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Abstract

NEURAL TANGENTS is a library for working with infinite-width neural networks.
It provides a high-level API for specifying complex and hierarchical neural network
architectures. These networks can then be trained and evaluated either at finite-
width as usual, or in their infinite-width limit. For the infinite-width networks,
NEURAL TANGENTS performs exact inference either via Bayes’ rule or gradient
descent, and generates the corresponding Neural Network Gaussian Process and
Neural Tangent kernels. Additionally, NEURAL TANGENTS provides tools to study
gradient descent training dynamics of wide but finite networks.
The entire library runs out-of-the-box on CPU, GPU, or TPU. All computations
can be automatically distributed over multiple accelerators with near-linear scaling
in the number of devices. NEURAL TANGENTS is available at

www.github.com/google/neural-tangents

We also provide an accompanying interactive Colab notebook.2.

1 Introduction

Deep neural networks (DNNs) owe their success in part to the broad availability of high-level, flexible,
and efficient software libraries like Tensorflow (Abadi et al., 2015), Keras (Chollet et al., 2015),
PyTorch.nn (Paszke et al., 2017), Chainer (Tokui et al., 2015; Akiba et al., 2017), JAX (Bradbury
et al., 2018a), and others. These libraries enable researchers to rapidly build complex models by
constructing them out of smaller primitives. The success of new machine learning approaches will
similarly depend on developing sophisticated software tools to support them.

1.1 Infinite-width Bayesian neural networks

Recently, a new class of machine learning models has attracted significant attention, namely, deep
infinitely wide neural networks. In the infinite-width limit, a large class of Bayesian neural networks
become Gaussian Processes (GPs) with a specific, architecture-dependent, compositional kernel;
these models are called Neural Network Gaussian Processes (NNGPs). This correspondence was
first established for shallow fully-connected networks by Neal (1994) and was extended to multi-
layer setting in (Lee et al., 2018; Matthews et al., 2018a). Since then, this correspondence has
been expanded to a wide range of nonlinearities (Matthews et al., 2018b; Novak et al., 2019) and
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architectures including those with convolutional layers (Garriga-Alonso et al., 2019; Novak et al.,
2019), residual connections (Garriga-Alonso et al., 2019), and pooling (Novak et al., 2019). The
results for individual architectures have subsequently been generalized, and it was shown that a GP
correspondence holds for a general class of networks that can be mapped to so-called tensor programs
in (Yang, 2019). The recurrence relationship defining the NNGP kernel has additionally been studied
separately from the GP correspondence in (Cho and Saul, 2009; Daniely et al., 2016; Poole et al.,
2016; Schoenholz et al., 2016; Yang and Schoenholz, 2017; Xiao et al., 2018).

1.2 Infinite-width neural networks trained by gradient descent

In addition to enabling a closed form description of Bayesian neural networks, the infinite-width
limit has also very recently provided insights into neural networks trained by gradient descent. In the
last year, several papers have shown that randomly initialized neural networks trained with gradient
descent are characterized by a distribution that is related to the NNGP, and is described by the
so-called Neural Tangent Kernel (NTK) (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019), a
kernel which was implicit in some earlier papers (Li and Liang, 2018; Allen-Zhu et al., 2018; Du
et al., 2018a,b). In addition to this “function space” perspective, a dual, “weight space” view on the
wide network limit was proposed in Lee et al. (2019) which showed that networks under gradient
descent were well-described by the first-order Taylor series about their initial parameters.

1.3 Promise and practical barriers to working with infinite-width networks

Combined, these discoveries established infinite-width networks as useful theoretical tools to under-
stand a wide range of phenomena in deep learning.

Furthermore, the practical utility of these models has been proven by achieving state-of-the-art
performance on image classification benchmarks among GPs without trainable kernels (Garriga-
Alonso et al., 2019; Novak et al., 2019; Arora et al., 2019), and by their ability to match or exceed the
performance of finite width networks in some situations, especially for fully- and locally-connected
model families (Lee et al., 2018; Novak et al., 2019).

However, despite their utility, using NNGPs and NTK-GPs is arduous and can require weeks-to-
months of work by seasoned practitioners. Kernels corresponding to neural networks must be
derived by hand on a per-architecture basis. Overall, this process is laborious and error prone, and
is reminiscent of the state of neural networks before high quality Automatic Differentiation (AD)
packages proliferated.

1.4 Summary of contributions

In this paper, we introduce a new open-source software library called NEURAL TANGENTS targeting
JAX (Bradbury et al., 2018a) to facilitate research on infinite limits of neural networks. The main
features of NEURAL TANGENTS are:3

• A high-level neural network API for specifying complex, hierarchical, models. Networks
specified using this API can have their infinite-width NNGP kernel and NTK evaluated
analytically (§2.1, Listings 1, 2, 3, §B.2).

• Functions to approximate infinite-width kernels by Monte Carlo sampling for networks
whose kernels cannot be constructed analytically. These methods are agnostic to the neural
network library used to build the network and are therefore quite versatile (§2.2, Figure 2,
§B.5).

• An API to analytically perform inference using infinite-width networks either by computing
the Bayesian posterior or by computing the result of continuous gradient descent with an
MSE loss. The API additionally includes tools to perform inference by numerically solving
the ODEs corresponding to: gradient descent, with-or-without momentum, on arbitrary loss
functions, at finite or infinite time (§2.1, Figure 1, §B.4).

• Functions to compute arbitrary-order Taylor series approximations to neural networks about
a given setting of parameters to explore the weight space perspective on the infinite-width
limit (§B.6, Figure 6).

3See §A for NEURAL TANGENTS comparison against specific relevant prior works.
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• Leveraging XLA, our library runs out-of-the-box on CPU, GPU, or TPU. Kernel computa-
tions can automatically be distributed over multiple accelerators with near-perfect scaling
(§3.2, Figure 5, §B.3).

We begin with three short examples (§2) that demonstrate the ease, efficiency, and versatility of
performing calculations with infinite networks using NEURAL TANGENTS. With a high level view of
the library in hand, we then dive into a number of technical aspects of our library (§3).

1.5 Background

We briefly describe the NNGP (§1.1) and NTK (§1.2). NNGP. Neural networks are often structured
as affine transformations followed by pointwise applications of nonlinearities. Let zl(x) describe the
pre-activations following a linear transformation in lth layer of a neural network. At initialization,
the parameters of the network are randomly distributed and so central-limit theorem style arguments
can be used to show that the pre-activations become Gaussian distributed with mean zero and are
therefore described entirely by their covariance matrix K(x, x′) = E[zl(x)zl(x′)]. One can therefore
use the NNGP to make Bayesian posterior predictions which are Gaussian distributed with mean
K(x,X )K(X ,X )−1Y and covariance K(x, x)−K(x,X )K(X ,X )−1K(X , x), where (X ,Y) is the
training set of inputs and targets. NTK. When neural networks are optimized using continuous
gradient descent with learning rate η on mean squared error (MSE) loss, the function evaluated on
training points evolves as ∂tft(X ) = −ηJt(X )Jt(X )T (ft(X )− Y) where Jt(X ) is the Jacobian of
f evaluated at X and Θt(X ,X ) = Jt(X )Jt(X )T is the NTK. In the infinite-width limit, the NTK
remains constant (Θt = Θ) throughout training and the time-evolution of the outputs can be solved
in closed form as a Gaussian with mean ft(x) = Θ(x,X )Θ(X ,X )−1 (I − exp [−ηΘ(X ,X )t])Y .

2 Examples

We begin by applying NEURAL TANGENTS to several example tasks. While these tasks are designed
for pedagogy rather than research novelty, they are nonetheless emblematic of problems regularly
faced in research. We emphasize that without NEURAL TANGENTS, it would be necessary to derive
the kernels for each architecture by hand.

2.1 Inference with an Infinitely Wide Neural Network

We begin by training an infinitely wide neural network with gradient descent and comparing the
result to training an ensemble of wide-but-finite networks. This example is worked through in detail
in the Colab notebook.4

We train on a synthetic dataset with training data drawn from the process yi = sin(xi) + εi with
xi ∼ Uniform(−π, π) and εi ∼ N (0, σ) independently and identically distributed. To train an
infinite neural network with Erf5 on this data using gradient descent and an MSE loss we write the
following:

from neural_tangents import predict, stax

init_fn, apply_fn, kernel_fn = stax.serial(

stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(),

stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(),

stax.Dense(1, W_std=1.5, b_std=0.05))

y_mean, y_var = predict.gp_inference(kernel_fn, x_train, y_train, x_test, 'ntk',

diag_reg=1e-4, compute_cov=True)

The above code analytically generates the predictions that would result from performing gradient
descent for an infinite amount of time. However, it is often desirable to investigate finite-time learning

4www.colab.sandbox.google.com/github/google/neural-tangents/blob/master/notebooks/neural_tangents_cookbook.ipynb
5Error function, a nonlinearity similar to tanh; see §D for other implemented nonlinearities, including Relu.
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Figure 1: Training dynamics for an ensemble of finite-width networks compared with an infi-
nite network. Left: Mean and variance of the train and test MSE loss evolution throughout training.
Right: Comparison between the predictions of the trained infinite network and the respective ensem-
ble of finite-width networks. The shaded region and the dashed lines denote two standard deviations
of uncertainty in the predictions for the infinite network and the ensemble respectively.

dynamics of deep networks. This is also supported in NEURAL TANGENTS as illustrated in the
following snippet:

predict_fn = predict.gradient_descent_mse_gp(kernel_fn, x_train, y_train, x_test, 'ntk',

diag_reg=1e-4, compute_cov=True)

y_mean, y_var = predict_fn(t=100) # Predict the distribution at t = 100.

The above specification set the hidden layer widths to 2048, which has no effect on the infinite
width network inference, but the init_fn and apply_fn here correspond to ordinary finite width
networks. In Figure 1 we compare the result of this exact inference with training an ensemble of one
hundred of these finite-width networks by looking at the training curves and output predictions of
both models. We see excellent agreement between exact inference using the infinite-width model and
the result of training an ensemble using gradient descent.

2.2 An Infinitely WideResNet

The above example considers a relatively simple network on a synthetic task. In practice we may want
to consider real-world architectures, and see how close they are to their infinite-width limit. For this
task we study a variant of an infinite-channel Wide Residual Network (Zagoruyko and Komodakis,
2016) (WRN-28-∞). We first define both finite and infinite models within Listing 1.

We now study how quickly the kernel of the finite-channel WideResNet approaches its infinite channel
limit. We explore two different axes along which convergence takes place: first, as a function of the
number of channels (as measured by the widening factor, k) and second as a function of the number
of finite-network Monte Carlo samples we average over.

NEURAL TANGENTS makes it easy to compute MC averages of finite kernels using the following
snippet:

kernel_fn = nt.monte_carlo_kernel_fn(init_fn, apply_fn, rng_key, n_samples)

sampled_kernel = kernel_fn(x, x)

The convergence is shown in Figure 2. We see that as both the number of samples is increased or
the network is made wider, the empirical kernel approaches the kernel of the infinite network. As
remarked in Novak et al. (2019), for any finite widening factor the MC estimate is biased, but here
the bias is small relative to the variance, and the distance to the empirical kernel decreases with the
number of samples.

4



from neural_tangents import stax

def WideResNetBlock(channels, strides=(1, 1), channel_mismatch=False):

Main = stax.serial(stax.Relu(), stax.Conv(channels, (3, 3), strides, padding='SAME'),

stax.Relu(), stax.Conv(channels, (3, 3), padding='SAME'))

Shortcut = (stax.Identity() if not channel_mismatch else

stax.Conv(channels, (3, 3), strides, padding='SAME'))

return stax.serial(stax.FanOut(2), stax.parallel(Main, Shortcut), stax.FanInSum())

def WideResNetGroup(n, channels, strides=(1, 1)):

blocks = [WideResNetBlock(channels, strides, channel_mismatch=True)]

for _ in range(n - 1):

blocks += [WideResNetBlock(channels, (1, 1))]

return stax.serial(*blocks)

def WideResNet(block_size, k, num_classes):

return stax.serial(stax.Conv(16, (3, 3), padding='SAME'),

WideResNetGroup(block_size, int(16 * k)),

WideResNetGroup(block_size, int(32 * k), (2, 2)),

WideResNetGroup(block_size, int(64 * k), (2, 2)),

stax.GlobalAvgPool(), stax.Dense(num_classes))

init_fn, apply_fn, kernel_fn = WideResNet(block_size=4, k=1, num_classes=10)

Listing 1: Definition of an infinitely WideResNet. This snippet simultaneously defines a finite
( init_fn, apply_fn ) and an infinite ( kernel_fn ) model. This model is used in Figures 2 and 3.
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Figure 2: Convergence of the Monte Carlo (MC) estimates of the WideResNet WRN-28-k (where
k is the widening factor) NNGP and NTK kernels (computed with monte_carlo_kernel_fn )
to their analytic values (WRN-28-∞, computed with kernel_fn ), as the network gets wider by
increasing the widening factor (vertical axis) and as more random networks are averaged over
(horizontal axis). Experimental detail. The kernel is computed in 32-bit precision on a 100× 50
batch of 8 × 8-downsampled CIFAR10 (Krizhevsky, 2009) images. For sampling efficiency, for
NNGP the output of the penultimate layer was used, and for NTK the output layer was assumed to
be of dimension 1 (all logits are i.i.d. conditioned on a given input). The displayed distance is the
relative Frobenius norm squared, i.e. ‖K − Kk,n‖2F / ‖K‖

2
F , where k is the widening factor and n is

the number of samples.
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Figure 3: CIFAR-10 classification with varying neural network architectures. NEURAL TAN-
GENTS simplify experimentation with architectures. Here we use infinite time NTK inference and
full Bayesian NNGP inference for CIFAR-10 for Fully Connected (FC, Listing 3), Convolutional
network without pooling (CONV, Listing 2), and Wide Residual Network (WRESNET, Listing
1). As is common in prior work (Lee et al., 2018; Novak et al., 2019), the classification task is
treated as MSE regression on zero-mean targets like (−0.1, . . . ,−0.1, 0.9,−0.1, . . . ,−0.1) . For
each training set size, the best model in the family is selected by minimizing the mean negative
marginal log-likelihood (NLL, right) on the training set.

2.3 Comparison of Neural Network architectures and training set sizes

The above examples demonstrated the flexibility NEURAL TANGENTS provides in comparing various
forms of inference for the same architecture. Now, we further leverage this flexibility to demonstrate
training a range of architectures on CIFAR-10 and compare their performance as a function of
dataset size. In particular, we compare a fully-connected network, a convolutional network whose
penultimate layer vectorizes the image, and the wide-residual network described above. In each case,
we perform exact infinite-time inference using the analytic infinite-width NNGP or NTK. For a given
architecture class, there are multiple depth. For a given training set size we choose specific depth
based on marginal log likelihood on the training set.

The results are shown in Figure 3. We see that in each case the performance of the model increases
approximately logarithmically in the size of the dataset. Moreover, we observe a clear hierarchy of
performance, especially at large dataset size, in terms of architecture (FC < CONV < WRESNET).

3 Implementation: Transforming Tensor Ops to Kernel Ops

Neural networks are compositions of basic tensor operations such as: dense or convolutional affine
transformations, application of pointwise nonlinearities, pooling, or normalization. For most networks
without weight tying between layers, the kernel computation can be written compositionally, with a
direct correspondence between each tensor operation and a kernel operation (see §3.1 for an example).
The core logic of NEURAL TANGENTS is thus a set of translation rules, that sends each function
acting on a finite-width layer to a function acting on the kernel for an infinite-width network. This is
illustrated in Figure 4 for a simple convolutional architecture. The function applied to the data tensor
is given in the second column, and the corresponding transformations of the NTK and NNGP kernel
tensors are given in the third and fourth column. See §D for a list of all tensor operations for which
translation rules are currently implemented.

One subtlety to consider when designing networks is that most infinite-width results require nonlinear
transformations to be prefaced with affine transformations (either dense or convolutional). This is be-
cause infinite-width results often assume that the pre-activations of nonlinear layers are approximately
Gaussian. Randomness in weights and biases causes the output of infinite affine layers to satisfy
this Gaussian requirement. Fortunately, prefacing nonlinear operations with affine transformations is
common practice when designing neural networks, and NEURAL TANGENTS will raise an error if
this requirement is not satisfied.
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Figure 1: Different dimensionality collapsing strategies described in §3. Validation accuracy of
an MC-CNN-GP with pooling (§3.2.1) is consistently better than other models due to translation
invariance of the kernel. CNN-GP with zero padding (§3.1) outperforms an analogous CNN-
GP without padding as depth increases. At depth 15 the spatial dimension of the output without
padding is reduced to 1 ⇥ 1, making the CNN-GP without padding equivalent to the center pixel
selection strategy (§3.2.2) – which also performs worse than the CNN-GP (we conjecture, due
to overfitting to centrally-located features) but approaches the latter (right) in the limit of large
depth, as information becomes more uniformly spatially distributed (Xiao et al., 2018). CNN-GPs
generally outperform FCN-GP, presumably due to the local connectivity prior, but can fail to capture
nonlinear interactions between spatially-distant pixels at shallow depths (left). Values are reported
on a 2K/4K train/validation subsets of CIFAR10. See §A.7.3 for experimental details.

1. Global average pooling: take h = 1
d1d. Then

Kpool
1 ⌘ �2

!

d2

X

↵,↵0

⇥
KL+1

1
⇤
↵,↵0 + �2

b . (17)

This approach corresponds to applying global average pooling right after the last convolu-
tional layer.8 This approach takes all pixel-pixel covariances into consideration and makes
the kernel translation invariant. However, it requires O

�
|X |2d2

�
memory to compute the

sample-sample covariance of the GP (or O
�
d2
�

per covariance entry in an iterative or dis-
tributed setting). It is impractical to use this method to analytically evaluate the GP, and we
propose to use a Monte Carlo approach (see §4).

2. Subsampling one particular pixel: take h = e↵,

Ke↵
1 ⌘ �2

!

⇥
KL+1

1
⇤
↵,↵

+ �2
b . (18)

This approach makes use of only one pixel-pixel covariance, and requires the same amount
of memory as vectorization (§3.1) to compute.

We compare the performance of presented strategies in Figure 1. Note that all described strategies
admit stacking additional FC layers on top while retaining the GP equivalence, using a derivation
analogous to §2 (Lee et al., 2018; Matthews et al., 2018b).

4 MONTE CARLO EVALUATION OF INTRACTABLE GP KERNELS

We introduce a Monte Carlo estimation method for NN-GP kernels which are computationally im-
practical to compute analytically, or for which we do not know the analytic form. Similar in spirit
to traditional random feature methods (Rahimi & Recht, 2007), the core idea is to instantiate many

8 Spatially local average pooling in intermediary layers can be constructed in a similar fashion (§A.3). We
focus on global average pooling in this work to more effectively isolate the effects of pooling from other aspects
of the model like local connectivity or equivariance.
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(a) (c)

(b) No Pooling Global Average Pooling
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N
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N
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#Channels

Figure 3: (a): SGD-trained CNNs often perform better with increasing number of channels.
Each line corresponds to a particular choice of architecture and initialization hyperparameters, with
best learning rate and weight decay selected independently for each number of channels (x-axis).
(b): SGD-trained CNNs often approach the performance of their corresponding CNN-GP
with increasing number of channels. All models have the same architecture except for pooling
and weight sharing, as well as training-related hyperparameters such as learning rate, weight decay
and batch size, which are selected for each number of channels (x-axis) to maximize validation
performance (y-axis) of a neural network. As the number of channels grows, best validation accu-
racy increases and approaches accuracy of the respective GP (solid horizontal line). (c): However,
the best-performing SGD-trained CNNs can outperform their corresponding CNN-GPs. Each
point corresponds to the test accuracy of: (y-axis) a specific CNN-GP; (x-axis) the best (on valida-
tion) CNN with the same architectural hyper-parameters selected among the 100%-accurate models
on the full training CIFAR10 dataset with different learning rates, weight decay and number of chan-
nels. While CNN-GP appears competitive against 100%-accurate CNNs (above the diagonal), the
best CNNs overall outperform CNN-GPs by a significant margin (below the diagonal, right). For
further analysis of factors leading to similar or diverging behavior between SGD-trained finite CNNs
and infinite Bayesian CNNs see Tables 1 and 2. Experimental details: all networks have reached
100% training accuracy on CIFAR10. Values in (b) are reported on an 0.5K/4K train/validation sub-
set downsampled to 8 ⇥ 8 for computational reasons. See §A.7.5 and §A.7.1 for full experimental
details of (a, c) and (b) plots respectively.
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Table 3: Validation accuracy of CNN- and FCN- GPs as a function of weight (�2
! , horizontal

axis) and bias (�2
b , vertical axis) variances. As predicted in §A.2, the regions of good performance

concentrate around the critical line (phase boundary, right) as the depth increases (left to right).
All plots share common axes ranges and employ the erf nonlinearity. See §A.7.2 for experimental
details.

A.2 RELATIONSHIP TO DEEP SIGNAL PROPAGATION

The recurrence relation linking the GP kernel at layer l + 1 to that of layer l following from Equa-
tion 10 (i.e. Kl+1

1 = (C � A)
�
Kl

1
�
) is precisely the covariance map examined in a series of related

papers on signal propagation (Xiao et al., 2018; Poole et al., 2016; Schoenholz et al., 2017; Lee
et al., 2018) (modulo notational differences; denoted as F , C or e.g. A ? C in Xiao et al. (2018)).
In those works, the action of this map on hidden-state covariance matrices was interpreted as defin-
ing a dynamical system whose large-depth behavior informs aspects of trainability. In particular,
as l ! 1, Kl+1

1 = (C � A)
�
Kl

1
�
⇡ Kl

1 ⌘ K⇤
1, i.e. the covariance approaches a fixed point

K⇤
1. The convergence to a fixed point is problematic for learning because the hidden states no

longer contain information that can distinguish different pairs of inputs. It is similarly problematic
for GPs, as the kernel becomes pathological as it approaches a fixed point. Precisely, in the chaotic
regime outputs of the GP become asymptotically decorrelated and therefore independent, while in
the ordered regime they approach perfect correlation of 1. Either of these scenarios captures no
information about the training data in the kernel and makes learning infeasible.

This problem can be ameliorated by judicious hyperparameter selection, which can reduce the rate
of exponential convergence to the fixed point. For hyperpameters chosen on a critical line separating
two untrainable phases, the convergence rates slow to polynomial, and very deep networks can be
trained, and inference with deep NN-GP kernels can be performed – see Table 3.

A.3 STRIDED CONVOLUTIONS AND AVERAGE POOLING IN INTERMEDIATE LAYERS

Our analysis in the main text can easily be extended to cover average pooling and strided convolu-
tions (applied before the pointwise nonlinearity). Recall that conditioned on Kl the pre-activation
zl
j (x) 2 Rd1 is a zero-mean multivariate Gaussian. Let B 2 Rd2⇥d1 denote a linear operator. Then

Bzl
j (x) 2 Rd2 is a zero-mean Gaussian, and the covariance is

E{!l,bl}
h�

Bzl
j (x)

� �
Bzl

j (x0)
�T

���Kl
i

= BE{!l,bl}
h
zl
j (x) zl

j (x0)
T
���Kl

i
BT . (20)

One can easily see that
�
Bzl

j

��Kl
 

j
are i.i.d. multivariate Gaussian as well.

Strided convolution. Strided convolution is equivalent to a non-strided convolution composed with
subsampling. Let s 2 N denote size of the stride. Then the strided convolution is equivalent to
choosing B as follows: Bij = �(is � j) for i 2 {0, 1, . . . (d2 � 1)}.

Average pooling. Average pooling with stride s and window size ws is equivalent to choosing
Bij = 1/ws for i = 0, 1, . . . (d2 � 1) and j = is, . . . , (is + ws � 1).

ND convolutions. Note that our analysis in the main text (1D) easily extends to higher-dimensional
convolutions by replacing integer pixel indices and sizes d,↵,� with tuples (see also Figure 4).
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4. Computing the NN-GP covariance
8. Large-depth behavior 
• CNNs suffer from exploding or vanishing 

gradients at large depths unless they are 
initialized correctly. The phase boundary between 
order and chaos (rightmost plot for ERF 
nonlinearity) is the region where large-depth 
training is feasible.


• CNN-GP exhibits similar behavior. Initialized away 
from the phase boundary, the covariance between 
all different inputs becomes asymptotically 
constant and makes learning infeasible.

• Many different NN architectures converge to a GP.


• Some admit a tractable analytic form. E.g. the covariance of a 
CNN-GP with no pooling can be computed using 
O(#samples^2 x #pixels) resources.


• For other architectures we use a Monte Carlo approach. 
Sampling finite random networks of a given architecture and 
empirically computing the output covariance allows to 
approximate the CNN-GP covariance. In our experiments this 
(biased) estimate converges to the true CNN-GP covariance in 
#(instantiated networks) and #channels, both in terms of 
covariance Frobenius distance and the GP accuracy.

(a) SGD-trained finite CNNs often perform better with increasing number of channels.

(b) Performance of SGD-trained finite CNNs often approaches that of the respective 
CNN-GP with increasing the number of channels.

(c) However, the best performing SGD CNN outperforms the best CNN-GP by a 
significant margin.

• Various CNN architectural decisions 
like pooling / vectorizing / 
subsampling, zero or no padding 
have a corresponding NN-GP.


• Pooling enforces translation-invariant 
predictions in both CNNs and CNN-
GPs and allows for the best 
performance.


• Shallow CNN models can perform 
worse than fully-connected 
alternatives due to failing to capture 
non-linear interactions between 
distant pixels.

7. Disentangling the CNN architecture
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FCN (fully-connected):

CNN (1D):

6. When do CNNs outperform CNN-GPs?

• Outputs of a deep convolutional neural network (CNN) 
converge to a Gaussian Process ("CNN-GP") as the number 
of channels in hidden layers go to infinity. 

• CNN-GP achieves SOTA results on CIFAR10 among GPs 
without trainable kernels. 

• Absent pooling CNNs with and without weight sharing 
converge to the same GP. Translation equivariance is lost in 
infinite Bayesian CNNs (CNN-GPs), and finite SGD-trained 
CNNs can outperform them.
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Figure 2: Validation accuracy (left) of an MC-CNN-GP increases with n ⇥ M (i.e. channel count
times number of samples) and approaches that of the exact CNN-GP (not shown), while the distance
(right) to the exact kernel decreases. The dark band in the left plot corresponds to ill-conditioning
of KL+1

n,M when the number of outer products contributing to KL+1
n,M approximately equals its rank.

Values reported are for a 3-layer model applied to a 2K/4K train/validation subset of CIFAR10
downsampled to 8 ⇥ 8. See Figure 7 for similar results with other architectures and §A.7.2 for
experimental details.

random finite width networks and use the empirical uncentered covariances of activations to estimate
the Monte Carlo-GP (MC-GP) kernel,
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where ✓ consists of M draws of the weights and biases from their prior distribution, ✓m ⇠ p (✓), and
n is the width or number of channels in hidden layers. The MC-GP kernel converges to the analytic
kernel with increasing width, limn!1 Kl

n,M = Kl
1 in probability.

For finite width networks, the uncertainty in Kl
n,M is Var

⇥
Kl

n,M

⇤
= Var✓
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/M . From

Daniely et al. (2016), we know that Var✓
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⇤
/ 1

n , which leads to Var✓[K
l
n,M ] / 1

Mn . For
finite n, Kl

n,M is also a biased estimate of Kl
1, where the bias depends solely on network width.

We do not currently have an analytic form for this bias, but we can see in Figures 2 and 7 that for
the hyperparameters we probe it is small relative to the variance. In particular,

��Kl
n,M (✓) � KL

1
��2

F
is nearly constant for constant Mn. We thus treat Mn as the effective sample size for the Monte
Carlo kernel estimate. Increasing M and reducing n can reduce memory cost, though potentially at
the expense of increased compute time and bias.

In a non-distributed setting, the MC-GP reduces the memory requirements to compute GPpool from
O
⇣
|X |2 d2

⌘
to O

⇣
|X |2 + n2 + nd

⌘
, making the evaluation of CNN-GPs with pooling practical.

5 DISCUSSION

5.1 BAYESIAN CNNS WITH MANY CHANNELS ARE IDENTICAL TO LOCALLY CONNECTED
NETWORKS, IN THE ABSENCE OF POOLING

Locally Connected Networks (LCNs) (Fukushima, 1975; Lecun, 1989) are CNNs without weight
sharing between spatial locations. LCNs preserve the connectivity pattern, and thus topology, of a
CNN. However, they do not possess the equivariance property of a CNN – if an input is translated,
the latent representation in an LCN will be completely different, rather than also being translated.

The CNN-GP predictions without spatial pooling in §3.1 and §3.2.2 depend only on sample-sample
covariances, and do not depend on pixel-pixel covariances. LCNs destroy pixel-pixel covariances:⇥
KL

1
⇤LCN
↵,↵0 (x, x0) = 0, for ↵ 6= ↵0 and all x, x0 2 X and L > 0. However, LCNs preserve the

covariances between input examples at every pixel:
⇥
KL

1
⇤LCN
↵,↵

(x, x0) =
⇥
KL

1
⇤CNN
↵,↵

(x, x0). As a
result, in the absence of pooling, LCN-GPs and CNN-GPs are identical. Moreover, LCN-GPs with
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Figure 2: Validation accuracy (left) of an MC-CNN-GP increases with n ⇥ M (i.e. channel count
times number of samples) and approaches that of the exact CNN-GP (not shown), while the distance
(right) to the exact kernel decreases. The dark band in the left plot corresponds to ill-conditioning
of KL+1

n,M when the number of outer products contributing to KL+1
n,M approximately equals its rank.

Values reported are for a 3-layer model applied to a 2K/4K train/validation subset of CIFAR10
downsampled to 8 ⇥ 8. See Figure 7 for similar results with other architectures and §A.7.2 for
experimental details.
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where ✓ consists of M draws of the weights and biases from their prior distribution, ✓m ⇠ p (✓), and
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5.1 BAYESIAN CNNS WITH MANY CHANNELS ARE IDENTICAL TO LOCALLY CONNECTED
NETWORKS, IN THE ABSENCE OF POOLING

Locally Connected Networks (LCNs) (Fukushima, 1975; Lecun, 1989) are CNNs without weight
sharing between spatial locations. LCNs preserve the connectivity pattern, and thus topology, of a
CNN. However, they do not possess the equivariance property of a CNN – if an input is translated,
the latent representation in an LCN will be completely different, rather than also being translated.

The CNN-GP predictions without spatial pooling in §3.1 and §3.2.2 depend only on sample-sample
covariances, and do not depend on pixel-pixel covariances. LCNs destroy pixel-pixel covariances:⇥
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result, in the absence of pooling, LCN-GPs and CNN-GPs are identical. Moreover, LCN-GPs with
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Figure 1: Different dimensionality collapsing strategies described in §3. Validation accuracy of
an MC-CNN-GP with pooling (§3.2.1) is consistently better than other models due to translation
invariance of the kernel. CNN-GP with zero padding (§3.1) outperforms an analogous CNN-
GP without padding as depth increases. At depth 15 the spatial dimension of the output without
padding is reduced to 1 ⇥ 1, making the CNN-GP without padding equivalent to the center pixel
selection strategy (§3.2.2) – which also performs worse than the CNN-GP (we conjecture, due
to overfitting to centrally-located features) but approaches the latter (right) in the limit of large
depth, as information becomes more uniformly spatially distributed (Xiao et al., 2018). CNN-GPs
generally outperform FCN-GP, presumably due to the local connectivity prior, but can fail to capture
nonlinear interactions between spatially-distant pixels at shallow depths (left). Values are reported
on a 2K/4K train/validation subsets of CIFAR10. See §A.7.3 for experimental details.

1. Global average pooling: take h = 1
d1d. Then

Kpool
1 ⌘ �2

!

d2

X

↵,↵0

⇥
KL+1

1
⇤
↵,↵0 + �2

b . (17)

This approach corresponds to applying global average pooling right after the last convolu-
tional layer.8 This approach takes all pixel-pixel covariances into consideration and makes
the kernel translation invariant. However, it requires O

�
|X |2d2

�
memory to compute the

sample-sample covariance of the GP (or O
�
d2
�

per covariance entry in an iterative or dis-
tributed setting). It is impractical to use this method to analytically evaluate the GP, and we
propose to use a Monte Carlo approach (see §4).

2. Subsampling one particular pixel: take h = e↵,

Ke↵
1 ⌘ �2

!

⇥
KL+1

1
⇤
↵,↵

+ �2
b . (18)

This approach makes use of only one pixel-pixel covariance, and requires the same amount
of memory as vectorization (§3.1) to compute.

We compare the performance of presented strategies in Figure 1. Note that all described strategies
admit stacking additional FC layers on top while retaining the GP equivalence, using a derivation
analogous to §2 (Lee et al., 2018; Matthews et al., 2018b).

4 MONTE CARLO EVALUATION OF INTRACTABLE GP KERNELS

We introduce a Monte Carlo estimation method for NN-GP kernels which are computationally im-
practical to compute analytically, or for which we do not know the analytic form. Similar in spirit
to traditional random feature methods (Rahimi & Recht, 2007), the core idea is to instantiate many

8 Spatially local average pooling in intermediary layers can be constructed in a similar fashion (§A.3). We
focus on global average pooling in this work to more effectively isolate the effects of pooling from other aspects
of the model like local connectivity or equivariance.
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Figure 3: (a): SGD-trained CNNs often perform better with increasing number of channels.
Each line corresponds to a particular choice of architecture and initialization hyperparameters, with
best learning rate and weight decay selected independently for each number of channels (x-axis).
(b): SGD-trained CNNs often approach the performance of their corresponding CNN-GP
with increasing number of channels. All models have the same architecture except for pooling
and weight sharing, as well as training-related hyperparameters such as learning rate, weight decay
and batch size, which are selected for each number of channels (x-axis) to maximize validation
performance (y-axis) of a neural network. As the number of channels grows, best validation accu-
racy increases and approaches accuracy of the respective GP (solid horizontal line). (c): However,
the best-performing SGD-trained CNNs can outperform their corresponding CNN-GPs. Each
point corresponds to the test accuracy of: (y-axis) a specific CNN-GP; (x-axis) the best (on valida-
tion) CNN with the same architectural hyper-parameters selected among the 100%-accurate models
on the full training CIFAR10 dataset with different learning rates, weight decay and number of chan-
nels. While CNN-GP appears competitive against 100%-accurate CNNs (above the diagonal), the
best CNNs overall outperform CNN-GPs by a significant margin (below the diagonal, right). For
further analysis of factors leading to similar or diverging behavior between SGD-trained finite CNNs
and infinite Bayesian CNNs see Tables 1 and 2. Experimental details: all networks have reached
100% training accuracy on CIFAR10. Values in (b) are reported on an 0.5K/4K train/validation sub-
set downsampled to 8 ⇥ 8 for computational reasons. See §A.7.5 and §A.7.1 for full experimental
details of (a, c) and (b) plots respectively.
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Table 3: Validation accuracy of CNN- and FCN- GPs as a function of weight (�2
! , horizontal

axis) and bias (�2
b , vertical axis) variances. As predicted in §A.2, the regions of good performance

concentrate around the critical line (phase boundary, right) as the depth increases (left to right).
All plots share common axes ranges and employ the erf nonlinearity. See §A.7.2 for experimental
details.

A.2 RELATIONSHIP TO DEEP SIGNAL PROPAGATION

The recurrence relation linking the GP kernel at layer l + 1 to that of layer l following from Equa-
tion 10 (i.e. Kl+1

1 = (C � A)
�
Kl

1
�
) is precisely the covariance map examined in a series of related

papers on signal propagation (Xiao et al., 2018; Poole et al., 2016; Schoenholz et al., 2017; Lee
et al., 2018) (modulo notational differences; denoted as F , C or e.g. A ? C in Xiao et al. (2018)).
In those works, the action of this map on hidden-state covariance matrices was interpreted as defin-
ing a dynamical system whose large-depth behavior informs aspects of trainability. In particular,
as l ! 1, Kl+1

1 = (C � A)
�
Kl

1
�
⇡ Kl

1 ⌘ K⇤
1, i.e. the covariance approaches a fixed point

K⇤
1. The convergence to a fixed point is problematic for learning because the hidden states no

longer contain information that can distinguish different pairs of inputs. It is similarly problematic
for GPs, as the kernel becomes pathological as it approaches a fixed point. Precisely, in the chaotic
regime outputs of the GP become asymptotically decorrelated and therefore independent, while in
the ordered regime they approach perfect correlation of 1. Either of these scenarios captures no
information about the training data in the kernel and makes learning infeasible.

This problem can be ameliorated by judicious hyperparameter selection, which can reduce the rate
of exponential convergence to the fixed point. For hyperpameters chosen on a critical line separating
two untrainable phases, the convergence rates slow to polynomial, and very deep networks can be
trained, and inference with deep NN-GP kernels can be performed – see Table 3.

A.3 STRIDED CONVOLUTIONS AND AVERAGE POOLING IN INTERMEDIATE LAYERS

Our analysis in the main text can easily be extended to cover average pooling and strided convolu-
tions (applied before the pointwise nonlinearity). Recall that conditioned on Kl the pre-activation
zl
j (x) 2 Rd1 is a zero-mean multivariate Gaussian. Let B 2 Rd2⇥d1 denote a linear operator. Then

Bzl
j (x) 2 Rd2 is a zero-mean Gaussian, and the covariance is

E{!l,bl}
h�

Bzl
j (x)

� �
Bzl

j (x0)
�T

���Kl
i

= BE{!l,bl}
h
zl
j (x) zl

j (x0)
T
���Kl

i
BT . (20)

One can easily see that
�
Bzl

j

��Kl
 

j
are i.i.d. multivariate Gaussian as well.

Strided convolution. Strided convolution is equivalent to a non-strided convolution composed with
subsampling. Let s 2 N denote size of the stride. Then the strided convolution is equivalent to
choosing B as follows: Bij = �(is � j) for i 2 {0, 1, . . . (d2 � 1)}.

Average pooling. Average pooling with stride s and window size ws is equivalent to choosing
Bij = 1/ws for i = 0, 1, . . . (d2 � 1) and j = is, . . . , (is + ws � 1).

ND convolutions. Note that our analysis in the main text (1D) easily extends to higher-dimensional
convolutions by replacing integer pixel indices and sizes d,↵,� with tuples (see also Figure 4).
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4. Computing the NN-GP covariance
8. Large-depth behavior 
• CNNs suffer from exploding or vanishing 

gradients at large depths unless they are 
initialized correctly. The phase boundary between 
order and chaos (rightmost plot for ERF 
nonlinearity) is the region where large-depth 
training is feasible.


• CNN-GP exhibits similar behavior. Initialized away 
from the phase boundary, the covariance between 
all different inputs becomes asymptotically 
constant and makes learning infeasible.

• Many different NN architectures converge to a GP.


• Some admit a tractable analytic form. E.g. the covariance of a 
CNN-GP with no pooling can be computed using 
O(#samples^2 x #pixels) resources.


• For other architectures we use a Monte Carlo approach. 
Sampling finite random networks of a given architecture and 
empirically computing the output covariance allows to 
approximate the CNN-GP covariance. In our experiments this 
(biased) estimate converges to the true CNN-GP covariance in 
#(instantiated networks) and #channels, both in terms of 
covariance Frobenius distance and the GP accuracy.

(a) SGD-trained finite CNNs often perform better with increasing number of channels.

(b) Performance of SGD-trained finite CNNs often approaches that of the respective 
CNN-GP with increasing the number of channels.

(c) However, the best performing SGD CNN outperforms the best CNN-GP by a 
significant margin.

• Various CNN architectural decisions 
like pooling / vectorizing / 
subsampling, zero or no padding 
have a corresponding NN-GP.


• Pooling enforces translation-invariant 
predictions in both CNNs and CNN-
GPs and allows for the best 
performance.


• Shallow CNN models can perform 
worse than fully-connected 
alternatives due to failing to capture 
non-linear interactions between 
distant pixels.

7. Disentangling the CNN architecture
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6. When do CNNs outperform CNN-GPs?

• Outputs of a deep convolutional neural network (CNN) 
converge to a Gaussian Process ("CNN-GP") as the number 
of channels in hidden layers go to infinity. 

• CNN-GP achieves SOTA results on CIFAR10 among GPs 
without trainable kernels. 

• Absent pooling CNNs with and without weight sharing 
converge to the same GP. Translation equivariance is lost in 
infinite Bayesian CNNs (CNN-GPs), and finite SGD-trained 
CNNs can outperform them.
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Figure 2: Validation accuracy (left) of an MC-CNN-GP increases with n ⇥ M (i.e. channel count
times number of samples) and approaches that of the exact CNN-GP (not shown), while the distance
(right) to the exact kernel decreases. The dark band in the left plot corresponds to ill-conditioning
of KL+1

n,M when the number of outer products contributing to KL+1
n,M approximately equals its rank.

Values reported are for a 3-layer model applied to a 2K/4K train/validation subset of CIFAR10
downsampled to 8 ⇥ 8. See Figure 7 for similar results with other architectures and §A.7.2 for
experimental details.

random finite width networks and use the empirical uncentered covariances of activations to estimate
the Monte Carlo-GP (MC-GP) kernel,
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where ✓ consists of M draws of the weights and biases from their prior distribution, ✓m ⇠ p (✓), and
n is the width or number of channels in hidden layers. The MC-GP kernel converges to the analytic
kernel with increasing width, limn!1 Kl

n,M = Kl
1 in probability.

For finite width networks, the uncertainty in Kl
n,M is Var
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finite n, Kl

n,M is also a biased estimate of Kl
1, where the bias depends solely on network width.

We do not currently have an analytic form for this bias, but we can see in Figures 2 and 7 that for
the hyperparameters we probe it is small relative to the variance. In particular,
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1
��2

F
is nearly constant for constant Mn. We thus treat Mn as the effective sample size for the Monte
Carlo kernel estimate. Increasing M and reducing n can reduce memory cost, though potentially at
the expense of increased compute time and bias.

In a non-distributed setting, the MC-GP reduces the memory requirements to compute GPpool from
O
⇣
|X |2 d2

⌘
to O

⇣
|X |2 + n2 + nd

⌘
, making the evaluation of CNN-GPs with pooling practical.

5 DISCUSSION

5.1 BAYESIAN CNNS WITH MANY CHANNELS ARE IDENTICAL TO LOCALLY CONNECTED
NETWORKS, IN THE ABSENCE OF POOLING

Locally Connected Networks (LCNs) (Fukushima, 1975; Lecun, 1989) are CNNs without weight
sharing between spatial locations. LCNs preserve the connectivity pattern, and thus topology, of a
CNN. However, they do not possess the equivariance property of a CNN – if an input is translated,
the latent representation in an LCN will be completely different, rather than also being translated.

The CNN-GP predictions without spatial pooling in §3.1 and §3.2.2 depend only on sample-sample
covariances, and do not depend on pixel-pixel covariances. LCNs destroy pixel-pixel covariances:⇥
KL

1
⇤LCN
↵,↵0 (x, x0) = 0, for ↵ 6= ↵0 and all x, x0 2 X and L > 0. However, LCNs preserve the

covariances between input examples at every pixel:
⇥
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1
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↵,↵

(x, x0) =
⇥
KL

1
⇤CNN
↵,↵

(x, x0). As a
result, in the absence of pooling, LCN-GPs and CNN-GPs are identical. Moreover, LCN-GPs with
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Figure 2: Validation accuracy (left) of an MC-CNN-GP increases with n ⇥ M (i.e. channel count
times number of samples) and approaches that of the exact CNN-GP (not shown), while the distance
(right) to the exact kernel decreases. The dark band in the left plot corresponds to ill-conditioning
of KL+1

n,M when the number of outer products contributing to KL+1
n,M approximately equals its rank.

Values reported are for a 3-layer model applied to a 2K/4K train/validation subset of CIFAR10
downsampled to 8 ⇥ 8. See Figure 7 for similar results with other architectures and §A.7.2 for
experimental details.
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NETWORKS, IN THE ABSENCE OF POOLING

Locally Connected Networks (LCNs) (Fukushima, 1975; Lecun, 1989) are CNNs without weight
sharing between spatial locations. LCNs preserve the connectivity pattern, and thus topology, of a
CNN. However, they do not possess the equivariance property of a CNN – if an input is translated,
the latent representation in an LCN will be completely different, rather than also being translated.

The CNN-GP predictions without spatial pooling in §3.1 and §3.2.2 depend only on sample-sample
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KL

1
⇤LCN
↵,↵0 (x, x0) = 0, for ↵ 6= ↵0 and all x, x0 2 X and L > 0. However, LCNs preserve the

covariances between input examples at every pixel:
⇥
KL

1
⇤LCN
↵,↵

(x, x0) =
⇥
KL

1
⇤CNN
↵,↵

(x, x0). As a
result, in the absence of pooling, LCN-GPs and CNN-GPs are identical. Moreover, LCN-GPs with

8

(#NN instantiations)

• Outputs of a CNN converge in distribution to 
a Gaussian process with a compositional 
kernel (under mild conditions on the weights 
and biases distribution and nonlinearity). (#channels in hidden layers)

(convergence in distribution)

(an affine transformation)
(inputs covariance)

(computes covariance of post-nonlinearity 
activations given normal pre-activations)

�
outputs

�� inputs
� D������������!

min{n1,...,nL}!1
N

⇣
0, A � (C � A)

L �
K0

�
⌦ InL+1

⌘

<latexit sha1_base64="rSefQ0IBgTGoBSFhXrbE0xA5Jbk="></latexit><latexit sha1_base64="rSefQ0IBgTGoBSFhXrbE0xA5Jbk="></latexit><latexit sha1_base64="rSefQ0IBgTGoBSFhXrbE0xA5Jbk="></latexit><latexit sha1_base64="rSefQ0IBgTGoBSFhXrbE0xA5Jbk="></latexit>

(#channels in the outputs)

(F
ul

ly-
co

nn
ec

te
d)

(all displayed models are 100% accurate on the training set)

(not always necessary to track the whole 4x4x10x10 covariance.)

(attaching a fully-connected layer 
only to the center pixel of the output)

n1 →
∞

n1 →
∞

n2 →
∞

n2 →
∞

K0
<latexit sha1_base64="djKoC8a3j3Zgk4rwu2KpBm00p38=">AAAB+3icbVC7SgNBFL0bX3F9RS1tBoNgFWa10EYM2gg2Ec0DkjXMTmaTITO7y8ysEJZ8gq1+QDqx9Rv8BLH2R5wkFpp44MLhnHs5lxMkgmuD8aeTW1hcWl7Jr7pr6xubW4XtnZqOU0VZlcYiVo2AaCZ4xKqGG8EaiWJEBoLVg/7l2K8/MKV5HN2ZQcJ8SboRDzklxkq31/e4XSjiEp4AzRPvhxTP392zZPThVtqFr1YnpqlkkaGCaN30cGL8jCjDqWBDt5VqlhDaJ13WtDQikmk/m7w6RAdW6aAwVnYigybq74uMSK0HMrCbkpienvXG4r9eEMiZaBOe+hmPktSwiE6Tw1QgE6NxEajDFaNGDCwhVHH7PKI9ogg1ti7XtuLNdjBPakcl77iEb3CxfAFT5GEP9uEQPDiBMlxBBapAoQuP8ATPztAZOS/O63Q15/zc7MIfOG/fT3WXvg==</latexit>

A
<latexit sha1_base64="O66ATy1aw1tYLYUpvpJ8FgNJCH8=">AAACA3icbVC7SgNBFL0bX3F9RS1tBoNgFXa10EaM2lhGMA9IljA7mSRDZmeWmVkhLCn9BFstLO3E1tpPEGt/xNkkhSYeuHA4517u4YQxZ9p43peTW1hcWl7Jr7pr6xubW4XtnZqWiSK0SiSXqhFiTTkTtGqY4bQRK4qjkNN6OLjK/PodVZpJcWuGMQ0i3BOsywg2Vmq2Imz6BPP0YtQuFL2SNwaaJ/6UFM8/3LP4+dOttAvfrY4kSUSFIRxr3fS92AQpVoYRTkduK9E0xmSAe7RpqcAR1UE6jjxCB1bpoK5UdoRBY/X3RYojrYdRaDeziHrWy8R/vTCMZl6b7mmQMhEnhgoy+dxNODISZYWgDlOUGD60BBPFbHhE+lhhYmxtrm3Fn+1gntSOSv5xybvxiuVLmCAPe7APh+DDCZThGipQBQISHuARnpx758V5dd4mqzlnerMLf+C8/wA5N5uk</latexit>

C
<latexit sha1_base64="Bp3s0NXazI8dQfK7i5edA+N1hFs=">AAACA3icbVC7SgNBFL0bX3F9RS1tBoNgFXa10EYMprGMYB6QLGF2MkmGzMwuM7NCWFL6CbZaWNqJrbWfINb+iLNJCk08cOFwzr3cwwljzrTxvC8nt7S8srqWX3c3Nre2dwq7e3UdJYrQGol4pJoh1pQzSWuGGU6bsaJYhJw2wmEl8xt3VGkWyVszimkgcF+yHiPYWKnVFtgMCOZpZdwpFL2SNwFaJP6MFC8/3Iv4+dOtdgrf7W5EEkGlIRxr3fK92AQpVoYRTsduO9E0xmSI+7RlqcSC6iCdRB6jI6t0US9SdqRBE/X3RYqF1iMR2s0sop73MvFfLwzF3GvTOw9SJuPEUEmmn3sJRyZCWSGoyxQlho8swUQxGx6RAVaYGFuba1vx5ztYJPWTkn9a8m68YvkKpsjDARzCMfhwBmW4hirUgEAED/AIT8698+K8Om/T1Zwzu9mHP3DefwA8Y5um</latexit>

K1
1<latexit sha1_base64="XvvOkSjqlJ92PocDUdmzMoTY5m8=">AAACBHicbVC7SgNBFL0bXzG+opY2Q0RIFXa1iGXQRrCJYB6QXcPsZDYZMju7zMwKy5LWT7Cx0A+wE1t7P0G080ecPApNPHDhcM69nMvxY86Utu0PK7e0vLK6ll8vbGxube8Ud/eaKkokoQ0S8Ui2fawoZ4I2NNOctmNJcehz2vKH52O/dUulYpG41mlMvRD3BQsYwdpI7uWN081cJgKdjrrFQ7tiT4AWiTMjh7VS+euz+v5Q7xa/3V5EkpAKTThWquPYsfYyLDUjnI4KbqJojMkQ92nHUIFDqrxs8vMIHRmlh4JImhEaTdTfFxkOlUpD32yGWA/UvDcW//V8P5yL1sGplzERJ5oKMk0OEo50hMaNoB6TlGieGoKJZOZ5RAZYYqJNbwXTijPfwSJpHleck4p9Zeo5gynycAAlKIMDVajBBdShAQRiuIdHeLLurGfrxXqdruas2c0+/IH19gOqA5yR</latexit>

K2
1<latexit sha1_base64="OUeUKe+lIobds6D6xEX6ikdejzA=">AAACBHicbVC7SgNBFJ2NrxhfUUubIUFIFXZjEcugjWATwTwgG8PsZDYZMju7zNwVliWtn2BjoR9gJ7b2foJo5484eRSaeODC4Zx7OZfjRYJrsO0PK7Oyura+kd3MbW3v7O7l9w+aOowVZQ0ailC1PaKZ4JI1gINg7UgxEniCtbzR+cRv3TKleSivIYlYNyADyX1OCRjJvbyp9FKXSx+ScS9ftMv2FHiZOHNSrBVKX5/V94d6L//t9kMaB0wCFUTrjmNH0E2JAk4FG+fcWLOI0BEZsI6hkgRMd9Ppz2N8bJQ+9kNlRgKeqr8vUhJonQSe2QwIDPWiNxH/9TwvWIgG/7SbchnFwCSdJfuxwBDiSSO4zxWjIBJDCFXcPI/pkChCwfSWM604ix0sk2al7JyU7StTzxmaIYuOUAGVkIOqqIYuUB01EEURukeP6Mm6s56tF+t1tpqx5jeH6A+stx+roZyS</latexit>

Kvec
1

<latexit sha1_base64="6K3mCNDghmeg3opAxpsEWlsnFsk=">AAACHXicbVC7SgNBFJ2NrxhfUUubRRGswq4WsQzaCDYRTBTcGGYnd3VwZnaZuRsMy36A32DhJ9jqB1gIYiuinT/iJLHQxAMDh3PO5d45YSK4Qc97dwoTk1PTM8XZ0tz8wuJSeXmlaeJUM2iwWMT6NKQGBFfQQI4CThMNVIYCTsKr/b5/0gVteKyOsZdAS9ILxSPOKFqpXd4IJMVLRkV2mLezgKsIe/l5FiBco5ZZF1ie25RX8QZwx4n/QzZq61ufH9Xn23q7/BV0YpZKUMgENebM9xJsZVQjZwLyUpAaSCi7ohdwZqmiEkwrG3wmdzet0nGjWNun0B2ovycyKo3pydAm+6ebUa8v/uuFoRxZjdFuK+MqSREUG26OUuFi7ParcjtcA0PRs4Qyze3xLrukmjK0hZZsK/5oB+OkuV3xdyreka1njwxRJGtknWwRn1RJjRyQOmkQRm7IPXkgj86d8+S8OK/DaMH5mVklf+C8fQNy+KfT</latexit>

A
�
K0

�
<latexit sha1_base64="h4C+kvbRlWTUqodPHM9c9Ea/pzA=">AAACFXicbVC7TgJBFJ3FF+Jr1ZJmIjGBhuxqoSVqY2KDiTwSFsnsMAsTZh+ZuWuCGwq/wFK/QFv9ADtja23tjzgLFAqe5CYn59ybe+9xI8EVWNaXkVlYXFpeya7m1tY3NrfM7Z26CmNJWY2GIpRNlygmeMBqwEGwZiQZ8V3BGu7gLPUbN0wqHgZXMIxY2ye9gHucEtBSx8w7PoE+JSI5GTmCeVC8uLYcyXt9KHXMglW2xsDzxJ6SQqV0fxtlnx6rHfPb6YY09lkAVBClWrYVQTshEjgVbJRzYsUiQgekx1qaBsRnqp2Mnxjhfa10sRdKXQHgsfp7IiG+UkPf1Z3pyWrWS8V/Pdf1Z1aDd9xOeBDFwAI62ezFAkOI04hwl0tGQQw1IVRyfTymfSIJBR1kTqdiz2YwT+oHZfuwbF3qeE7RBFmUR3uoiGx0hCroHFVRDVF0h57RC3o1How34934mLRmjOnMLvoD4/MHS8CiBw==</latexit>

A
<latexit sha1_base64="O66ATy1aw1tYLYUpvpJ8FgNJCH8=">AAACA3icbVC7SgNBFL0bX3F9RS1tBoNgFXa10EaM2lhGMA9IljA7mSRDZmeWmVkhLCn9BFstLO3E1tpPEGt/xNkkhSYeuHA4517u4YQxZ9p43peTW1hcWl7Jr7pr6xubW4XtnZqWiSK0SiSXqhFiTTkTtGqY4bQRK4qjkNN6OLjK/PodVZpJcWuGMQ0i3BOsywg2Vmq2Imz6BPP0YtQuFL2SNwaaJ/6UFM8/3LP4+dOttAvfrY4kSUSFIRxr3fS92AQpVoYRTkduK9E0xmSAe7RpqcAR1UE6jjxCB1bpoK5UdoRBY/X3RYojrYdRaDeziHrWy8R/vTCMZl6b7mmQMhEnhgoy+dxNODISZYWgDlOUGD60BBPFbHhE+lhhYmxtrm3Fn+1gntSOSv5xybvxiuVLmCAPe7APh+DDCZThGipQBQISHuARnpx758V5dd4mqzlnerMLf+C8/wA5N5uk</latexit>

C
<latexit sha1_base64="Bp3s0NXazI8dQfK7i5edA+N1hFs=">AAACA3icbVC7SgNBFL0bX3F9RS1tBoNgFXa10EYMprGMYB6QLGF2MkmGzMwuM7NCWFL6CbZaWNqJrbWfINb+iLNJCk08cOFwzr3cwwljzrTxvC8nt7S8srqWX3c3Nre2dwq7e3UdJYrQGol4pJoh1pQzSWuGGU6bsaJYhJw2wmEl8xt3VGkWyVszimkgcF+yHiPYWKnVFtgMCOZpZdwpFL2SNwFaJP6MFC8/3Iv4+dOtdgrf7W5EEkGlIRxr3fK92AQpVoYRTsduO9E0xmSI+7RlqcSC6iCdRB6jI6t0US9SdqRBE/X3RYqF1iMR2s0sop73MvFfLwzF3GvTOw9SJuPEUEmmn3sJRyZCWSGoyxQlho8swUQxGx6RAVaYGFuba1vx5ztYJPWTkn9a8m68YvkKpsjDARzCMfhwBmW4hirUgEAED/AIT8698+K8Om/T1Zwzu9mHP3DefwA8Y5um</latexit>

�
<latexit sha1_base64="S97hAc1Xq6o+hnybyN3EFc8GOUA=">AAAB/HicbVC7SgNBFL3rM8ZX1FKRwSBYhV0ttAzaWCZgHpAsYXYymwyZmV1mZoWwxM7WVj/ATmwlv2Jt6U84m6TQxAMXDufcy7mcIOZMG9f9dJaWV1bX1nMb+c2t7Z3dwt5+XUeJIrRGIh6pZoA15UzSmmGG02asKBYBp41gcJP5jXuqNIvknRnG1Be4J1nICDaZ1I77rFMouiV3ArRIvBkplo/G1e/H43GlU/hqdyOSCCoN4VjrlufGxk+xMoxwOsq3E01jTAa4R1uWSiyo9tPJryN0apUuCiNlRxo0UX9fpFhoPRSB3RTY9PW8l4n/ekEg5qJNeOWnTMaJoZJMk8OEIxOhrAnUZYoSw4eWYKKYfR6RPlaYGNtX3rbizXewSOrnJe+i5FZtPdcwRQ4O4QTOwINLKMMtVKAGBPrwBM/w4jw4r86b8z5dXXJmNwfwB87HD0B7mPY=</latexit>

�
<latexit sha1_base64="S97hAc1Xq6o+hnybyN3EFc8GOUA=">AAAB/HicbVC7SgNBFL3rM8ZX1FKRwSBYhV0ttAzaWCZgHpAsYXYymwyZmV1mZoWwxM7WVj/ATmwlv2Jt6U84m6TQxAMXDufcy7mcIOZMG9f9dJaWV1bX1nMb+c2t7Z3dwt5+XUeJIrRGIh6pZoA15UzSmmGG02asKBYBp41gcJP5jXuqNIvknRnG1Be4J1nICDaZ1I77rFMouiV3ArRIvBkplo/G1e/H43GlU/hqdyOSCCoN4VjrlufGxk+xMoxwOsq3E01jTAa4R1uWSiyo9tPJryN0apUuCiNlRxo0UX9fpFhoPRSB3RTY9PW8l4n/ekEg5qJNeOWnTMaJoZJMk8OEIxOhrAnUZYoSw4eWYKKYfR6RPlaYGNtX3rbizXewSOrnJe+i5FZtPdcwRQ4O4QTOwINLKMMtVKAGBPrwBM/w4jw4r86b8z5dXXJmNwfwB87HD0B7mPY=</latexit>

X = y0
<latexit sha1_base64="w7fOKhzB63i59cdFS6XECob+pDw=">AAACCXicbVC7SgNBFL3rM8ZHVi0VGQyCVdjVQhshaGOZgHlAsobZyWwyZGZ3mZkVliWllZ9gqx9gF2z9CmtLf8LJo9DEAxcO59zLPRw/5kxpx/m0lpZXVtfWcxv5za3tnYK9u1dXUSIJrZGIR7LpY0U5C2lNM81pM5YUC5/Thj+4GfuNByoVi8I7ncbUE7gXsoARrI3UsQttgXWfYJ41h1fpvdOxi07JmQAtEndGiuXDUfX78WhU6dhf7W5EEkFDTThWquU6sfYyLDUjnA7z7UTRGJMB7tGWoSEWVHnZJPgQnRili4JImgk1mqi/LzIslEqFbzbHMdW8Nxb/9XxfzL3WwaWXsTBONA3J9HOQcKQjNK4FdZmkRPPUEEwkM+ER6WOJiTbl5U0r7nwHi6R+VnLPS07V1HMNU+TgAI7hFFy4gDLcQgVqQCCBZ3iBV+vJerNG1vt0dcma3ezDH1gfPxUHncI=</latexit>

z0
<latexit sha1_base64="U1l7Dtq33FgrRs54bTLLsjNbCyQ=">AAAB+3icbVC7SgNBFL0bX3F9RS1tBoNgFWa10EYM2lhGNA9I1jA7mU2GzOwuM7NCXPIJtvoB6cTWb/ATxNofcZJYaOKBC4dz7uVcTpAIrg3Gn05uYXFpeSW/6q6tb2xuFbZ3ajpOFWVVGotYNQKimeARqxpuBGskihEZCFYP+pdjv37PlOZxdGsGCfMl6UY85JQYK9083OF2oYhLeAI0T7wfUjx/d8+S0YdbaRe+Wp2YppJFhgqiddPDifEzogyngg3dVqpZQmifdFnT0ohIpv1s8uoQHVilg8JY2YkMmqi/LzIitR7IwG5KYnp61huL/3pBIGeiTXjqZzxKUsMiOk0OU4FMjMZFoA5XjBoxsIRQxe3ziPaIItTYulzbijfbwTypHZW84xK+xsXyBUyRhz3Yh0Pw4ATKcAUVqAKFLjzCEzw7Q2fkvDiv09Wc83OzC3/gvH0Dmi6X7Q==</latexit>

z1
<latexit sha1_base64="V7AStE6FLEtgSPN87apVgzmLNDU=">AAAB+3icbVC7SgNBFL0bX3F9RS1tBoNgFXa10EYM2lhGNA9I1jA7mU2GzMwuM7NCXPIJtvoB6cTWb/ATxNofcZJYaOKBC4dz7uVcTphwpo3nfTq5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9i/Hfv2eKs1ieWsGCQ0E7koWMYKNlW4e7vx2oeiVvAnQPPF/SPH83T1LRh9upV34anVikgoqDeFY66bvJSbIsDKMcDp0W6mmCSZ93KVNSyUWVAfZ5NUhOrBKB0WxsiMNmqi/LzIstB6I0G4KbHp61huL/3phKGaiTXQaZEwmqaGSTJOjlCMTo3ERqMMUJYYPLMFEMfs8Ij2sMDG2Lte24s92ME9qRyX/uORde8XyBUyRhz3Yh0Pw4QTKcAUVqAKBLjzCEzw7Q2fkvDiv09Wc83OzC3/gvH0Dm8OX7g==</latexit>

y1
<latexit sha1_base64="1Y9jtIAcXc6WD6dG14lqrSZUMkY=">AAAB+3icbVC7SgNBFL0bXzG+opaKDAbBKuxqoWXQxjJB84BkDbOTSTJkZnaZmRWWJaWlrX6AndgK+RVrS3/CyaPQxAMXDufcy7mcIOJMG9f9dDJLyyura9n13Mbm1vZOfnevpsNYEVolIQ9VI8CaciZp1TDDaSNSFIuA03owuB779QeqNAvlnUki6gvck6zLCDZWuk3uvXa+4BbdCdAi8WakUDocVb4fj0bldv6r1QlJLKg0hGOtm54bGT/FyjDC6TDXijWNMBngHm1aKrGg2k8nrw7RiVU6qBsqO9Kgifr7IsVC60QEdlNg09fz3lj81wsCMRdtupd+ymQUGyrJNLkbc2RCNC4CdZiixPDEEkwUs88j0scKE2PrytlWvPkOFkntrOidF92KrecKpsjCARzDKXhwASW4gTJUgUAPnuAZXpyh8+q8Oe/T1Ywzu9mHP3A+fgAurphX</latexit>

y2
<latexit sha1_base64="M1NznfhXnMFosLH4HXe507vFGXw=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhd1YaBm0sUzQPCBZw+xkkgyZmV1mZoVlSWlpqx9gJ7ZCfsXa0p9w8ig08cCFwzn3ci4niDjTxnU/naXlldW19cxGdnNre2c3t7df02GsCK2SkIeqEWBNOZO0apjhtBEpikXAaT0YXI/9+gNVmoXyziQR9QXuSdZlBBsr3Sb3xXYu7xbcCdAi8WYkXzoaVb4fj0fldu6r1QlJLKg0hGOtm54bGT/FyjDC6TDbijWNMBngHm1aKrGg2k8nrw7RqVU6qBsqO9Kgifr7IsVC60QEdlNg09fz3lj81wsCMRdtupd+ymQUGyrJNLkbc2RCNC4CdZiixPDEEkwUs88j0scKE2PrytpWvPkOFkmtWPDOC27F1nMFU2TgEE7gDDy4gBLcQBmqQKAHT/AML87QeXXenPfp6pIzuzmAP3A+fgAwQ5hY</latexit>

z̄2
<latexit sha1_base64="4weGomNjpmJmWZL3O94Y1OsZs9o=">AAACAHicbVC7SgNBFL0bX3F9RS1tBoNgFXZjoY0YtLGMYB6QrGFmMpsMmZ1dZmaFGNL4Cbba2diJrT/gJ4i1P+LkUWjigQuHc+7lXA5JBNfG876czMLi0vJKdtVdW9/Y3Mpt71R1nCrKKjQWsaoTrJngklUMN4LVE8VwRASrkd7FyK/dMqV5LK9NP2FBhDuSh5xiY6V6k2CF7m6KrVzeK3hjoHniT0n+7MM9TZ4/3XIr991sxzSNmDRUYK0bvpeYYICV4VSwodtMNUsw7eEOa1gqccR0MBj/O0QHVmmjMFZ2pEFj9ffFAEda9yNiNyNsunrWG4n/eoREM9EmPAkGXCapYZJOksNUIBOjURuozRWjRvQtwVRx+zyiXawwNbYz17biz3YwT6rFgn9U8K68fOkcJsjCHuzDIfhwDCW4hDJUgIKAB3iEJ+feeXFenbfJasaZ3uzCHzjvPwxnmdI=</latexit>

A
�
K1

1
�

<latexit sha1_base64="qKhejSfyk+54mP43KqY2NvyxdM8=">AAACHHicbVA9SwNBEN2LXzF+RS1tjgQhacKdFlpGbQSbCOYDcvHY2+wlS/b2jt05IR7p7WytLC1t9QfYia1g7R9xL0mhiQ8GHu/NMDPPizhTYFlfRmZhcWl5JbuaW1vf2NzKb+80VBhLQusk5KFseVhRzgStAwNOW5GkOPA4bXqDs9Rv3lCpWCiuYBjRToB7gvmMYNCSmy84AYY+wTw5GTmc+lC6uLZdhwkfho5kvT6U3XzRqlhjmPPEnpJitXx/G2WfHmpu/tvphiQOqADCsVJt24qgk2AJjHA6yjmxohEmA9yjbU0FDqjqJONfRua+VrqmH0pdAsyx+nsiwYFSw8DTnenlatZLxX89zwtmVoN/3EmYiGKggkw2+zE3ITTTpMwuk5QAH2qCiWT6eJP0scQEdJ45nYo9m8E8aRxU7MOKdanjOUUTZNEeKqASstERqqJzVEN1RNAdekYv6NV4NN6Md+Nj0poxpjO76A+Mzx834KUz</latexit>

K̃0
<latexit sha1_base64="oBlV8IU3XcIIzHb4GLFJzufcj10=">AAACD3icbVDLSsNAFJ34rPEVFVdugkVwVZK60I1YdCO4qWAf0MQymUzaoTOTMDMRSshH+AniTj/AnbgTv0Bc+yNO2i609cCFwzn3cg8nSCiRynG+jLn5hcWl5dKKubq2vrFpbW03ZZwKhBsoprFoB1BiSjhuKKIobicCQxZQ3AoGF4XfusNCkpjfqGGCfQZ7nEQEQaWlrrXrKUJDnHkMqj6CNLvK81una5WdijOCPUvcCSmfvZunyeOnWe9a314Yo5RhrhCFUnZcJ1F+BoUiiOLc9FKJE4gGsIc7mnLIsPSzUfzcPtBKaEex0MOVPVJ/X2SQSTlkgd4sUspprxD/9YKATb1W0YmfEZ6kCnM0/hyl1FaxXZRjh0RgpOhQE4gE0eFt1IcCIqUrNHUr7nQHs6RZrbhHleq1U66dgzFKYA/sg0PggmNQA5egDhoAgQw8gCfwbNwbL8ar8TZenTMmNzvgD4yPH7hnoDk=</latexit>

K1
<latexit sha1_base64="MR9rGQGBF6rkChHkVe95gk8IgI4=">AAACBXicbVC7SgNBFL3rM66vqKXNYhCswm4stBGDNoJNBPOAZA2zk9lkyMzsOjMrhCW1n2CrWNuJraWfINb+iLNJCk08cOFwzr3cwwliRpV23S9rbn5hcWk5t2Kvrq1vbOa3tmsqSiQmVRyxSDYCpAijglQ11Yw0YkkQDxipB/3zzK/fEaloJK71ICY+R11BQ4qRNpLf4kj3MGLp5fDGa+cLbtEdwZkl3oQUTj/sk/j5066089+tToQTToTGDCnV9NxY+ymSmmJGhnYrUSRGuI+6pGmoQJwoPx2FHjr7Ruk4YSTNCO2M1N8XKeJKDXhgNrOQatrLxH+9IOBTr3V47KdUxIkmAo8/hwlzdORklTgdKgnWbGAIwpKa8A7uIYmwNsXZphVvuoNZUisVvcNi6cotlM9gjBzswh4cgAdHUIYLqEAVMNzCAzzCk3VvvViv1tt4dc6a3OzAH1jvP39lnFM=</latexit>

K̃1
<latexit sha1_base64="Pi0I6+H4uEBVTV4rBnczV+vnOGM=">AAACD3icbVDLSsNAFJ34rPEVFVdugkVwVZK60I1YdCO4qWAf0MQymUzaoTOTMDMRSshH+AniTj/AnbgTv0Bc+yNO2i609cCFwzn3cg8nSCiRynG+jLn5hcWl5dKKubq2vrFpbW03ZZwKhBsoprFoB1BiSjhuKKIobicCQxZQ3AoGF4XfusNCkpjfqGGCfQZ7nEQEQaWlrrXrKUJDnHkMqj6CNLvK81u3a5WdijOCPUvcCSmfvZunyeOnWe9a314Yo5RhrhCFUnZcJ1F+BoUiiOLc9FKJE4gGsIc7mnLIsPSzUfzcPtBKaEex0MOVPVJ/X2SQSTlkgd4sUspprxD/9YKATb1W0YmfEZ6kCnM0/hyl1FaxXZRjh0RgpOhQE4gE0eFt1IcCIqUrNHUr7nQHs6RZrbhHleq1U66dgzFKYA/sg0PggmNQA5egDhoAgQw8gCfwbNwbL8ar8TZenTMmNzvgD4yPH7n8oDo=</latexit>

K̃2
<latexit sha1_base64="ngBeSUGob5edbBDod/0msER50A4=">AAACD3icbVDLSsNAFJ34rPEVFVdugkVwVZK60I1YdCO4qWAf0MQymUzaoTOTMDMRSshH+AniTj/AnbgTv0Bc+yNO2i609cCFwzn3cg8nSCiRynG+jLn5hcWl5dKKubq2vrFpbW03ZZwKhBsoprFoB1BiSjhuKKIobicCQxZQ3AoGF4XfusNCkpjfqGGCfQZ7nEQEQaWlrrXrKUJDnHkMqj6CNLvK89tq1yo7FWcEe5a4E1I+ezdPk8dPs961vr0wRinDXCEKpey4TqL8DApFEMW56aUSJxANYA93NOWQYelno/i5faCV0I5ioYcre6T+vsggk3LIAr1ZpJTTXiH+6wUBm3qtohM/IzxJFeZo/DlKqa1iuyjHDonASNGhJhAJosPbqA8FREpXaOpW3OkOZkmzWnGPKtVrp1w7B2OUwB7YB4fABcegBi5BHTQAAhl4AE/g2bg3XoxX4228OmdMbnbAHxgfP7uRoDs=</latexit>K2

<latexit sha1_base64="uk5eDtz7FwTCLBL89ubWC4LcRbU=">AAACBXicbVC7SgNBFL3rM66vqKXNYhCswm4stBGDNoJNBPOAZA2zk9lkyMzsOjMrhCW1n2CrWNuJraWfINb+iLNJCk08cOFwzr3cwwliRpV23S9rbn5hcWk5t2Kvrq1vbOa3tmsqSiQmVRyxSDYCpAijglQ11Yw0YkkQDxipB/3zzK/fEaloJK71ICY+R11BQ4qRNpLf4kj3MGLp5fCm1M4X3KI7gjNLvAkpnH7YJ/Hzp11p579bnQgnnAiNGVKq6bmx9lMkNcWMDO1WokiMcB91SdNQgThRfjoKPXT2jdJxwkiaEdoZqb8vUsSVGvDAbGYh1bSXif96QcCnXuvw2E+piBNNBB5/DhPm6MjJKnE6VBKs2cAQhCU14R3cQxJhbYqzTSvedAezpFYqeofF0pVbKJ/BGDnYhT04AA+OoAwXUIEqYLiFB3iEJ+veerFerbfx6pw1udmBP7DefwCA+pxU</latexit>

z2
<latexit sha1_base64="rSjldedmulJSB31Muo592G+LDLg=">AAAB+3icbVC7SgNBFL0bX3F9RS1tBoNgFXZjoY0YtLGMaB6QrGF2MpsMmZldZmaFGPIJtvoB6cTWb/ATxNofcfIoNPHAhcM593IuJ0w408bzvpzM0vLK6lp23d3Y3Nreye3uVXWcKkIrJOaxqodYU84krRhmOK0nimIRcloLe1djv/ZAlWaxvDP9hAYCdySLGMHGSreP98VWLu8VvAnQIvFnJH/x4Z4no0+33Mp9N9sxSQWVhnCsdcP3EhMMsDKMcDp0m6mmCSY93KENSyUWVAeDyatDdGSVNopiZUcaNFF/Xwyw0LovQrspsOnqeW8s/uuFoZiLNtFZMGAySQ2VZJocpRyZGI2LQG2mKDG8bwkmitnnEelihYmxdbm2FX++g0VSLRb8k0LxxsuXLmGKLBzAIRyDD6dQgmsoQwUIdOAJnuHFGToj59V5m65mnNnNPvyB8/4DnfyX8Q==</latexit>

K0 = XX T
<latexit sha1_base64="80an4amqpQgZAcH3j/u4sWxX9PU=">AAACInicbVDLSgMxFM34rONr1KWbYBG6KjN1oZti0Y3gpkJf0BeZNNOGZjJDkhHKML/gT+gnuNWt4E5ciODOHzHTFqmtBwLnnnMv9+a4IaNS2fansbS8srq2ntkwN7e2d3atvf2aDCKBSRUHLBANF0nCKCdVRRUjjVAQ5LuM1N3hZerXb4mQNOAVNQpJ20d9Tj2KkdJS18q1fKQGGLH4OunYsAh/60YyQzuVrpW18/YYcJE4U5I9fzGL4f2HWe5a361egCOfcIUZkrLp2KFqx0goihlJzFYkSYjwEPVJU1OOfCLb8fhHCTzWSg96gdCPKzhWZydi5Es58l3dmR4p571U/NdzXX9utfLO2jHlYaQIx5PNXsSgCmCaF+xRQbBiI00QFlQfD/EACYSVTtXUqTjzGSySWiHvnOQLN3a2dAEmyIBDcARywAGnoASuQBlUAQZ34BE8gWfjwXg13oz3SeuSMZ05AH9gfP0AGq+nzA==</latexit>

y0 = X
<latexit sha1_base64="5RFGxLmik9P80wsdfTVluJuYoMw=">AAACC3icbVC7SgNBFJ2NrxhfGy0VGQyCVdiNhTZC0MYyAfOAJIbZyWwyZGZ2mZlVliWlpZ9gqx9gE8TWj7C29CecTVJo4oELh3Pu5R6OFzKqtON8Wpml5ZXVtex6bmNza3vHzu/WVRBJTGo4YIFsekgRRgWpaaoZaYaSIO4x0vCGV6nfuCNS0UDc6DgkHY76gvoUI22krp2Pbx14Adsc6QFGLGmOunbBKToTwEXizkihfDCufj8cjitd+6vdC3DEidCYIaVarhPqToKkppiRUa4dKRIiPER90jJUIE5UJ5lEH8Fjo/SgH0gzQsOJ+vsiQVypmHtmM42o5r1U/NfzPD73WvvnnYSKMNJE4OlnP2JQBzAtBvaoJFiz2BCEJTXhIR4gibA29eVMK+58B4ukXiq6p8VS1dRzCabIgn1wBE6AC85AGVyDCqgBDO7BE3gGL9aj9Wq9We/T1Yw1u9kDf2B9/ADGvJ4Y</latexit>

T
<latexit sha1_base64="aoqmHiiqO2ZBzCsL7LfI0ss8c6M=">AAACA3icbVC7SgNBFL3rM66vqKXNYBCswm4stBGDNpYR8oJkCbOTSTJkZmeZmRXCktJPsNXC0k5srf0EsfZHnE1SaOKBC4dz7uUeThhzpo3nfTlLyyura+u5DXdza3tnN7+3X9cyUYTWiORSNUOsKWcRrRlmOG3GimIRctoIh9eZ37ijSjMZVc0opoHA/Yj1GMHGSq22wGZAME+r406+4BW9CdAi8WekcPnhXsTPn26lk/9udyVJBI0M4Vjrlu/FJkixMoxwOnbbiaYxJkPcpy1LIyyoDtJJ5DE6tkoX9aSyExk0UX9fpFhoPRKh3cwi6nkvE//1wlDMvTa98yBlUZwYGpHp517CkZEoKwR1maLE8JElmChmwyMywAoTY2tzbSv+fAeLpF4q+qfF0q1XKF/BFDk4hCM4AR/OoAw3UIEaEJDwAI/w5Nw7L86r8zZdXXJmNwfwB877D1f9m7k=</latexit>

T
<latexit sha1_base64="aoqmHiiqO2ZBzCsL7LfI0ss8c6M=">AAACA3icbVC7SgNBFL3rM66vqKXNYBCswm4stBGDNpYR8oJkCbOTSTJkZmeZmRXCktJPsNXC0k5srf0EsfZHnE1SaOKBC4dz7uUeThhzpo3nfTlLyyura+u5DXdza3tnN7+3X9cyUYTWiORSNUOsKWcRrRlmOG3GimIRctoIh9eZ37ijSjMZVc0opoHA/Yj1GMHGSq22wGZAME+r406+4BW9CdAi8WekcPnhXsTPn26lk/9udyVJBI0M4Vjrlu/FJkixMoxwOnbbiaYxJkPcpy1LIyyoDtJJ5DE6tkoX9aSyExk0UX9fpFhoPRKh3cwi6nkvE//1wlDMvTa98yBlUZwYGpHp517CkZEoKwR1maLE8JElmChmwyMywAoTY2tzbSv+fAeLpF4q+qfF0q1XKF/BFDk4hCM4AR/OoAw3UIEaEJDwAI/w5Nw7L86r8zZdXXJmNwfwB877D1f9m7k=</latexit>

Layer Tensor Op NNGP Op NTK Op

0 (input) y0 = X K0 = XX T Θ0 = 0

0 (pre-activations) z0 = Conv
(
y0
)

K̃0 = A
(
K0
)

Θ̃0 = K̃0 +A
(
Θ0
)

1 (activations) y1 = φ
(
z0
)

K1 = T
(
K̃0
)

Θ1 = Ṫ
(
K̃0
)
� Θ̃0

1 (pre-activations) z1 = Conv
(
y1
)

K̃1 = A
(
K1
)

Θ̃1 = K̃1 +A
(
Θ1
)

2 (activations) y2 = φ
(
z1
)

K2 = T
(
K̃1
)

Θ2 = Ṫ
(
K̃1
)
� Θ̃1

2 (readout) z2 = Dense ◦ Flatten
(
y2
)
K̃2 = Tr

(
K2
)

Θ̃2 = K̃2 + Tr
(
Θ2
)

Figure 4: An example of the translation of a convolutional neural network into a sequence of
kernel operations. We demonstrate how the compositional nature of a typical NN computation on its
inputs induces a corresponding compositional computation on the NNGP and NT kernels. Presented
is a 2-hidden-layer 1D CNN with nonlinearity φ, performing regression on the 10-dimensional
outputs z2 for each of the 4 (1, 2, 3, 4) inputs x from the dataset X . To declutter notation, unit weight
and zero bias variances are assumed in all layers. Top: recursive output (z2) computation in the CNN
(top) induces a respective recursive NNGP kernel (K̃2 ⊗ I10) computation (NTK computation being
similar, not shown). Bottom: explicit listing of tensor and corresponding kernel ops in each layer.
See Table 1 for operation definitions. Illustration and description adapted from Figure 3 in Novak
et al. (2019) with the authors’ permission.

3.1 A taste of Tensor-to-Kernel Ops Translation

We demonstrate the intuition behind the translation rules that map tensor ops into kernel ops, and
the factorization of kernel ops on a simple example. We compute the kernel op corresponding to the
composition of a dense layer and a nonlinearity layer. Let z = z (X , θ) ∈ Rd×n be a node in some
hidden layer with NNGP kernel and NTK given by

Kz = Eθ
[
ziz

T
i

]
, Θz = Eθ

[
∂zi
∂θ

(
∂zi
∂θ

)T]
(1)

where zi ∈ Rd is the ith neuron and θ is the collection of weights that z depends on. Here d is the
cardinality of the network inputs X and n is the number of neurons in the z node. We assume z is a
mean zero Gaussian, and we compute the kernels of y = φ(z) and h = Dense (σω, σb) (y), where

h = Dense(σω, σb)(y) ≡
(
1/
√
n
)
σωWy + σbβ, (2)

and the variables Wij and βi are i.i.d. Gaussian N (0, 1). We will show that kernel op φ∗ and
Dense(σω, σb)

∗ induced by the tensor op φ and Dense(σω, σb) are 6

(Ky, Θy) = φ∗ (Kz, Θz) ≡
(
T (Kz), Ṫ (Kz)�Θz

)
(3)

(Kh,Θh) = Dense(σω, σb)
∗ (Ky,Θy) ≡

(
σ2
ωKy + σ2

b , σ
2
ωKy + σ2

b + σ2
ωΘy

)
, (4)

6T (Σ) ≡ E
[
φ(u)φ(u)T

]
, Ṫ (Σ) ≡ E

[
φ′(u)φ′(u)T

]
, u ∼ N (0,Σ), as in (Lee et al., 2019).
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which implies
(Dense(σω, σb) ◦ φ)

∗
= Dense(σω, σb)

∗ ◦ φ∗. (5)
First notice that

Ky = Kφ(z) = Eθ
[
φ(z)i φ(z)Ti

]
= Eθ[φ(zi)φ(zi)

T ] = T (Kz) (6)
To compute the NTK of h, note that the φ op does not introduce any new variables. Thus

Θy = Eθ

[
∂φ(zi)

∂θ

(
∂φ(zi)

∂θ

)T]
= Eθ

[
diag(φ̇(zi))

∂zi
∂θ

(
∂zi
∂θ

)T
diag(φ̇(zi))

]
= Ṫ (Kz)�Θz .

This gives Equation 3. Now consider the Dense op. Using independence between the variables

Kh = EW,β,θ[hihTi ] = σ2
ωEθ[yiyTi ] + σ2

b = σ2
ωKy + σ2

b . (7)
Finally, to derive Equation 4, we simply remark that the NTK of h is a sum of two terms:

Θh = EW,β,θ

[
∂hi

∂(W,β)

(
∂hi

∂(W,β)

)T]
+ EW,β,θ

[
∂hi
∂θ

(
∂hi
∂θ

)T]
= σ2

ωKy + σ2
b + σ2

ωΘy . (8)

3.2 Performance

Our library does a number of automatic performance optimizations without sacrificing flexibility.

Leveraging block-diagonal covariance structure. A common computational challenge with GPs
is inverting the training set covariance matrix. Naively, for a classification task with C classes and
training set X , NNGP and NTK covariances have the shape of |X |C × |X |C. For CIFAR-10, this
would be 500, 000 × 500, 000. However, we highlight that if a fully-connected readout layer is
used (which is an extremely common design in classification architectures), the C logits are i.i.d.
conditioned on the input x, resulting in outputs being normally distributed with a block-diagonal
covariance matrix of form Σ⊗ IC , where Σ has the shape |X | × |X |, which makes closed-form exact
inference feasible in these tasks.

Automatically tracking only the smallest necessary subset of intermediary covariance entries.
For most architectures, especially convolutional, the main computational burden lies in constructing
the covariance (as opposed to inverting it), as construction of the |X | × |X | output covariance Σ
involves computing intermediary layer l covariances Σl of size |X | d × |X | d (see Listing 1 for a
model requiring this computation), where d is the total number of pixels in the intermediary layer
outputs, which is 1024 in the case of CIFAR-10 and SAME padding. However, as Xiao et al. (2018);
Novak et al. (2019); Garriga-Alonso et al. (2019) remarked, if no pooling is used in the network the
output covariance Σ can be computed by only using the stack of d |X | × |X |-blocks of Σl, bringing
the time and memory cost from O(|X |2 d2) down to O(|X |2 d) per layer (see Figure 4 and Listing 2
for models admitting this optimization). Finally, if the network has no convolutional layers, the cost
further reduces toO(|X |2) (see Listing 3 for an example). These choices are performed automatically
by NEURAL TANGENTS to achieve efficient computation and minimal memory footprint.

Expressing covariance computations as 2D convolutions with optimal layout. A key insight to
high performance in convolutional models is that the covariance propagation operator for convo-
lutional layers A can be expressed in terms of 2D convolutions when it operates on both the full
|X | d× |X | d covariance matrix Σ, and on the d diagonal |X | × |X |-blocks. This allows utilization
of modern hardware accelerators, many of which target 2D convolutions as their primary machine
learning application.

Simultaneous NNGP and NT kernel computations. As NTK computation requires the NNGP
covariance as an intermediary computation, the NNGP covariance is computed together with the
NTK at no extra cost. This is especially convenient for researchers looking to investigate similarities
and differences between these two infinite-width NN limits.

Automatic batching and parallelism across multiple devices. In most cases as the dataset or
model becomes large, it is impossible to perform the entire kernel computation at once. Additionally,
in many cases it is desirable to parallelize the kernel computation across devices (CPUs, GPUs, or
TPUs). NEURAL TANGENTS provides an easy way to perform both of these common tasks using a
single batch decorator shown below:
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Figure 5: Performance scaling with batch size (left) and number of GPUs (right). Shows time
per entry needed to compute the analytic NNGP and NTK covariance matrices (using kernel_fn )
in a 21-layer ReLU network with global average pooling. Left: Increasing the batch size when
computing the covariance matrix in blocks allows for a significant performance increase until a
certain threshold when all cores in a single GPU are saturated. Simpler models are expected to have
better scaling with batch size. Right: Time-per-sample scales linearly with the number of GPUs,
demonstrating near-perfect hardware utilization.

batched_kernel_fn = nt.batch(kernel_fn, batch_size)

batched_kernel_fn(x, x) == kernel_fn(x, x) # True!

This code works with either analytic kernels or empirical kernels. By default, it automatically shares
the computation over all available devices. We plot the performance as a function of batch size and
number of accelerators when computing the theoretical NTK of a 21-layer convolutional network in
Figure 5, observing near-perfect scaling with the number of accelerators.

Op fusion. JAX and XLA allow end-to-end compilation of the whole kernel computation and/or
inference. This enables the XLA compiler to fuse low-level ops into custom model-specific accelerator
kernels, as well as eliminating overhead from op-by-op dispatch to an accelerator. In similar vein,
we allow the covariance tensor to change its order of dimensions from layer to layer, with the order
tracked and parsed as additional metadata under the hood. This eliminates redundant transpositions7

by adjusting the computation performed by each layer based on the input metadata.

4 Conclusion

We believe NEURAL TANGENTS will enable researchers to quickly and easily explore infinite-width
networks. By democratizing this previously challenging model family, we hope that researchers
will begin to use infinite neural networks, in addition to their finite counterparts, when faced with a
new problem domain (especially in cases that are data-limited). In addition, we are excited to see
novel uses of infinite networks as theoretical tools to gain insight and clarity into many of the hard
theoretical problems in deep learning. Going forward, there are significant additions to NEURAL
TANGENTS that we are exploring. There are more layers we would like to add in the future (§D)
that will enable an even larger range of infinite network topologies. Additionally, there are further
performance improvements we would like to implement, to allow experimenting with larger models
and datasets. We invite the community to join our efforts by contributing new layers to the library
(§B.7), or by using it for research and providing feedback!
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Appendix

A NEURAL TANGENTS and prior work

Here we briefly discuss the differences between NEURAL TANGENTS and the relevant prior work.

1. Prior benchmarks in the domain of infinitely wide neural networks. Various prior
works have evaluated convolutional and fully-connected models on certain datasets (Lee
et al., 2018; Matthews et al., 2018a,b; Novak et al., 2019; Garriga-Alonso et al., 2019; Arora
et al., 2019). While these efforts must have required implementing certain parts of our library,
to our knowledge such prior efforts were either not open-sourced or not comprehensive /
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user-friendly / scalable enough to be used as a user-facing library. In addition, all of the
works above used their own separate implementation, which further highlights a need for a
more general approach.

2. Code released by Lee et al. (2019). Lee et al. (2019) have released code along with
their paper submission, which is a strict and minor subset of our library. More specif-
ically, at the time of the submission, Lee et al. (2019) have released code equivalent
to nt.linearize , nt.empirical_ntk_fn , nt.predict.gradient_descent_mse ,

nt.predict.gradient_descent , and nt.predict.momentum . Every other part of the
library (most notably, nt.stax ) is new in this submission and was not used by Lee et al.
(2019) or any other prior work. At the time of writing, NEURAL TANGENTS differs from
the code released by Lee et al. (2019) by about +9500/–2500 lines of code.

3. GPy (2012), GPFlow (Matthews et al., 2017), and other GP packages. While various
packages allowing for kernel construction, optimization, and inference with Gaussian
Processes exist, none of them allow to easily construct the very specific kernels corre-
sponding to infinite neural networks (NNGP/NTK; nt.stax ), nor do they provide the
tools and convenience for studying wide but finite networks and their training dynamics
( nt.taylor_expand , nt.predict , nt.monte_carlo_kernel_fn ). On the other hand,
NEURAL TANGENTS does not provide any tools for approximate inference with these
kernels.

B Library description

NEURAL TANGENTS provides a high-level interface for specifying analytic, infinite-width, Bayesian
and gradient descent trained neural networks as Gaussian Processes. This interface closely follows
the stax API (Bradbury et al., 2018b) in JAX.

B.1 Neural networks with JAX

stax represents each component of a network as two functions: init_fn and apply_fn . These
components can be composed in serial or in parallel to produce new network components with
their own init_fn and apply_fn . In this way, complicated neural network architectures can be
specified hierarchically.

Calling init_fn on a random seed and an input shape generates a random draw of trainable
parameters for a neural network. Calling apply_fn on these parameters and a batch of inputs
returns the outputs of the given finite neural network.

from jax.experimental import stax

init_fn, apply_fn = stax.serial(stax.Dense(512), stax.Relu, stax.Dense(10))

_, params = init_fn(key, (-1, 32 * 32 * 3))

fx_train, fx_test = apply_fn(params, x_train), apply_fn(params, x_test)

B.2 Infinite neural networks with NEURAL TANGENTS

We extend stax layers to return a third function kernel_fn , which represents the covariance
functions of the infinite NNGP and NTK networks of the given architecture (recall that since infinite
networks are GPs, they are fully defined by their covariance functions, assuming 0 mean as is common
in the literature).

from neural_tangents import stax

init_fn, apply_fn, kernel_fn = stax.serial(stax.Dense(512), stax.Relu(), stax.Dense(10))

We demonstrate a specification of a more complicated architecture (WideResNet) in Listing 1.
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kernel_fn accepts two batches of inputs x1 and x2 and returns their NNGP covariance and
NTK matrices as kernel_fn(x1, x2).nngp and kernel_fn(x1, x2).ntk respectively, which
can then be used to make posterior test set predictions as the mean of a conditional multivariate
normal:

from jax.numpy.linalg import inv

y_test = kernel_fn(x_test, x_train).ntk @ inv(kernel_fn(x_train, x_train).ntk) @ y_train

Note that the above code does not do Cholesky decomposition and is presented merely to show the
mathematical expression. We provide efficient GP inference method in the predict submodule:

import neural_tangents as nt

y_test = nt.predict.gp_inference(kernel_fn, x_train, y_train, x_test,

get='NTK', diag_reg=1e-4, compute_cov=False)

B.3 Computing infinite network kernels in batches and in parallel

Naively, the kernel_fn will compute the whole kernel in a single call on one device. However,
for large datasets or complicated architectures, it is often necessary to distribute the calculation in
some way. To do this, we introduce a batch decorator that takes a kernel_fn and returns a new
kernel_fn with the exact same signature. The new function computes the kernel in batches and

automatically parallelizes the calculation over however many devices are available, with near-perfect
speedup scaling with the number of devices (Figure 5, right).

import neural_tangents as nt

kernel_fn = nt.batch(kernel_fn, batch_size=32)

Note that batching is often used to compute large covariance matrices that may not even fit on a
GPU/TPU device, and require to be stored and used for inference using CPU RAM. This is easy
to achieve by simply specifying nt.batch(..., store_on_device=False) . Once the matrix is

stored in RAM, inference will be performed with a CPU when nt.predict methods are called. As
mentioned in §3.2, for many (notably, convolutional, and especially pooling) architectures, inference
cost can be small relative to kernel construction, even when running on CPU (for example, it takes less
than 3 minutes to execute jax.scipy.linalg.solve(..., sym_pos=True) on a 45, 000×45, 000

training covariance matrix and a 45, 000× 10 training target matrix).

B.4 Training dynamics of infinite networks

In addition to closed form multivariate Gaussian posterior prediction, it is also interesting to consider
network predictions following continuous gradient descent. To facilitate this we provide several
functions to compute predictions following gradient descent with an MSE loss, for gradient descent
with arbitrary loss, or for momentum with arbitrary loss. The first case is handled analytically, while
the latter two are computed by numerically integrating the differential equation. For example, the
following code will compute the function evaluation on train and test points following gradient
descent for some time training_time .

import neural_tangents as nt

predictor = nt.predict.gradient_descent_mse(kernel_fn(x_train, x_train), y_train, kernel_fn(x_test, x_train))

fx_train, fx_test = predictor(training_time, fx_train, fx_test)
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Figure 6: Training a neural network and its various approximations using nt.taylor_expand .
Presented is a 5-layer Erf-neural network of width 512 trained on MNIST using SGD with mo-
mentum, along with its constant (0th order), linear (1st order), and quadratic (2nd order) Taylor
expansions about the initial parameters. As training progresses (left to right), lower-order expansions
deviate from the original function faster than higher-order ones.

B.5 Infinite networks of any architecture through sampling

Of course, there are cases where the analytic kernel cannot be computed. To support these situations,
we provide utility functions to efficiently compute Monte Carlo estimates of the NNGP covariance
and NTK. These functions work with neural networks constructed using any neural network library.

from jax import random

from jax.experimental import stax

import neural_tangents as nt

init_fn, apply_fn = stax.serial(stax.Dense(64), stax.BatchNorm(), stax.Sigmoid, stax.Dense(1))

kernel_fn = nt.monte_carlo_kernel_fn(init_fn, apply_fn, key=random.PRNGKey(1), n_samples=128)

kernel = kernel_fn(x_train, x_train)

We demonstrate convergence of the Monte Carlo kernel estimates to the closed-form analytic kernels
in the case of a WideResNet in Figure 2.

B.6 Weights of wide but finite networks

While most of NEURAL TANGENTS is devoted to a function-space perspective—describing the
distribution of function values on finite collections of training and testing points—we also provide
tools to investigate a dual weight space perspective described in Lee et al. (2019). Convergence
of dynamics to NTK dynamics coincide with networks being described by a linear approximation
about their initial set of parameters. We provide decorators linearize and taylor_expand to
approximate functions to linear order and to arbitrary order respectively. Both functions take an
apply_fn and returns a new apply_fn that computes the series approximation.

import neural_tangents as nt

taylor_apply_fn = nt.taylor_expand(apply_fn, params, order)

fx_train_approx = taylor_apply_fn(new_params, x_train)

These act exactly like normal JAX functions and, in particular, can be plugged into gradient descent,
which we demonstrate in Figure 6.

B.7 Extending NEURAL TANGENTS

Many neural network layers admit a sensible infinite-width limit behavior in the Bayesian and
continuous gradient descent regimes as long as the multivariate central limit theorem applies to their
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outputs conditioned on their inputs. To add such layer to NEURAL TANGENTS, one only has to
implement it as a method in nt.stax with the following signature:

@_layer # an internal decorator taking care of certain boilerplate.

NewLayer(layer_params: Any) -> (init_fn: function, apply_fn: function, kernel_fn: function)

Here init_fn and apply_fn are initialization and the forward pass methods of the finite
width layer implementation (see §B.1). If the layer of interest already exists in JAX, there
is no need to implement these methods and the user can simply return the respective methods
from jax.experimental.stax (see nt.stax.Flatten for an example; in fact the majority of

nt.stax layers call the original jax.experimental.stax layers for finite width layer methods).

In this case what remains is to implement the kernel_fn method with signature

kernel_fn(input_kernel: nt.utils.Kernel) -> output_kernel: nt.utils.Kernel

Here both input_kernel and output_kernel are namedtuple s containing the NNGP and NTK
covariance matrices, as well as additional metadata useful for computing the kernel propagation
operation. The specific operation to be performed should be derived by the user in the context of the
particular operation that the finite width layer performs. This transformation could be as simple as an
affine map on the kernel matrices, but could also be analytically intractable.

Once implemented, the correctness of the implementation can be very easily tested by extending the
nt.tests.stax_test with the new layer, to test the agreement with large-widths empirical NNGP

and NTK kernels.

C Architecture specifications

from neural_tangents import stax

def ConvolutionalNetwork(depth, W_std=1.0, b_std=0.0):

layers = []

for _ in range(depth):

layers += [stax.Conv(1, (3, 3), W_std, b_std, padding='SAME'), stax.Relu()]

layers += [stax.Flatten(), stax.Dense(1, W_std, b_std)]

return stax.serial(*layers)

Listing 2: All-convolutional model (ConvOnly) definition used in Figure 3.

from neural_tangents import stax

def FullyConnectedNetwork(depth, W_std=1.0, b_std=0.0):

layers = [stax.Flatten()]

for _ in range(depth):

layers += [stax.Dense(1, W_std, b_std), stax.Relu()]

layers += [stax.Dense(1, W_std, b_std)]

return stax.serial(*layers)

Listing 3: Fully-connected (FC) model definition used in Figure 3.
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D Implemented and coming soon functionality

The following layers8 are currently implemented, with translation rules given in Table 1:

• serial

• parallel

• FanOut

• FanInSum

• Dense

• Conv 9 with arbitrary filter shapes, strides, and padding10

• Relu

• LeakyRelu

• Abs

• ABRelu 11,

• Erf

• Identity

• Flatten

• AvgPool

• GlobalAvgPool

• GlobalSelfAttention (Hron et al., 2019)

• LayerNorm

The following is in our near-term plans:

• SumPool

• Dropout

• SumPool

• Exp , Elu , Selu , Gelu

• Apache Beam support.

The following layers do not have a known closed-form solution for infinite network covariances,
and networks with them have to be estimated empirically (provided with out implementation via
nt.monte_carlo_kernel_fn ) or using other approximations (not currently implemented):

• Sigmoid , Tanh 12, Swish 13, Softmax , LogSoftMax , Softplus , MaxPool .

8 Abs , ABRelu , GlobalAvgPool , GlobalSelfAttention are only available in our library nt.stax

and not in jax.experimental.stax .
9Only NHWC data format is currently supported, but extension to other formats is trivial and will be done

shortly.
10Note that in addition to SAME and VALID , we support CIRCULAR padding, which is especially handy for

theoretical analysis and was used by Xiao et al. (2018) and Novak et al. (2019).
11amin (x, 0) + bmax (x, 0).
12Note that these nonlinearities are similar to Erf which does have a solution and is implemented.
13Note that this nonlinearity is similar to Gelu .
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Tensor Op NNGP Op NTK Op

X K Θ

Dense(σw, σb) σ2
wK + σ2

b (σ2
wK + σ2

b ) + σ2
wΘ

φ T (K) Ṫ (K)�Θ

Dropout(ρ) K +
(

1
ρ − 1

)
Diag(K) Θ +

(
1
ρ − 1

)
Diag(Θ)

Conv(σw, σb) σ2
wA (K) + σ2

b σ2
wA (K) + σ2

b + σ2
wA (Θ)

Flatten Tr(K) Tr(K + Θ)

AvgPool(s, q, p) AvgPool(s, q, p)(K) AvgPool(s, q, p)(K + Θ)

GlobalAvgPool GlobalAvgPool(K) GlobalAvgPool(K + Θ)

Attn(σQK , σOV ) Attn(σQK , σOV )(K) 2Attn(σQK , σOV )(K)+

(Hron et al., 2019) Attn(σQK , σOV )(Θ)

FanInSum(X1, . . . ,Xn)
∑n
j=1Kj

∑n
j=1 Θj

FanOut(n) [K] ∗ n [Θ] ∗ n

Table 1: Translation rules (§3) converting tensor operations into operations on NNGP and NTK
kernels. Here the input tensor X is assumed to have shape |X | ×H ×W × C (dataset size, height,
width, number of channels), and the full NNGP and NT kernelsK and T are considered to be of shape
(|X | ×H ×W )

×2 (in practice shapes of |X |×2×H×W and |X |×2 are also possible, depending on
which optimizations in §3.2 are applicable). Notation details. The Tr and GlobalAvgPool ops are
assumed to act on all spatial axes (with sizes H and W in this example), producing a |X |×2-kernel.
Similarly, the AvgPool op is assumed to act on all spatial axes as well, applying the specified strides s,
pooling window sizes p and padding strategy p to the respective axes pairs in K and T (acting as 4D
pooling with replicated parameters of the 2D version). T and Ṫ are defined identically to Lee et al.
(2019) as T (Σ) = E

[
φ(u)φ(u)T

]
, Ṫ (Σ) = E

[
φ′(u)φ′(u)T

]
, u ∼ N (0,Σ). These expressions

can be evaluated in closed form for many nonlinearities, and preserve the shape of the kernel.
The A op is defined similarly to Novak et al. (2019); Xiao et al. (2018) as [A (Σ)]

w,w′

h,h′ (x, x′) =
∑
dh,dw [Σ]

w+dw,w′+dw
h+dh,h′+dh (x, x′) /q2, where the summation is performed over the convolutional filter

receptive field with q pixels (we assume unit strides and circular padding in this expression, but
generalization to other settings is trivial and supported by the library). [Σ] ∗ n = [Σ, . . . ,Σ] (n-fold
replication). See Figure 4 for an example of applying the translation rules to a specific model, and
§3.1 for deriving a sample translation rule.
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Figure 7: Predictive negative log-likelihoods and condition numbers. Top. Test negative log-
likelihoods for NNGP posterior and Gaussian predictive distribution for NTK at infinite training
time for CIFAR-10 (test set of 2000 points). Fully Connected (FC, Listing 3) and Convolutional
network without pooling (CONV, Listing 2) models are selected based on train marginal negative
log-likelihoods in Figure 3. Bottom. Condition numbers for covariance matrices corresponding to
NTK/NNGP as well as respective predictive covaraince on the test set. Ill-conditioning of Wide
Residual Network kernels due to pooling layers (Anonymous, 2020) could be the cause of numerical
issues when evaluating predictive NLL for this kernels.
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