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Abstract

A neural process defines a family of exchangeable stochastic processes parame-
terized by deep neural networks. Many variants have been recently proposed and
applied to tasks involving few-shot regression. While the specific design choices
imposed can significantly affect the quality of uncertainty estimates, the tools
for analyzing the inductive biases of probabilistic regression models are lacking,
as standard metrics such as log-likelihoods directly focus on direct downstream
performance on a specific held-out set. In this work, we analyze the uncertainty
estimates obtained via neural processes by proposing a series of metrics that probe
the model along various interpretable axis. Such a fine-grained analysis can be
useful for model criticism and selection with respect to new tasks and datasets.

1 Introduction

Recent advancements in probabilistic inference coupled with deep learning has led to a large vari-
ety of expressive, uncertainty-aware probabilistic models for regression, such as Bayesian neural
networks [Neal, 2012] and deep ensembles [Lakshminarayanan et al., 2017]. A neural process
contributes to this line of work by proposing a family of exchangeable stochastic processes parame-
terized via deep neural networks [Garnelo et al., 2018a]. Many variants [Garnelo et al., 2018b, Kim
et al., 2019] have been proposed that differ primarily in either the modeling assumptions that define
the generative process (e.g., specifying latent variables, inducing points), the inference procedure
(e.g., variational posterior family), or the design of neural network parameterizations (e.g., attention,
convolutions). These choices can have significant affect on the downstream performance across
tasks [Le et al., 2018]. A systematic analysis of the effect of these choices is useful for model
criticism and selection on new datasets and tasks. Such an analysis requires careful ablations as well
as interpretable statistics that offer insights into the inductive biases of these models.

The current tools available for such an uncertainty-aware analysis of regression models fall into
two extremes. On one hand, we have task-specific metrics (e.g., held-out log-likelihoods and mean
squared error for regression, cumulative and simple regret for bandit problems) for directly assessing
downstream performance of a model. However, the usefulness of these metrics for model criticism
and selection on new datasets and tasks can be limited as the metrics lack interpretability, the end tasks
could involve regression only as a sub-routine within a larger pipeline (e.g., Bayesian optimization),
and the ground truth is available only for a finite set of data points. On the other extreme, one can
obtain qualitative insights via visualizations of predictive distributions on low-dimensional known
data distributions, such as Gaussian mixture models. However, often the absence of a statistical flavor
to such an analysis is prone to overfitting on selected examples and in general, presents challenges to
draw confident conclusions.

In this work, we seek to bridge the gap in different approaches for analyzing predictive distributions
of neural processes via several interpretable statistics such as interpolation and extrapolation. These
statistics rely on the knowledge of the true data generative process and hence, in in practice, they
are evaluated on synthetic data distributions. Hence, these statistics naturally augment qualitative
evaluations with a fine-grained statistical analysis of neural processes that preserves interpretability.
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Figure 1: Graphical Models for Neural Processes and Variants. T denotes the observed set of points
during training and new test points at test time.

2 Proposed Evaluation Methodology

Consider the setting of noisy, non-linear regression over a bounded domain X :

y = f(x) + ε(x) (1)

where x ∼ Uniform(X ) and ε(x) ∼ N (0, σ(x)2) is Gaussian noise. Here, σ(x) denotes the data
(aka aleatoric) uncertainty. A regression model is trained to fit a finite dataset, say D, that comprises
of (x, y) points sampled via the above generative process. We assume the model provides two
estimates via the predictive distribution p(y|x, D): a predictive mean function m(x, D) and an
uncertainty estimate s(x, D).

For qualitative analysis, it is standard to pre-select, known data distributions for evaluation that allow
for unbounded access (i.e., we can query f and σ for all x ∈ X ). For example, a standard practice in
prior works is to consider sine curves, Gaussian mixture models, etc. Note that the knowledge of the
true data distribution is only used for evaluation and not during learning or test-time inference (which
would make the task trivial). Next, we discuss our proposed metrics.

2.1 Self-certainty

The self-certainty (SC) statistic measures the discrepancy in the uncertainty metrics at the observed
(labelled) datapoints relative to the ground-truth data uncertainty. Let the set of observed x be denoted
as Dx = {x|(x, y) ∈ D}. Then, the self-certainty statistic is defined as:

SC =
∑
x∈X
‖s(x, D)− σ(x)‖2. (2)

When there is no data noise (i.e., σ(x) = 0 for all x), this property alludes to the standard requirement
of an interpolator which any flexible enough model can satisfy. For an ideal probabilistic regression
model, we expect the self-certainty to collapse as we collect additional data.

2.2 Inclusion@k

The inclusion statistic is parameterized by a positive real k > 0 and measures the expected coverage
of the target mean function f given upper and lower bounds on the predictive mean. Formally:

I(k) = Ex∼Uniform(X )[1(|f(x)−m(x, D)| < ks(x, D))] (3)

We evaluate the expectation via Monte-Carlo in practice. The above statistic can be used a proxy for
calibration in regression based-scenarios.

2.3 Uncertainty-increase@δ

To probe uncertainty at unobserved points, we propose to evaluate their uncertainties relative to the
nearest neighbor points. For every test point x, we check if its uncertainty estimate s(x, D) exceeds
that of its nearest neighbor in D, denoted as NN(x, D). For low-dimensional distributions, the
`1 or `2 distance could be used directly in the space defined over x whereas for high-dimensional
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Table 1: Statistical Evaluation of Neural Process Variants averaged over 1000 trials.

Model NLL MSE Self-certainty (SC)

CNP 0.626 ± 0.042 0.232 ± 0.01 0.057 ± 0.003
NP 0.858 ± 0.037 0.361 ± 0.014 0.273 ± 0.009
ANP 0.834 ± 0.083 0.247 ± 0.011 0.043 ± 0.004

(a) CNP (b) NP (c) ANP

Figure 2: Qualitative vizualizations of uncertainty for a test function and three context points (bold
black). Predictive distribution in blue and target function in black.

structured distributions, we could consider alternate feature spaces. With no data noise, we expect
higher uncertainty at unobserved points than at observed points i.e., NN(x, D) vs. NN(x,X −D).

To obtain aggregate statistics, we bin the test points by their distances to the nearest neighbor in D.
For any bin, let δ denote the average distance between the bin points and their respective nearest
neighbors in D. The interpolation/extrapolation behavior for all test points xδ at bin distance δ can
then be summarized via the following uncertainty-increase (UI) statistic:

UI(δ) =

∑
x∈xδ 1(s(x, D) > NN(x, D))

|xδ|
(4)

2.4 Uncertainty-reduction@k

The uncertainty-reduction (UR) statistic measures the expected reduction in uncertainty as new points
are added to the dataset. Let D′k be a dataset consisting of k labelled points sampled independently
via the data generating process in Eq. 1. The UR statistic can be formally expressed as:

UR(k) = Ex∼Uniform(X )[ED,D′
k
‖s(x, D ∪D′k)− s(x, D)‖] (5)

In practice, we evaluate the expectation via Monte-Carlo.

3 Experiments on Neural Processes

We compare three variants of Neural Processes:

1. Conditional Neural Processes (CNP) which map the observed dataset and a test point x
directly to its prediction y [Garnelo et al., 2018b]. These models do not include any latent
variables.

2. Neural Processes (NP) which modify the CNP model to include global latents [Garnelo
et al., 2018a]

3. Attentive Neural Processes (ANP) which include global latents as well as an attentive
mapping from the observed dataset to the predictions y [Kim et al., 2019]

The graphical models for the three approaches are shown in Figure 1. We consider the 1D synthetic
regression setup followed in all the above three prior works. The distribution over target regression
functions is a GP with zero mean and a squared-exponential kernel and randomly sampled kernel
hyperparameters. After training, we sample 1000 functions for testing, with number of context points
varying from 1 to 10.
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(a) s(x, D) (b) Inclusion@k

(c) Uncertainty-increase@δ (d) Uncertainty-reduction@k

Figure 3: Quantitative evaluation of interpretable metrics across variants of neural processes.

The qualitative and quantitative results are shown in the Figures 2, 3 and Table 1 above. In Table 1,
we see that while CNP outperforms ANP and NP on global metrics such as negative log-likelihoods
(NLL) and mean-squared error (MSE), it has a lower self-certainty score than ANP. This is confirmed
qualitatively in Figure 2a vs. c.

NPs which are known to underfit [Kim et al., 2019] also show significantly different behavior on all
the metrics shown in Figure 3. For NPs, the uncertainty estimate s(x,D) and uncertainty increase is
almost independent of δ while the reduction in uncertainty is much slower as a function of k relative
to CNPs and ANPs. From Figure 3c, d, we also see that rate of uncertainty increase (as we move
away from observed data) and decrease (as we add more data) is superlinear (in δ) for CNPs and
ANPs and linear (in k) respectively for all the three models.
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