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Abstract

Learning models with discrete latent variables using stochastic gradient descent
remains a challenge due to the high variance of gradients. Modern variance
reduction techniques mostly consider categorical distributions and have limited
applicability when the number of possible outcomes becomes large. In this work,
we consider models with latent permutations and propose control variates for the
Plackett-Luce distribution. Our proof-of-concept experiment recasts optimization
over permutations as a variational optimization w.r.t. the Plackett-Luce distribution
and solves it using stochastic gradient descent.

1 Introduction

Despite the recent breakthroughs in gradient estimation for continuous latent variables (Kingma
& Welling, 2013; Rezende et al., 2014; Mohamed et al., 2019), gradient estimation for discrete
latent variables remains a challenge. Currently, general-purpose estimators (Williams, 1992; Mnih &
Gregor, 2014) remain unreliable and the state-of-the-art methods (Tucker et al., 2017; Grathwohl
et al., 2018; Yin & Zhou, 2018) exclusively consider the categorical distribution. Although the
reduction to the categorical case allows benefiting from gradient estimators for continuous relaxations,
such solutions are hard to translate to discrete distributions with large support.

In this work, we consider a gradient estimator for the Plackett-Luce distribution, a distribution over
permutations. Permutations naturally occur in various setting, such as ranking problems (Guiver &
Snelson, 2009), optimal routing (Bello et al., 2016) and causal inference (Friedman & Koller, 2003).
However, the support of the distribution is superexponential in the number of items k, which makes
representing a distribution as a categorical distribution intractable even for dozens of items. At the
same time, the Plackett-Luce distribution has O(k) parameters and allows sampling in O(k log k).

We translate the recent variance reduction techniques introduced in Tucker et al. (2017); Grathwohl
et al. (2018) to the case of Plackett-Luce distributions. Similarly to REBAR, we use the difference
of the REINFORCE estimator and the reparametrized estimator for the relaxed model. In the
experimental section we recast an optimization tasks over the discrete domain of permutations as a
variational optimization for the Plackett-Luce distribution and then solve it using stochastic gradient
∗Both authors contributed equally to this work.
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descent. In future, our method could be used for end-to-end gradient training of deep models with
latent permutations, routing problems and other combinatorial problems for permutations.

1.1 A Brief Tour of Gradient Estimation

In this section, we consider a general optimization task minθ Ep(b|θ)[f(b)], where b is a discrete
random variable parametrized by θ. The expectation can be intractable, for instance when b is a vector
of categorical variables and the support of b is exponential in the vector length. The standard solution
is to construct a stochastic estimate for the gradient ĝ(f) := ∂

∂θEp(b|θ)[f(b)] without explicitly
computing the expectation. In this section, we briefly review the gradient estimation algorithms.

1.2 REINFORCE

The REINFORCE estimator Williams (1992) gives us a widely-applicable unbiased estimate for the
gradient

ĝREINFORCE(f) = f(b)
∂

∂θ
log p(b | θ), b ∼ p(b | θ). (1)

Although an unbiased gradient estimate is sufficient to guarantee convergence of stochastic gradient
descent, in practice, the algorithm may not converge due to the high variance of the estimate (Tucker
et al., 2017). The variance of the REINFORCE estimator can be reduced using control variates.
A Control variate is a function c(b) with a zero mean Ep(b|θ)[c(b)] = 0 that can be used to define
another unbiased estimator

ĝCV(f) = ĝREINFORCE(f)− c(b). (2)

The variance of the new estimator ĝCV(f) is lower than the variance of ĝREINFORCE(f) if c(b) is
positively correlated with the random variable f(b). As an illustration, the gradient of probability
∂
∂θ log p(b | θ) has zero mean, therefore it can be used as a control variate Mnih & Gregor (2014).

1.3 Reparametrization Gradients for Continuous Relaxations

The reparametrization trick (Kingma & Welling, 2013; Rezende et al., 2014) is an alternative
unbiased low-variance gradient estimator, applicable when f is differentiable and the latent variable
bcont is continuous. The estimator represents the latent variable as a differentiable determinisitc
transformation bcont = T (v, θ) of a fixed distribution sample v and parameters θ and estimates the
gradient as

ĝreparam(f) =
∂

∂θ
f(bcont) =

∂f

∂T

∂T

∂θ
, vi ∼ uniform[0, 1], i = 1, . . . , k. (3)

Although the reparametrization trick is not applicable when the latent variable b is discrete, Jang
et al. (2016); Maddison et al. (2016) proposed the Gumbel-softmax estimator, a modification of the
reparametrization trick for the relaxed categorical distribution.

To sample from a relaxed categorical distribution p(b | θ) with probabilities exp θi∑
j exp θj

, Gumbel-

Softmax first samples a vector of independent Gumbel random variables zi ∼ G(θi, 1), i = 1, . . . , k

zi = T (θi, vi) = θi − log(− log(vi)), vi ∼ uniform[0, 1], i = 1, . . . , k (4)

with location parameter θ. According to the Gumbel-max trick (Maddison et al., 2014), the index of
the maximal element H(z) = arg max(z) is a categorical random variable with distribution p(b | θ).
Then, to make the sampler differentiable, the Gumbel-softmax trick replaces arg max(z) with a
relaxation σ(z) = 1∑

exp zi
(exp z1, . . . , exp zk). The gradient estimate is the reparametrization

gradient for the relaxed categorical distribution:

ĝGumbel(f) =
∂

∂θ
f(b) =

∂f

∂b

∂b

∂z

∂z

∂θ
, b = σ(z), zi ∼ G(θi, 1), i = 1, . . . , k. (5)

The resulting reparametrization gradient ĝGumbel(f) has much lower variance than ĝREINFORCE(f), but
is generally biased due to the relaxation.
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1.4 Relaxation-based Control Variates

Recently, Tucker et al. (2017) and Grathwohl et al. (2018) proposed control variates for REINFORCE
estimator based on the relaxed conditional distribution. Both works use the REINFORCE gradient
estimator for the relaxed categorical distribution as a control variate for the non-relaxed estimator. To
eliminate the bias of the REINFORCE estimator, they subtract the low-variance reparametrization
gradient estimator.

The key insight of Tucker et al. (2017) is the conditional marginalization step used to correlate the non-
relaxed REINFORCE estimator and the control variate. Importantly, the conditional marginalization
relies on reparametrization trick for the conditional distribution p(z | b, θ), obtained from the joint
distribution p(b, z | θ) = p(b|z)p(z | θ) of the Gumbel random vector z and the output of the
Gumbel-max trick b = H(z) = arg max(z). Tucker et al. (2017) derive a reparametrizable sampling
scheme for p(z | b, θ)

z̃i =

{
− log(− log vi) i = b

− log
(
− log vi

exp θi
+ exp(−z̃b)

)
i 6= b

, (6)

where vector v is a uniform i.i.d. vector v ∼ uniform[0, 1]k. This gives a two-step generative
process for the distribution p(z | b, θ). On the first step we sample the maximum variable vb from the
Gumbel distribtuion and on the second step we sample the other variables vi, i 6= b from the Gumbel
distribution trunctated at z̃b with location parameter θi.

The unbiased RELAX estimator from Grathwohl et al. (2018) is

ĝRELAX(f) =[f(b)− cφ(z̃)]
∂

∂θ
log p(b | θ) +

∂

∂θ
cφ(z)− ∂

∂θ
cφ(z̃) (7)

b =H(z), z ∼ p(z | θ), z̃ ∼ p(z | b, θ) (8)

where cφ(z) is a parametric function optimized to reduce the variance of the estimator.

Similarly, for a differentiable function f the REBAR estimator by Tucker et al. (2017) uses the
function f with the relaxed argument σ(z) and tunes the scalar parameter η

ĝREBAR(f) =[f(b)− ηf(σ(z̃))]
∂

∂θ
log p(b | θ) + η

∂

∂θ
f(σ(z))− η ∂

∂θ
f(σ(z̃)) (9)

b =H(z), z ∼ p(z | θ), z̃ ∼ p(z | b, θ) (10)

2 Constructing Control Variates for the Plackett-Luce Distribution

In this paper, we extend the stochastic gradient estimators ĝREBAR(f) and ĝRELAX(f) from the cate-
gorical distribution to the Plackett-Luce distribution. With a slight abuse of notation, below we use
letter b to denote an integer vector b = (b1, . . . , bk) ∈ Sk that represent a permutation, θ to denote
the parameters of the Plackett-Luce distribution and p(b | θ) to denote the Plackett-Luce distribution.

The goal of this section is to define the two components required to apply the aforementioned gradient
estimators: the mapping b = H(z) and the two reparametrizable conditional distributions p(z | θ)
and p(z|b, θ). After this we apply the estimators as defined in eq. 7 and eq. 9, but to emphasize the
difference we refer to them as PL-RELAX and PL-REBAR.

Definition 1. The Plackett-Luce distribution (Luce, 2005; Plackett, 1975) with scores θ =
(θ1, . . . , θk) is a distribution over permutations Sk with the probability of outcome b ∈ Sk

p(b|θ) =

k∏
j=1

exp θbj∑k
u=j exp θbu

. (11)

Intuitively, a sample from the Plackett-Luce distribution b = (b1, . . . , bk) is generated as a sequence of
samples from categorical distributions. The first component b1 comes from the categorical distribution
with logits θ, then the second components b2 comes from the categorical distribution with the logits θ
without the component θb1 and so on.
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The Plackett-Luce can be used for variational optimization (Staines & Barber, 2012). Indeed, at the
lower temperatures θ → θ

T , T � 1 the distribution converges to a divergent distribution. The mode of
the Plackett-Luce distribution is the descending order permutation of the scores b0 : θb01 ≥ · · · ≥ θb0k ,
because b0 permutation maximizes each factor in the product in eq. 11.

Now we will give an alternative definition of the Plackett-Luce distribution.
Lemma 1. (appears in Grover et al. (2019); Yellott Jr (1977)) Let z be a vector of k independent
Gumbel random variables with location parameters specified by score vector θ

zi = θi − log(− log(vi)), vi ∼ uniform[0, 1]. (12)
Then for a permutation b ∈ Sk the probability of event {zb1 ≥ · · · ≥ zbk} is

p(zb1 ≥ · · · ≥ zbk) =

k∏
j=1

exp θbj∑k
u=j exp θbu

. (13)

Similarly to the Gumbel-max trick, Lemma 1 shows that an order of a Gumbel-distributed vector
is distributed according to the Plackett-Luce distribution. Following the lemma, for Plackett-Luce
distributions we define p(z | θ) to be a Gumbel-distributed vector zi ∼ G(θi, 1), i = 1, . . . , k and
H(z) = arg sort(z) to be a sorting operation

Our principal discovery is that, similarly to the categorical case, the conditional distribution p(z|b, θ)
factorizes into a sequence of truncated Gumbel distributions. As a consequence, the distribution is
reparametrizable and can be used to construct a control variate for a gradient estimator.
Proposition 1. Let p(b, z | θ) be the joint distribution with zi ∼ G(θi, 1), b = arg sort(z) and
normalized parameters

∑k
j=1 exp θj = 1. Then for uniform i.i.d samples vi ∼ uniform[0, 1] and

Θi =
∑k
j=i exp θbj for i = 1, . . . , k the vector z̃ = (z̃1, . . . , z̃k)

z̃bi =

{
− log(− log vi) i = 1

− log(− log vi
Θi

+ exp(−z̃bi−1
)) i ≥ 2,

(14)

is a sample from the conditional distriubtion p(z | b, θ).

We prove the proposition in the appendix. The sampling procedure from Proposition 1 has two
principal differences from the sampling scheme for the categorical case (see eq. 6). First, the
truncation parameter z̃bi−1

now depends on the previous component i− 1, while for the categorical
case the truncation parameter is defined by the maximum component. Second, the location parameter
is now a cumulative sum and depends on the previous scores.

Figure 1: Training curves and log-variance of gradient estimators for different estimators on a toy
problem: Ep(b|θ)‖Pb − P0.05‖2F

3 Experiment

As a proof of concept we perform an experiment in minimizing Ep(b|θ)‖Pb − Pt‖2F = Ep(b|θ)f(Pb)
as a function of θ where p(b|θ) = Plackett-Luce(b|θ). Pb is permutation matrix with elements
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pi,bi = 1 and Pt is a matrix with 1
k + t on the main diagonal and 1

k −
t

k−1 in the remaining
positions. This problem can be seen as linear sum assignment problem with specifically constructed
doubly stochastic matrix Pt. It is easy to note that taking k = 2 and t = 0.05 leads to toy problem
similar to that of Tucker et al. (2017). We focus on t = 0.05 and k = 8 to enable computation
of exact gradients. For the PL-REBAR estimator we take cφ(z) = ηf(σ(z, τ)) where σ(z, τ) is
the continuous relaxation of permutations described by Grover et al. (2019). For the PL-RELAX
estimator we take cφ(z) = f(σ(z, τ)) + ρφ(z) where ρφ(z) is a simple neural network with two
linear layers and ReLU activation between them. Figure 1 shows the relative performance and
gradient log-variance of REINFORCE, PL-REBAR and PL-RELAX. Although the REINFORCE
estimator is unbiased, we can see that the variance of the estimator is too large even for the simple
toy task, therefore the method is completely inapplicable for optimization over permutations. On the
other hand, the proposed method significantly reduces variance of the gradient and thus converges to
optimal. Also, similarly to the toy experiment from Grathwohl et al. (2018) paper, we observe better
performance of the PL-RELAX estimator due to free-form control variate parameterized by a neural
network. Our PyTorch Paszke et al. (2017) implementation of the gradient estimators is available at
https://github.com/agadetsky/pytorch-pl-variance-reduction .
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A Conditional Reparametrization for the Plackett-Luce Distribution

We prove Proposition 1 in this section. We first discuss the properties of Gumbel distribution. Then
we discuss the generative processes for the densities used for p(z | b, θ) in Eq. 14. Then we show
that p(b | z)p(z | θ) = p(b | θ)p(z | b, θ) for the unconditional Gumbel density p(z | θ) and the
Plackett-Luce distribution p(b | θ).

A.1 Density for the Gumbel distribution and the truncated Gumbel distribution

The density function of the Gumbel distribution with location parameter µ is

φµ(z) = exp(−z + µ) exp(− exp(−z + µ)) (15)

and the cumulative density function is

Φµ = exp(− exp(−z + µ)). (16)

Our derivation of the conditional distribution p(b | z, θ) relies on the additive property of the
cumulative density function of the Gumbel distribution

Φlog(expµ+exp ν)(z) = exp(− exp(z)(expµ+ exp ν)) = Φµ(z)Φν(z), (17)

which we enfold in the following auxiliary claim.
Lemma 2. For permutation b ∈ Sk, score vector θ ∈ Rk and i = 1, . . . , k and the argument vector
z ∈ Rk we have

φθbi (zbi)Φlog(
∑k
j=i+1 exp θbj )(zbi) =

exp θbi∑k
j=i exp θbj

φlog(
∑k
j=i exp θbj )(zbi). (18)

Proof. For brevity, we denote exp θi as pi. We then rewrite the density φlog pbi
(zbi) through the

exponent exp(−zbi + log pbi) and c.d.f. Φlog pbi
(zbi) and apply the additive property in Eq. 20:

φlog pbi
(zbi)Φlog(

∑k
j=i+1 pbj )(zbi) = pbi exp(−zbi)Φlog pbi

(zbi)Φlog(
∑k
j=i+1 pbj )(zbi) (19)

= pbi exp(−zbi)Φlog(
∑k
j=i pbj )(zbi) = pbi

∑k
j=i pbj∑k
j=i pbj

exp(−zbi)Φlog(
∑k
j=i pbj )(zbi) (20)

=
pbi∑k
j=1 pbj

φlog(
∑k
j=i pbj )(zbi). (21)

The last step collapses the exponent and the c.d.f. into the density function φlog(
∑k
j=i pbj )(zbi).

Finally, to define the density of conditional distribution p(b | z, θ) we define the density of the
truncated Gumbel distribution φz0µ (z) ∝ φµ(z)I[z ≤ z0]:

φz0µ (z) =
φµ(z)

Φµ(z0)
(z)I[z ≤ z0], (22)

where the superscript z0 denotes the truncation parameter.

A.2 Reparametrization for the Gumbel distribution and the truncated Gumbel distribution

The reparametrization trick requires representing a draw from a distribution as a deterministic
transformation of a fixed distribution sample and a distribution parameter. For a sample z from the
Gumbel distribution G(µ, 1) with location parameter µ the representation is

z = µ− log(− log v), v ∼ uniform[0, 1]. (23)

For the Gumbel distribution truncated at z0 Maddison et al. (2014) proposed an analogous representa-
tion

z = µ− log(− log v + exp(−z0 + µ)) = − log

(
− log v

expµ
+ exp(−z0)

)
, (24)

for v ∼ uniform[0, 1]. In particular, the sampling schemes in Eq. 6 and Eq. 14 generate samples
from the truncated Gumbel distribution.
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A.3 The derivation of the conditional distribution

We now derive the conditional distribution and the sampling scheme defined in Proposition 1.

The joint distribution of the permutation b and the Gumbel samples z is

p(b, z | θ) = p(b | z)p(z | θ) = φθb1 (zb1)

k∏
i=2

(
φθbi (zbi)I[zbi−1 ≥ zbi ]

)
(25)

We first multiply and divide the joint density by the c.d.f. Φlog(
∑k
i=2 exp θbi )

(zb1) and apply Lemma 2

Φlog(
∑k
i=2 exp θbi )

(zb1)

Φlog(
∑k
i=2 exp θbi )

(zb1)
φθb1 (zb1)

k∏
i=2

· · · = exp θb1∑k
i=1 exp θbi

φlog(
∑k
i=1 exp θbi )

(zb1)

Φlog(
∑k
i=2 exp θbi )

(zb1)

k∏
i=2

. . . . (26)

Next, we apply Lemma 2 to combine the c.d.f. in the denominator Φlog(
∑k
j=i exp θbj )(zbi−1

) and the
term φθbi (zbi)I[zbi−1 ≥ zbi ] inside the product

φθbi (zbi)I[zbi−1
≥ zbi ]

Φlog(
∑k
j=i exp θbj )(zbi−1

)
=

φθbi (zbi)I[zbi−1
≥ zbi ]

Φlog(
∑k
j=i exp θbj )(zbi−1

)

Φ
log(

∑k
j=i+1

exp θbj
)
(zbi )

Φ
log(

∑k
j=i+1

exp θbj
)
(zbi )

(27)

=
exp θbi∑k
j=i exp θbj

φ
zbi−1

log(
∑k
j=i exp θbj )

(zbi)

Φlog(
∑k
j=i+1 exp θbj )(zbi)

(28)

and obtain the truncated distribution φ
zbi−1

log(
∑k
j=i exp θbj )

(zbi) along with one factor of the Plackett-Luce

probability exp θbi∑k
j=i exp θbj

. Also, after the transformation the summation index in the denominator c.d.f.

changes from i to i+1. This gives us an induction step that we apply sequentially for i = 2, . . . , k−1.
For i = k the denominator c.d.f. Φlog exp θk(zbk−1

) and the product term φlog exp θk(zbk)I[zk−1 ≥ zk]

combine into the truncated Gumbel distribution with density φ
zbk−1

log exp θk
(zbk).

As a result, we rearrange p(b, z | θ) into the product of the truncated Gumbel distribution densities
p(z | b, θ) and the probability of the Plackett-Luce distribution p(b | θ):

φlog
∑k
j=1 exp θbj

(zb1)

k∏
i=1

exp θbi∑k
j=i exp θbj

k∏
i=2

φ
zbi−1

log
∑k
j=i exp θj

(zbi). (29)

Finally, to obtain the claim of Proposition 1 we apply the reparametrized sampling scheme defined in
Eq. 24.
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