row-wise
consistency of modality-specific factors (scale and orientation) and the column-wise consistency of
modality-invariant factors (shape).

Figure [3] investigates whether stronger disentanglement coincides with an improved generative
performance. For this experiment, we keep 1 = 5. = 1 fixed and control the disentanglement
between c and so by varying the regularization strength through 2 only. We measure the generative
performance with a separate image classifier (pre-trained on the images from the training set) that
predicts the shape information from the conditionally generated images. The results indicate that
the conditional generation is best when the total correlation is low (i.e., when the disentanglement is
strong). The notable exception is a trivial solution, that can be observed when the regularization gets
too strong and the KL-divergence collapses, exhibiting low total correlation only because s, carries
no information about x5. Thus, the results suggest that an improved conditional generation coincides
with a stronger disentanglement of modality-specific and modality-invariant factors.

The implications of above results are limited to synthetic images and to the special case of two
modalities. The total correlation estimate has shown significant variability, as observed in previous
studies [15]. The improvement in conditional generation over a non-partitioned latent space (which
corresponds to the special case of large /3,,, for all modalities) is further investigated qualitatively in
Appendix

5 Conclusion

We have introduced a new latent-variable model that learns a joint distribution of multimodal data and
aims to disentangle modality-specific and modality-invariant latent factors. In a controlled setting, we
demonstrated the conditional generation of missing modalities and found that an improved generative
performance coincides with stronger disentanglement. Our analysis was limited to synthetic images
from two modalities. We plan to further investigate the applicability of our method on real multimodal
data and on a larger scale.
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A Proofs

A.1 Joint probability distribution

M
p(X, S, C) = H p(C, Sm)p(xm | &) Sm) (N
m=1
M
o) [ psm)p(@m | ¢ 5m) ®)
m=1

which follows directly from the assumptions on the data generating process (Figure|I)).

A.2 Derivation of Lgipo

Starting from the usual definition of the ELBO (e.g., [4]):

Eqgy(es | ) logpo(x | ¢,8)] — D (gp(c,s|x) || p(c, s))
M
= Egutes | x) 10806, (@m | ¢ 5m)] — Dxe (g4(c,8]x) || p(c,s)) ©)

m=1

M
=D Egyte] 0 (om | 2m) 10896, (@m | ¢ 5m)] = Y Dxi (49, (5mlzm) || p(sm))

m=1 m=1

— Dk (gg.(c| x) || p(c)) (10)

where the first equality follows from the conditional independence assumption (z; L ;) | c for i # j,
and the second equality from the assumption of a factorizing posterior ¢(s, ¢ | x) = ¢(s | x)g(c| x).

A.3 Proportionality to a product of experts

Using Bayes’ rule as well as the assumptions on the data generating process (Figure[l):

ple| x) = L (an
_ ple) ﬁ (@ | ©) (12)
T plx) L P
_p(0) 17 ple] zm)p(em)
“ o 1L 50 (4
M M
Mal | Zm) - (15)

Similar to Wu and Goodman [[19] we use a product p(c) Hm:l 44,, (¢ | xy,) of variational posteriors
approximating p(c | z,,)p(c) and one “prior expert” p(c)

A.4 Product of Gaussians

A product of multi-dimensional Gaussians is also a Gaussian with means j and covariance matrix V'
that can be computed in closed form [3}[19]:

-1
(x; ¢e) = (ZV xm,cbc) (16)

1(x; 0c) = (T G)V ™ (Tm3 de) V(X ) (17)



where ((z,; ¢.) is the vector of means and V' (x,,,; ¢.) the covariance matrix that are output by the
unimodal branches of the multimodal encoder (before fusion).

B Additional qualitative results
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Figure 4: Samples from the first/second modality and their reconstructions.
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(b) Re-implementation of [19]

Figure 6: Conditional generation of the first modality given the second. For our model (left subfigure)
we use the same procedure as in Figure [2| but in reverse; for the re-implementation of [[19] (right
subfigure) conditional samples are drawn from the aggregate posterior g4, (¢ | x2). To make the
comparison fair, we use 10 latent dimensions for c in the re-implementation, while in our model
we use 5 latent dimensions for ¢ and s, respectively—in total, both models have the same number
of parameters. While both models achieve a high shape-classification accuracy for the conditional
generation (i.e., we observe column-wise consistency of shapes), only our model generates diverse
samples that preserve modality-specific information.



Figure 7: Within-modality swapping of ¢ and s,,, for the first modality (left subfigure) and second
modality (right subfigure). In blue rows of ten images, s,,, is drawn from the Gaussian prior, while in
blue columns of ten images, c is drawn from the Gaussian prior. Again, one can observe row-wise
consistency of modality-specific factors (scale and orientation, or x/y-position respectively) and
column-wise consistency of modality-invariant factors (shape).

C Implementation Details

The network architectures are based on Kim and Mnih [9] and adapted to a multimodal setting. The
encoders pg,. (Sm, | Tm) and py, (¢ | z,,) share most of their weights; only the topmost layers are
separate linear fully connected layers that map from 256 to 5 latent dimensions for both the estimated
means and log-variances (which are propagated through by using the reparameterization trick).

In each experiment, the model is trained for 100 epochs on the multimodal dSprites dataset and
optimized with Adam [[10] using learning rate 0.001 and betas (0.9, 0.999). Unless otherwise noted,
we use [3,, = B. = 1 for all modalities.

Table 1: Architecture for the shared backbone of the encoders ¢4, (S, | ©m) and gy, (¢ | ). As
input, the network takes a 64 x 64 dSprites image. The parameters for Conv2d are output channels,
kernel size, and stride.

Block Details

Conv2d(32, 4, 2), ReLU
Conv2d(32, 4, 2), ReLU
Conv2d(64, 4, 2), ReLU
Conv2d(64, 4, 2), ReLU
Conv2d(256, 4, 1), ReLU
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Table 2: Architecture for the decoder pg,, (., | ¢, Sm ). As input, the decoder takes the 10-dimensional
concatenation (c, s,, ). The parameters for ConvTranspose2d are output channels, kernel size, and
stride.

Block Details

Linear(256), ReLU
ConvTranspose2d(64, 4, 1), ReLU
ConvTranspose2d(64, 4, 2), ReLU
ConvTranspose2d(32, 4, 2), ReLU
ConvTranspose2d(32, 4, 2), ReLU
ConvTranspose2d(1, 4, 2), ReLU

NN R W~

Table 3: Architecture for the total correlation estimator. As input, the network takes the 10-
dimensional concatenation (¢, s,, ). The network parameters are optimized to discriminate between
pairs (¢, $,,) and random pairs (¢, s,,) (batch-wise permutations) by minimizing the cross-entropy
loss as in Kim and Mnih [9].

Block Details

Linear(1000), LeakyReLU(0.2)
Linear(1000), LeakyReLLU(0.2)
Linear(1000), LeakyReLU(0.2)
Linear(1000), LeakyReLLU(0.2)
Linear(1000), LeakyReLLU(0.2)
Linear(2)

AN W=

Table 4: Architecture for the shape classifier. The network takes as input original dSprites samples of
size 64 x 64 and it is trained by minimizing the cross-entropy loss on an output of size 3, because
there are three types of shapes (square, ellipse, heart). The parameters for Conv2d are output channels,
kernel size, and stride.

Block Details

Conv2d(32, 4, 2), ReLU
Conv2d(32, 4, 2), ReLU
Conv2d(64, 4, 2), ReLU
Conv2d(64, 4, 2), ReLU
Conv2d(256, 4, 1), ReLU
Linear(3)

NN B W
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