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Abstract

In this work, we propose a semi-supervised approach based on generative models
to learn both feature representations and categories in an end-to-end manner. The
learning process is guided by our proposed auxiliary task that performs assignments
for the unlabeled data and regularizes the feature representations with the use of
metric embedding methods. Our model is represented by a Gaussian Mixture
Variational Autoencoder (GMVAE), in which, we model our categories with the
Gumbel-Softmax distribution and we benefit from the autoencoder’s architecture
to learn feature representations. Experimental results show the effectiveness of our
method on three datasets: MNIST, Fashion-MNIST and SVHN.

1 Introduction

Semi-supervised learning [1] aims to leverage limited amounts of labeled data, in conjunction with
large amounts of unlabeled data to improve the model performance. In the last few years, Deep
Neural Networks (DNNs) have been largely applied to solve this problem due to their ability of
learning useful representations. The information of the unlabeled data can be incorporated into these
networks through an unsupervised loss [2, 3], pseudo-labels [4, 5] or other auxiliary tasks [6–8].
Recently, Deep Generative Models (DGMs) have been widely used for semi-supervised learning.
DGMs model complex high dimensional data by using latent variables. Numerous models are built
on Variational Autoencoders (VAEs) [9, 10]. For instance, Kingma et al. [11] proposed the stacked
generative model (M1+M2) whose latent space is the joint distribution over data and labels. Maaløe
et al. [12] introduced the auxiliary deep generative model (ADGM) which utilizes an extra set of
auxiliary latent variables to improve the variational lower bound. Further, Maaløe et al. [12] also
propose the Skip Deep Generative Model (SDGM) which shows superior performance compared to
an ADGM. Unlike these works, our probabilistic model is based on a GMVAE that does not require
pre-training and compared to other GMVAE implementations [13, 14], ours is a modification of
the M2 model that considers deterministic feature representations. In addition to that, we use the
Gumbel-Softmax distribution [15, 16] to approximate the discrete latent variable.

In this paper, we propose a semi-supervised approach that considers the use of deep generative
models to learn feature representations that are guided by our auxiliary tasks in the form of loss
functions. Unlike previous semi-supervised probabilistic methods, where the discrete latent variable
is considered observable when using labeled data [11, 12], we consider the complete model as
unsupervised and we include the knowledge of the labeled data through our auxiliary tasks. Our total
loss function is:

Ltotal = Lvar + Laux, (1)

where Lvar is the variational loss given by the generative model and Laux is our proposed auxiliary
task loss. A general view of our proposed model is depicted in Fig. 1.
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Figure 1: Illustration of the proposed model. Our encoder
transforms the data into feature representations, which
are used to infer a gaussian and categorical distribution.
We take advantage of the small amount of labeled data to
perform category assignments for the unlabeled data and
regularize the feature space by using our auxiliary tasks.
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Figure 2: Probabilistic graphical model of our ap-
proach. The node x̂ in the inference model rep-
resents a feature representation obtained from an
encoder network.

2 Semi-supervised Learning using Deep Generative Models

For semi-supervised classification, Kingma et al. [11] proposed the stacked generative model M1+M2.
This model is comprised of two approaches: a latent-feature discriminative model (M1) and a genera-
tive semi-supervised model (M2). The former is represented by a vanilla Variational Autoencoder
(VAE) [9, 10] and is used to learn feature representations. The latter generates data from a discrete
latent variable y, represented by a categorical distribution, and a continuous variable z, represented by
a gaussian distribution. The M2 objective trains a discriminative network qφ(y|x), inference network
qφ(z|x, y) and generative network pθ(x|z, y) by maximizing a variational lower bound. For labeled
data, the class variable y is observed and z is the latent variable to be inferred. For unlabeled data
both y and z are latent variables to be inferred.

The M1+M2 model uses hierarchical stochastic layers that Kingma et al. [11] were not able to train
end-to-end, and thus relied on pre-training. The problem of hierarchical stochastic variables is due
to the posterior collapse observed in z [17–20], where the distribution qθ(z|x, y) collapses to the
prior p(z). To avoid this problem, Figueroa et al. [21] replaced the stochastic latent variable of the
M1 model with a deterministic one. The posterior collapse is also observed in the latent variable y,
Shu et al. [22] performed an analysis of the M2 model for the problem of unsupervised clustering
and found that it fails because the distribution qφ(y|x) collapses to the prior p(y). Similarly, Willetts
et al. [23] found that this collapse also takes place over the subspace of unlabeled classes in the
semi-unsupervised problem. To address this problem, Shu [24] proposed a modification of the M2
model, that explicitly models z as a Gaussian mixture conditioned on y.

3 Probabilistic Model

Our probabilistic model is similar to the M1+M2 model proposed by Kingma et al. [11], in which,
we replace the stochastic latent variable of the M1 model with a deterministic one to learn feature
representations, in a similar way to that proposed by Figueroa et al. [21]. Thus, our learned represen-
tations are defined as x̂ = g(x), we use these representations as input to our probabilistic model. Our
model is represented by a GMVAE, which is based on the modification proposed by Shu [24].

3.1 Generative Model

We use two latent variables to model the data, the continuous variable z and the discrete variable y,
i.e., we have pθ(x, z, y). Our generative model is defined as pθ(x|z)pθ(z|y)p(y), cf. Fig. 2b,

p(y) = Cat(y|π), (2)

pθ(z|y) = N
(
z|µθ (y) , σ2

θ (y)
)
, (3)

pθ(x|z) = N
(
z|µθ (z) , σ2

θ (z)
)

or B (z|µθ (z)) , (4)

where pθ(x|z) is Gaussian (N ) or Bernoulli (B) depending on whether x is continuous or discrete.
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3.2 Variational Lower Bound

Computing the posterior pθ(z, y|x) is intractable, thus we approximate this posterior with a tractable
one, qφ(z, y|x̂), by using variational inference [9]. Therefore, our inference model is defined as
qφ(z|x̂, y)qφ(y|x̂), cf. Fig. 2a,

qφ(y|x̂) = Cat(y|πφ(x̂)), (5)

qφ(z|x̂, y) = N
(
z|µφ (x̂, y) , σ2

φ (x̂, y)
)
, (6)

where Cat(y|πφ(x̂)) is a categorical distribution that we approximate with the Gumbel-Softmax
distribution [15, 16]. As aforementioned, we consider our probabilistic model as unsupervised, i.e.,
we require to infer both latent variables y and z. Therefore, we optimize the model by maximizing
the following lower bound:

log pθ(x) ≥ Eqφ(y|x̂)
[
Eqφ(z|x̂,y) [log pθ(x|z)]−KL (qφ (z|x̂, y) ||pθ (z|y))

]
−KL (qφ (y|x̂) ||p (y))

(7)

where the first term is given by the reconstruction loss (LR), the second term is the mixture of
gaussians loss (LG) and the last term is denoted as the categorical loss (LC). Therefore, our
variational loss is defined as Lvar = LR + wGLG + wCLC , where wG and wC are weights that
specify the importance of the gaussian and categorical loss functions.

4 Auxiliary Tasks

Our main objective is to guide the learning process of our probabilistic model to perform semi-
supervised classification. To achieve it, we propose two auxiliary tasks in the form of loss functions:
the assignment loss (LA) and the metric embedding loss (LM ). The first one considers the feature
representations of the data to learn category assignments, and the second one regularizes the feature
representations with the use of metric embedding methods. Therefore, our auxiliary task loss is given
by Laux = wALA + wMLM , where the weights wA and wM define the importance of each task.

4.1 Assignment Loss

Our first auxiliary task assigns labels to the unlabeled data. In order to do it, we use the distance-
weighted k-nearest neighbor (k-NN) [25] on the feature space, i.e., we compare the features of
the unlabeled data, x̂u, with the features of the labeled data, x̂l, and assign the label based on the
contribution or weight of each of the k nearest neighbors. The assigned label for each unlabeled data
is given by:

y = arg max
j

∑
(xi,yi)∈Dk

wi × I(j = yi), (8)

where y is the assigned label, Dk is the set of the k closest samples, wi is the weight of the i sample
and is given by 1/distance(x̂u, x̂l). A similar assignment process was proposed by Hoffer et al. [26]
and Figueroa et al. [8] but they considered only the nearest neighbor (1-NN). Once we obtained
the assignments for the unlabeled data, we teach our network about these assignments with the
cross-entropy loss that we denote as Assignment Loss (LA).

4.2 Metric Embedding Loss

Our second auxiliary task regularizes the feature space. In order to do it, we use metric learning
methods [27, 28] on the feature space, in such a way that the distance between features that belong to
the same category should be smaller than features of different categories. In our experiments, we
use the lifted structured loss [28], but any metric learning method can be used. This loss function is
applied after the assignment process because it requires all the data labeled. We denote this loss as
the Metric Embedding Loss (LM ).

3



Table 1: Semi-supervised test error (%) benchmarks on MNIST, SVHN and Fashion-MNIST for randomly and
evenly distributed labeled data. The results with (*) on top use an additional extra set for training.

Method MNIST SVHN Fashion-MNIST

100 1000 100 1000

M1+TSVM [11] 11.82 (± 0.25) 55.33 (± 0.11) - -
M1+M2 [11] 3.33 (± 0.14) 36.02 (± 0.10) - -
SS-Clustering [8] 1.66 (± 0.20) 20.66 (± 1.09) - -
SDGM [12] 1.32 (± 0.07) 16.61* (± 0.24) - -
ADGM [12] 0.96 (± 0.02) 22.86* - -
Proposed 1.94 (± 0.49) 14.78 (± 0.40) 26.88 (± 0.86) 15.85 (± 0.69)

5 Experiments

5.1 Datasets

We evaluate our method on three image datasets. MNIST [29]: a dataset containing a total of
70, 000 handwritten digits with 60, 000 training and 10, 000 testing samples, each being a 28× 28
image. SVHN [30]: consists of 99, 289 house number digits with 73, 257 training and 26, 032 testing
samples of size 3 × 32 × 32. There is an additional extra set of 531, 131 samples for training.
However, we do not consider this additional set in our experiments. Fashion-MNIST [31]: This
dataset has the same number of images and the same image size of MNIST, but it is more complicated.
Instead of digits, it consists of various types of fashion products. For image pre-processing, we
normalize the image intensities to be in the range of [0, 1] for all the datasets, and consequently use
the sigmoid function in the last layer of the decoder. We use the pre-defined train/test splits of each
data set, from the training set we consider 80% for training and 20% for validation. Furthermore, we
randomly chose 100 labeled examples for MNIST and Fashion-MNIST, and 1000 for SVHN and
Fashion-MNIST that are fixed for the whole training phase. We ensure that all classes have the same
number of labeled images.

5.2 Implementation Details

We employ convolutional neural networks to represent our encoder and decoder networks and fully
connected multilayer networks to infer our latent variables. Our inference and generative models are
parameterized by three neural networks: gaussians model qφ(z|x̂, y), categorical model qφ(y|x̂) and
generative model pθ(x|z, y). Detailed model architectures can be found in Appendix A.

For training we use Adam [32] optimizer with a learning rate of 0.001. We iterate for 200 epochs and
at each epoch we consider a different random permutation of our data. We use a batch size of 200 for
MNIST and Fashion-MNIST, and 400 for SVHN. Half of the batch is composed by labeled data that
is randomly selected. The feature size (fsz) is 100 for both MNIST and SVHN, and 200 for Fashion-
MNIST, the gaussian size (gsz) is 100 for MNIST, 150 for SVHN and 50 for Fashion-MNIST, we use
5 nearest neighbors in the assignment process for MNIST and 3 for SVHN and Fashion-MNIST. The
weights of the auxiliary tasks are wA = 5 and wM = 3 for SVHN, wA = wM = 1 for MNIST and
wA = 1 and wM = 0.1 for Fashion-MNIST. The margin used in the metric embedding loss is 2 for
MNIST, 0.5 for SVHN and 1 for Fashion-MNIST. We use the mean square error in the reconstruction
loss for all the datasets. Finally, we smooth the temperature used in Gumbel-Softmax from 1 to 0.5
in the first 50 epochs. All the hyperparameters were found in the validation set using random search.

5.3 Quantitative Results

We run our method with 5 random seeds and report the average performance. All the results of the
related works were reported from the original papers. The character ‘-’ means that results for that
metric or setup were not executed. We compared our method with probabilistic generative models
applied to semi-supervised classification.

As we can see in Table 1, for the MNIST dataset, our method obtained comparable results with
SDGM [12] and ADGM [12], which are models that use skip connections between the input data
and all the latent variables in the inference model. We can see the effectiveness of our method on the
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Table 2: Semi-supervised test error (%) of our
probabilistic model when we train it only with the
assignment loss (LA) and jointly with the metric
embedding loss (LM ) on the MNIST, SVHN and
Fashion-MNIST datasets.

Auxiliary
Task

MNIST SVHN Fashion-10

100 1000 100

LA 10.16 58.77 29.98
LA + LM 1.94 14.78 26.88

Table 3: Clustering performance, ACC(%) and NMI(%),
on MNIST and Fashion-MNIST.

Method MNIST Fashion-10

ACC NMI ACC NMI

GMVAE [13] 82.31 - - -
IDEC [33] 88.06 86.72 52.90 55.70
VaDE [14] 94.46 87.60 57.80 63.00
JULE-RC [34] 96.40 91.30 56.30 60.80
DEPICT [35] 96.50 91.70 39.20 39.20
DualAuto [36] 97.80 94.10 66.20 64.50

Proposed (Avg.) 92.46 88.16 55.97 54.55
Proposed (Best) 97.36 93.44 59.05 57.56

SVHN dataset, where we outperformed all the probabilistic methods without the use of the additional
extra training set. We also reported results for the Fashion-MNIST, where we did not get as good
results as MNIST because this is a harder dataset.

Besides the comparison with state-of-the-art methods, we performed an ablation study over the
auxiliary tasks. To do so, we trained our probabilistic model only with the assignment loss (LA)
and with both assignment loss (LA) and metric embedding loss (LM ). Table. 2 shows the results
of this study, we can see that with the assignment loss we are able to obtain reasonable results on
MNIST and Fashion-MNIST. However, it is not very useful on the SVHN dataset. Recall that this
loss depends on the feature representations to obtain assignments for classification. Therefore, if
the feature representations are not learned properly, the assignment loss will misclassify the data.
According to the results, regularizing the feature space with the metric embedding loss is of great
importance to improve the performance of our model and achieve competitive results.

5.3.1 Unsupervised Clustering

Our proposed model can be applied to clustering. To do so, we train our probabilistic model without
labeled data. We examine the clustering performance on the MNIST and Fashion-MNIST datasets.
For this task, we consider a different set of hyperparameters. We use a batch size of 64 for both
datasets. The feature size (fsz) is 100 for MNIST and 200 for Fashion-MNIST, the gaussian size
(gsz) is 150 for MNIST and 50 for Fashion-MNIST. Finally, the weight of the gaussian loss (wG)
is set to 5. We train our models with the binary cross entropy loss for reconstruction. This set of
hyperparameters gives us better results than those used in the semi-supervised task.

We evaluate our clustering results with two metrics commonly used in the literature, clustering
accuracy (ACC) and normalized mutual information (NMI) [37]. We report the average and best
results of 5 random seeds. We compare our method with probabilistic generative models [13, 14] and
models that use convolutional networks [33–36]. As we can see in Table. 3, our average results are
competitive with the state-of-the-art and the best results outperform different methods. Compared to
probabilistic generative models, our model outperforms the GMVAE proposed by Dilokthanakul et
al. [13] and our best run outperforms VaDE [14] on the MNIST and Fashion-MNIST datasets, these
methods are very related to us because they also model the data with a mixture of gaussians.

5.4 Qualitative Results

Besides classification, we also evaluated the generative part of our model. Fig. 3 shows how our
model can generate random images for each category. Fig. 4 depicts the feature representations of all
the datasets using t-SNE [38], we reduced the dimensionality of the feature representations to 2D
and plot the test sets. Different colors indicate ground-truth classes. We can see that for MNIST and
SVHN datasets we obtained a good separability of the categories. However, for Fashion-MNIST the
separability is not very clear because some samples of different categories are mixed.
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(a) MNIST (b) SVHN (c) Fashion-MNIST

Figure 3: Generated images of our proposed model trained on MNIST, SVHN and Fashion-MNIST datasets.

(a) MNIST (b) SVHN (c) Fashion-MNIST

Figure 4: Visualization of the feature representations of MNIST, SVHN and Fashion-MNIST test set.

6 Conclusions

In this paper, we proposed a semi-supervised method that combines the variational loss given by a
GMVAE with our proposed auxiliary tasks that assign labels to the unlabeled data and regularize
the feature space using metric embedding methods. Our approach is not restricted to GMVAE and
can be applied to other models like M2 [11] or ADGM [12]. Experimental results show that our
approach can obtain competitive results by adding loss functions that drive the learning process of
our generative model. One problem of the current version of our approach is the fact that we require
to change the weights of some loss functions in order to get good results. Future work focuses on the
application of methods to avoid posterior collapse like InfoVAE [39]. Furthermore, we can improve
the assignment process using more complex techniques.
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Appendix

A Network Architectures

Table 4 provides a description of the encoder architecture used to learn feature representations, x̂ =
g(x). The discriminative network qφ(y|x̂), is given by the set of linear layers: fsz−fsz−c, where fsz
is the feature size of x̂, c is the number of classes, the output vector is given by the Gumbel-Softmax
distribution. The architecture of the inference network qφ(z|x̂, y), is (fsz + c) − zsz − zsz − zsz ,
where the input is the concatenation of the features and categories, zsz is the size of the gaussian
latent variable, its output vector is given by the reparameterization trick of the gaussian distribution.
The architecture of pθ(z|y) is given by two linear layers for µ and σ2 respectively. All the linear
layers are followed by Leaky ReLU non-linearity. Finally, the architecture of the generative model
pθ(x|z) is given in Table 5.

Table 4: Neural Network Architecture of (x̂ = g(x)): Input is an image, all the layers are followed by Batch
Normalization and Leaky ReLU non-linearity. Convolutional layers are specified as (filters@filterSize, stride,
padding). The output is a feature vector of size fsz .

Dataset layer1 layer2 layer3 layer4 layer5

MNIST (16@5, 1, 1) (32@5, 1, 1) (64@4, 2, 2) (128@4, 2, 2) (fsz@5, 1, 1)

SVHN (16@5, 1, 1) (32@5, 1, 1) (64@4, 2, 2) (128@4, 2, 2) (fsz@6, 1, 1)

Fashion-10 (16@5, 1, 1) (32@5, 1, 1) (64@4, 2, 2) (128@4, 2, 2) (fsz@5, 1, 1)

Table 5: Neural Network Architecture of pθ(x|z): The input is a vector of size fsz . All the layers are followed
by Batch Normalization and ReLU non-linearity. Convolutional layers are specified as (filters@filterSize, stride,
padding). The output is an image.

Dataset layer1 layer2 layer3 layer4 layer5

MNIST (128@5, 1, 1) (64@4, 2, 2) (32@4, 2, 2) (16@5, 1, 1) (1@5, 1, 1)

SVHN (128@6, 1, 1) (64@4, 2, 2) (32@4, 2, 2) (16@5, 1, 1) (3@5, 1, 1)

Fashion-10 (128@5, 1, 1) (64@4, 2, 2) (32@4, 2, 2) (16@5, 1, 1) (1@5, 1, 1)
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