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Abstract

We present a low-complexity approach for detecting out-of-distribution (OOD) and
adversarial samples in deep neural networks. We model the outputs of the various
layers (deep features) with parametric probability distributions (Gaussian and
Guassian Mixture Models) once training is completed. At inference, the likelihoods
of the observed features w.r.t the learnt distributions are calculated and used to
discriminate in-distribution samples from OOD samples. We demonstrate that
using our approach on the detection of OOD images and adversarially-generated
images on MNIST and CIFAR10 datasets results in an improvement of up to 13
percentage points in AUPR and AUROC metrics over a state-of-the-art baseline.

1 Introduction

An important area of active research in the machine-learning is the ability of deep neural-networks
(DNN) to estimate confidence or uncertainty measures, which quantify how much trust should be
placed in DNN results. It has been shown that Softmax scores at the output of a deep-network tend
to result in overconfident predictions, especially when the input does not resemble the training data
(out-of-distribution)[3], or has been crafted to attack and “fool” the network (adversarial examples).

Recently, there has been substantial work on this topic using Bayesian deep learning [3, 6]. The
parameters of a Bayesian Neural Network (BNN) are learned using variational training. At inference,
multiple stochastic forward passes are performed to generate a distribution over the outputs, from
which various measures of predictive uncertainty can be calculated [3]. Another class of methods,
however, attempt to estimate uncertainty directly from a trained (non-Bayesian) DNN, and hence do
not entail the computational overhead of multiple forward passes during inference. Some of these
used posterior probabilities in the form of either softmax [5] or temperature-scaled softmax Liang
et al. [8] to perform detection of OOD or misclassified samples. By contrast, Lee et al. [7] adopted a
generative approach and proposed fitting class-conditional probability distributions to the features of
a trained DNN. The confidence score was defined as the Mahalanobis distance with respect to the
closest class conditional distribution. This approach yielded impressive results, outperforming [8]
and [5].

Contribution: We present an approach for detecting OOD and adversarial samples in DNNs based
on probabilistic modeling of the deep-features. Conceptually, our method extends the generative
approach in [7] as we fit class-conditional distributions to the outputs of the various layers (deep-
features). In [7], however, it is hypothesized that these distributions can be modeled as multivariate
Gaussians with shared covariance across all classes (homoscedasticity assumption). We show that
such an assumption is not valid in general; instead, we demonstrate that by removing this assumption
and modeling the features with more general distribution types results in significantly improved
detection of OOD and adversarial samples. Moreover, we demonstrate that the high-dimensional
features actually reside in a low-dimensional subspace, and we use principal component analysis
(PCA) as a principled way to capture this subspace, prior to the feature modeling.
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Figure 1: Scatterplot and the corresponding density histogram of the logits. It is clearly seen that the
covariances of the two clusters are different.

2 Approach

Suppose we have a deep network trained to recognize samples from N classes, {Ck}, k = 1, . . . , N .
Let fi(x) denote the output at the ith layer of the network, and ni its dimension. Our approach
consists of fitting class-conditional probability distributions, p(fi(x)|Ck), to the features of a DNN,
once training is completed, thereby defining a generative model over the deep feature space. At test
time, the log-likelihood scores of the features of a test sample are calculated with respect to these
distributions and used as uncertainty estimates to discriminate in-distribution samples (which should
have high likelihood) from OOD or adversarial samples (which should have low likelihood).

From the theory of linear discriminant analysis (LDA), it is known that in a generative classifier in
which the underlying class-conditional distributions p(fi(x)|Ck) are Gaussians with tied covariance
across all classes, the posterior distribution p(Ck|fi(x)) is equivalent to the softmax function with
linear separation boundaries [1]. On the basis of this, Lee et al. [7] argued that the class-conditional
densities of the penultimate layer of a deep-network could be well represented by multivariate
Gaussian with shared covariance. As we demonstrate, though, this assumption does not hold true
even in the simplest of networks. To test this, we constructed and trained a simple CNN architecture
which we call MNET (shown in Figure 2) to classify only two digits (’0’ and ’1’) from the MNIST
dataset. A 2D density histogram of the features from the final layer (FC2) is shown in Figure 1. It is
obvious even visually that the covariances of the two clusters are very different from each other.

In this work, therefore, we relax the assumption of tied covariance, and instead employ the following
more general distributions: (a) Separate multivariate Gaussian distribution for each class without the
assumption of a tied covariance matrix: this corresponds to the QDA (quadratic discriminant analysis)
classifier (as opposed to the more restrictive LDA for tied-covariance Gaussian), and (b) Gaussian
Mixture Model (GMM). Both of these are capable of representing larger classes of distributions. The
parameters of these distributions are estimated using standard maximum-likelihood techniques.

Modeling within subspaces: According to the now well-known manifold hypothesis, real-world
datasets exhibit low-dimensional structure despite being embedded in very high-dimensional input
spaces [2, 9]. In the context of modeling distributions over high-dimensional features, this problem
manifests itself as rank-deficiencies of data matrices, making it impossible to estimate the corre-
sponding covariance matrices. This is a very real problem as will be shown in Table 4 in Section 3,
which shows severe rank deficiencies in the higher-dimensional inner layers of the deep networks
tested. To address this, we use PCA to reduce the dimensions of the feature vectors in order to model
distributions in an appropriate lower-dimensional subspace.

3 Experiments and Results

Experimental setup and evaluation metrics: We use MNIST and CIFAR10 as the in-distribution
datasets. We test each in-distribution dataset against two different out-of-distribution datasets, and the
FGSM adversarial attack [4]. In all experiments, the parameters of the fitted densities are estimated
from the training split of the in-distribution dataset, while performance metrics are calculated on
the test split. During testing, the log-likelihood scores of the features generated by a test sample are
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Table 1: AUROC scores (%) from three different density functions: GMM, Sep (Gaussian with separate
covariance per class), Tied (Gaussian with tied covariance). Best values are shown in bold.

MNIST FashionMNIST EMNIST FGSM, ε = 0.2

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 92.9 91.8 92.1 94.0 93.2 91.9 87.2 85.9 84.4
Layer 1 92.9 93.5 75.3 96.2 96.3 93.4 88.6 85.7 66.8
Layer 2 97.0 97.5 89.0 96.7 97.2 93.1 92.0 92.0 62.6

CIFAR10
(Resnet)

SVHN LSUN FGSM, ε = 0.1

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 94.9 93.4 92.9 95.7 95.1 94.8 93.0 92.6 93.0
Layer 1 94.1 92.3 91.6 95.5 94.7 94.1 93.4 93.2 93.3
Layer 2 90.2 90.1 91.6 87.8 87.9 78.1 93.6 93.6 93.1

CIFAR10
(Densenet)

SVHN LSUN FGSM, ε = 0.1

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 76.7 75.2 77.2 69.5 69.9 64.8 85.7 86.4 83.6
Layer 1 85.2 84.7 73.3 94.8 95.2 95.4 92.7 92.5 90.3
Layer 2 78.1 78.1 51.1 78.2 78.2 74.8 88.0 88.0 80.5

calculated. These are then used to distinguish between in-distribution and out-of-distribution data,
effectively creating a binary classifier. We characterize the performance of this classifier with the
precision-recall (PR) curve and the receiver operating characteristics (ROC) curve.

For MNIST, we use the MNET architecture shown in Figure 2. For CIFAR10, we use two publicly
available architectures: Resnet50 and Densenet-BC. We experimented on the final three layers of the
networks listed above (in Densenet and Resnet, these are the outputs of the corresponding final 3
dense or residual blocks). The layers are labelled as 0, 1, and 2, (0 being the outermost layer).

Results: To see the performance on OOD samples, we calculate the AUROC scores as described
earlier. The results are presented in Table 1. It is seen that the use of the more general distribution
types typically results in improvements, often significant, in the AUROC scores over the baseline
(tied-covariance) distribution. In Table 3, the average improvement (across all tested datasets) in the
AUROC scores per layer are presented. It is seen that the extent of the improvement increases the
further we are from the final output layer. This shows that the homoscedasticity assumption gets
more violated as we move deeper into the network.

We also use the log-likelihood scores to perform classification instead of the softmax scores and
measure the resulting classification accuracy. From the results summarized in Table 2, it is seen
that the classification accuracy using the proposed method is comparable, if not slightly better, than
the softmax-based accuracy, indicating that our scheme is as good as softmax for classification of
in-distribution samples.

Computational aspects: We measure the time taken by the additional computations (PCA and
log-likelihood calculations) required during inference only since the learning of class-conditional
distributions is a one-time offline operation. We observe that these additional computations happen
much faster than real-time rate. Specifically, for Gaussian models (tied or separate covariance),
it takes on average an additional 1.32 ms to process each input frame (equivalent to about 757
frames/sec). For GMM models, the time increases to 2.75 ms/frame (363 fps). This is despite our
current implementation being non-optimized Python code running on CPU. We expect significant
speed-up with optimized implementations (e.g. in C/C++) using appropriate vectorization facilities
available on modern processors.

4 Conclusions and Future Work

This paper presented a method for modeling the outputs of the various DNN layers (deep-features)
with parametric probability distributions, with applications to adversarial and out-of-distribution
sample detection. The methodology was theoretically motivated, and experimentally proven by
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showing improvements to detection of OOD and adversarial image samples.As future work, we
will investigate the use of more sophisticated techniques to model distributions on the manifold of
features. We will also look into ways to combine log-likelihood scores across layers into a single
reliable uncertainty metric.

Table 2: Classification accuracy

MNIST CIFAR10(Resnet) CIFAR10(densenet)

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 98.9 98.6 98.6 95.3 95.2 95.3 90.3 90.0 89.8
Layer 1 98.2 98.6 98.6 95.0 95.3 95.3 89.1 88.7 89.7
Layer 2 86.0 97.4 98.3 90.8 90.8 92.2 88.9 88.9 89.9

Softmax 98.99 95.3 89.14

Table 3: Average improve-
ments in scores

AUROC change

GMM Sep

Layer 0 1.94 1.51
Layer 1 5.48 6.0
Layer 2 8.9 9.82
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Appendix

We present some additional results in this section. In particular, we report

• Rank of data matrices for layer 2 features showing severe rank-deficiencies.
• AUPR numbers in Table 5 to complement the AUROC numbers reported earlier. Here

too, we observe the same trend in that the more general densities (Gaussian with separate
covariance per class, and GMM) give superior results to the baseline distribution.

Figure 2: MNET architecture.

Table 4: Layer 2 feature dimension and data-matrix rank
MNET Resnet Densenet

Dimension 1152 16384 1368
Rank 499 9365 206

Table 5: AUPR (%) scores from three different density functions: GMM, Sep (Gaussian with separate
covariance per class), Tied (Gaussian with tied covariance). Best values are shown in bold.

MNIST FashionMNIST EMNIST FGSM, ε = 0.2

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 86.4 84.8 81.8 66.5 61.1 53.4 96.0 95.3 94.8
Layer 1 84.5 81.3 53.5 67.5 72.8 65.4 96.4 95.3 88.0
Layer 2 88.4 90.9 58.1 72.0 77.7 58.1 97.7 97.7 86.1

CIFAR10
(Resnet)

SVHN LSUN FGSM, ε = 0.1

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 84.3 82.9 80.4 96.3 95.9 95.5 94.8 94.7 94.9
Layer 1 85.9 83.5 77.8 96.3 95.7 95.0 95.0 95.1 95.1
Layer 2 62.7 62.2 61.6 87.9 88.0 79.4 92.6 92.5 90.9

CIFAR10
(Densenet)

SVHN LSUN FGSM, ε = 0.1

GMM Sep Tied GMM Sep Tied GMM Sep Tied

Layer 0 79.1 77.2 79.6 29.5 28.9 21.9 85.8 86.1 84.6
Layer 1 86.8 85.6 75.9 77.7 80.4 79.3 90.6 90.2 87.0
Layer 2 80.4 80.4 57.1 37.2 37.2 27.1 87.2 87.2 78.1
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