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Abstract

We introduce the Mutual Information Machine (MIM), a novel formulation of
representation learning, using a joint distribution over the observations and latent
state in an encoder/decoder framework. Our key principles are symmetry and
mutual information, where symmetry encourages the encoder and decoder to learn
different factorizations of the same underlying distribution, and mutual information,
to encourage the learning of useful representations for downstream tasks. Our
starting point is the symmetric Jensen-Shannon divergence between the encoding
and decoding joint distributions, plus a mutual information encouraging regularizer.
We show that this can be bounded by a tractable cross entropy loss function between
the true model and a parameterized approximation, and relate this to the maximum
likelihood framework. We also relate MIM to variational autoencoders (VAEs) and
demonstrate that MIM is capable of learning symmetric factorizations, with high
mutual information that avoids posterior collapse.

1 Introduction

The variational auto-encoder (VAE) [11] is a class of hierarchical Bayesian models based on trans-
forming data from a simple latent prior into a complicated observation distribution using a neural
network. The model density is represented by the marginal distribution.

∫
x
pθ(x|z)P(z)dz, where

θ denotes the model parameters. The data log-likelihood is in general intractable to compute, so
VAEs maximize the so-called evidence lower bound (ELBO).

logP(x) ≥ Ez∼qθ(z|x) [ log pθ(x|z) ]−DKL (qθ(z|x) ‖P(z)) , (1)

where qθ(z|x)P(x) denotes an approximate posterior that maps observations to a distribution over
latent variables, and where pθ(x|z)P(z) denotes the mapping from latent codes to observations.
While VAEs have been successfully applied in a number of settings [8, 14, 12, 22], they suffer from a
shortcoming known as posterior collapse [4, 5, 19, 24, 25]. Effectively, the penalty on the prior term
in Eq. (1) causes the encoder to lose information in some dimensions of the latent code, leading the
decoder to ignore those dimensions. The result is a model that generates good samples, but suffers
from a poor latent representation. This is an issue for any downstream application that relies on z.

Here we present a related but distinct framework called Mutual Information Machine (MIM). Our
objectives are twofold: to promote symmetry in the encoding and decoding distributions (i.e.,
consistency), and to encourage high mutual information between x and z (i.e., good representation).
By symmetry, we mean that the encoding and decoding distributions should represent two equivalent
factorizations of the same underlying joint distribution. The framework can be seen as a symmetric
analogue of VAEs, where we optimize a symmetric divergence instead of the asymmetric KL.
In preliminary experiments, we find that MIM produces highly informative representations, with
comparable sample quality to VAEs.
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2 Mutual Information Machine
To begin, it is helpful to write down the VAE loss function as the KL divergence between two joint
distributions over x and z, as in [18] i.e., up to an additive constant the following holds.

LVAE (θ) = DKL (qθ(z|x)P(x) ‖ pθ(x|z)P(z)) . (2)

This loss could be symmetrized by using the symmetric KL divergence, however this would result in
a logP(x) term that cannot be evaluated, as this distribution does not typically have an analytical
form. In Pu et al. [18], minimization of the symmetric KL loss is expressed as a stationary point of
an adversarial min-max objective.

Here we propose to optimize a bound on a regularized version of the Jensen-Shannon divergence
(JSD). Defining the mixture distribution MS ≡ 1

2

(
pθ(x|z)P(z) + qθ(z|x)P(x)

)
, the JSD is

defined as

JSD(θ) =
1

2

(
DKL (pθ(x|z)P(z) ‖MS) +DKL (qθ(z|x)P(x) ‖MS)

)
. (3)

A second principle of our formulation involves encouraging a representation with high mutual
information. Mutual information is related to joint entropy by the identity H(x, z) = H(x) +
H(z)− I(x; z). Since H(x, z) is tractable up to a constant under both the encoding and decoding
distributions, we add the regularizer1 RH(θ) = 1

2 (Hqθ(z|x)P(x)(x, z) + Hpθ(x|z)P(z)(x, z)) to
JSD(θ), which can be shown to be equal to HMS (x, z), the entropy of the mixture distributionMS .

This formulation allows us to derive a tractable (in terms of being amenable to optimization via
reparameterization) bound on the objective. First we define parameterized joint distributions,
qθ(x, z) ≡ qθ (z|x) qθ (x), and pθ(x, z) ≡ pθ (x|z) pθ (z). Where pθ (z) can be parameter-
ized for added flexibility, or set to P(z). qθ(x) is an observation model which could be e.g., a
normalizing flow [6, 13] or an auto-regressive model [23]. For a fair comparison with VAEs, we lever-
age the encoder and decoder distributions qθ(x|z), pθ(x|z) to avoid adding additional parameters.
Details are given in the supplementary material.

DefiningMθ ≡ 1
2 (qθ(x, z) + pθ(x, z)), the bound can be expressed as,

HMS (x, z) ≤ H(MS ,Mθ) ≤ 1

2

(
H(MS , qθ) + H(MS , pθ)

)
≡ LMIM(θ) (4)

where H(p, q) is the cross entropy between distributions p and q. While the first inequality no longer
depends on logP(x) and is therefore tractable, the second inequality, which follows from Jensen’s
inequality, can be shown to additionally encourage consistency inMθ (i.e., qθ(x, z) = pθ(x, z)).
Further, when qθ (x) = P(x) and pθ (z) = P(z), it can be shown that LMIM(θ) is equal to the
symmetric KL loss plus the regularizer RH(θ). See supplementary material for more details.

We have therefore derived a loss function that encourages both symmetry in the encoding and
decoding distributions, as well as high mutual information in the learned representation. Further,
this loss function can be directly minimized without requiring an adversarial reformulation. In the
experiments, we will show preliminary results exploring the properties of MIM.

3 Experiment: 2D Mixture Model Data
We begin with a dataset of 2D observations x ∈ R2 drawn from a Gaussian mixture model, and a 2D
latent space, z ∈ R2. In 2D we can easily visualize the model and measure quantitative properties of
interest (e.g., mutual information). (Complete experiment details given in supplementary material).

Figure 1 depicts results for the VAE (even columns) and MIM (odd columns) using single-layer
encoder and decoder networks, with increasing numbers of hidden units (moving left to right) to
control model expressiveness. The top row (for VAE and MIM respectively) depicts observation
space. With each case we also report the mutual information and the root-mean-squared observation
reconstruction error when sampling the predictive encoder/decoder distributions, with MIM showing
a superior performance. See additional results in the supplementary material (Fig. 3).

The bottom row of Fig. 1 depicts the latent space behavior. For the weakest architecture, with only
5 hidden units, both MIM and VAE posteriors have large variances. When the number of hidden
units increases, however, it is clear that while the VAE posterior variance remains very large in one

1We use Hq(x,z) and MIq(x;z) to notate entropy and mutual information under a distribution q(x,z)
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(a) h ∈ R5 (b) h ∈ R20 (c) h ∈ R500

Figure 1: VAE (odd columns) and MIM (even columns) with 2D inputs, a 2D latent space, and 5, 20
and 500 hidden units. Top: Black contours are level sets of data distribution P(x), red points are
reconstructed samples drawn from the decoder pθ(x|z′), where z′ ∼ qθ(z|x′) for data point x′ from
P(x). Bottom: The dashed black circle depicts one standard deviation of P(z). Each green curve
depicts a one standard deviation ellipse of the encoder posterior qθ(z|x′). (a) For weak architectures
MIM and VAE exhibit high posterior variance. (b,c) For more expressive architectures the VAE
predictive variance remains high, an indication of posterior collapse. MIM generally produces lower
predictive variance and lower reconstruction errors, consistent with high mutual information.

dimension (i.e., a common sign of posterior collapse), the MIM encoder produces much tighter
posteriors densities, which capture the global (i.e., aggregated) structure of the observations.

In addition, with a more expressive architecture, i.e., more hidden units, the MIM encoding variance
is extremely small, and the reconstruction error approaches 0. In effect, the encoder and decoder
learn an (approximately) invertible mapping using an unconstrained architecture (demonstrated here
in 2D), when the dimensionality of the latent representation and the observations is the same.

The VAE, by comparison, is prone to posterior collapse, reflected in relatively low mutual information.
In this regard, we note that several papers have described ways to mitigate posterior collapse in VAE
learning, e.g., by lower bounding or annealing the KL divergence term in the VAE objective (e.g.,
[1, 19]), or by limiting the expressiveness of the decoder (e.g., [5]). We posit that MIM does not
suffer from this problem as a consequence of the objective design principles that encourage high
mutual information between observations and the latent representation.

4 Experiment: MIM Representations with High Dimensional Image Data

Fashion-MNIST MNIST

Figure 2: VAE (odd) and MIM (even) z embed-
ding for Fashion MNIST and MNIST with con-
vHVAE (S) architecture (see Table 1).

convHVAE (S) convHVAE (VP)
Dataset MIM VAE MIM VAE

Fashion MNIST 0.84 0.75 0.84 0.76
MNIST 0.98 0.91 0.98 0.85

Table 1: Test classification accuracy of 5-NN clas-
sifier for MIM and VAE learning. MIM shows
superior clustering of classes in the latent repre-
sentation in an unsupervised manner.

Here we explore learning on higher dimensional image data, where we cannot accurately estimate
mutual information [2]. Instead, following [9], we focus on an auxiliary classification task as a proxy
for the quality of the learned representation and on qualitative visualization of it. We experiment with
MNIST [16], and Fashion MNIST [27]. In what follows we also explore multiple architectures of
VAE models from [21], and the corresponding MIM models (see Algorithm. 1 in the supplementary
material), where, again we use VAE as the baseline. See supplementary material for the details.

For the auxiliary transfer learning classification task we opted for K-NN classification, being a non-
parametric method which represents the clustering in the latent representation without any additional
training. We show quantitative results in Table 1 for K-NN classification (k = 5). We also present
the corresponding qualitative visual clustering results (i.e., projection to 2D using t-SNE [26]) in Fig.
2. Here, it is clear that MIM learning tends to cluster classes in the latent representation better than
VAE, for an identical parameterization of a model.
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A Detail Derivation of MIM Learning

Here we provide a detailed derivation of the loss of MIM learning, as defined in (4). We would
like to formulate a loss function which includes (3) that reflects our desire for model symmetry and
high mutual information. This objective is difficult to optimize directly since we do not know how
to evaluate logP(x) in the general case (i.e., we do not have an exact closed-form expression for
P(x)). As a consequence, we introduce parameterized approximate priors, qθ(x) and pθ(z), to
derive tractable bounds on the penalized Jensen-Shannon divergence. This is similar in spirit to VAEs,
which introduce a parameterized approximate posterior. These parameterized priors, together with the
conditional encoder and decoder, qθ(z|x) and pθ(x|z), comprise a new pair of joint distributions,

qθ(x, z) ≡ qθ (z|x) qθ (x)

pθ(x, z) ≡ pθ (x|z) pθ (z) .

These new joint distributions allow us to formulate a new, tractable loss that bounds H(MS):
LCE(θ) ≡ H(MS ,Mθ)

= DKL (MS ‖Mθ) + H(MS)

≥ H(MS) , (5)
where H(MS ,Mθ) denotes the cross-entropy betweenMS andMθ, and

Mθ =
1

2

(
pθ (x, z) + qθ (x, z)

)
. (6)

In what follows we refer toLCE as the cross-entropy loss. It aims to match the model prior distributions
to the anchors, while also minimizing H(MS). The main advantage of this formulation is that the
cross-entropy loss can be trained by Monte Carlo sampling from the anchor distributions with the
reparameterization trick [11, 20].

At this stage it might seem odd to introduce a parametric prior for P(z). Indeed, setting it directly is
certainly an option. Nevertheless, in order to achieve consistency between pθ (x, z) and qθ (x, z) it
can be advantageous to allow pθ(z) to vary. Essentially, we trade-off latent prior fidelity for increased
model consistency.

One issue with LCE is that, while it will try to enforce consistency between the model and the
anchored distributions, i.e., pθ(x, z) ≈ pθ(x|z)P(z) and qθ(x, z) ≈ qθ(z|x)P(x), it will not
directly try to achieve model consistency: pθ(x, z) ≈ qθ(x, z). To remedy this, we bound LCE using
Jensen’s inequality, i.e.,

LMIM(θ) ≡ 1

2

(
H(MS , qθ (x, z)) + H(MS , pθ (x, z))

)
(7)

≥ LCE(θ) . (8)

Equation (7) gives us the loss function for the Mutual Information Machine (MIM). It is an average
of cross entropy terms between the mixture distributionMS and the model encoding and decoding
distributions respectively. To see that this encourages model consistency, it can be shown that LMIM
is equivalent to LCE plus a non-negative model consistency regularizer; i.e.,

LMIM(θ) = LCE(θ) + RMIM(θ) . (9)
The non-negativity of RMIM is a simple consequence of LMIM(θ) ≥ LCE(θ) in (8).

In what follows we derive the form of the MIM consistency regularizer in Eq. (4), named RMIM(θ).
Recall that we define Mθ = 1

2 (pθ(x, z) + qθ(x, z)). We can show that LMIM is equivalent to
H(MS ,Mθ) plus a regularizer by taking their difference.

RMIM(θ) = LMIM(θ)−H(MS ,Mθ) (10)

=
1

2
(H(MS , pθ(x, z)) + H(MS , qθ(x, z)))−H(MS ,Mθ)

=
1

2
(DKL (MS ‖ pθ(x, z)) + HMS (x, z) +DKL (MS ‖ qθ(x, z)) + HMS (x, z))

−DKL (MS ‖Mθ)−HMS (x, z)

=
1

2
(DKL (MS ‖ pθ(x, z)) +DKL (MS ‖ qθ(x, z)))−DKL (MS ‖Mθ)
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where RMIM(θ) is non-negative, and is zero only when the two joint model distributions, qθ (x, z)
and pθ (x, z), are identical under fair samples from the joint sample distributionMS (x, z). To prove
that RMIM(θ) ≥ 0 we now construct Equation (10) in terms of expectation over a joint distribution,
which yields

RMIM(θ) =
1

2
(H(MS , pθ(x, z)) + H(MS , qθ(x, z)))−H(MS ,Mθ)

= Ex,z∼MS

[
−1

2
log pθ(x, z)− 1

2
log qθ(x, z) + log

1

2
(qθ (x, z) + pθ (x, z))

]
= Ex,z∼MS

[
− log

√
qθ (x, z) · pθ (x, z) + log

1

2
(qθ (x, z) + pθ (x, z))

]
= Ex,z∼MS

[
− log

√
qθ (x, z) · pθ (x, z)

1
2 (qθ (x, z) + pθ (x, z))

]
≥ 0

where the inequality follows Jensen’s inequality, and equality holds only when qθ (x, z) = pθ (x, z)
(i.e., encoding and decoding distributions are consistent). In practice we find that encouraging model
consistency also helps stabilize learning.

To understand the MIM objective in greater depth, we find it helpful to express LMIM as a sum of
fundamental terms that provide some intuition for its expected behavior. In particular, as derived in
the supplementary material:

LMIM(θ) = RH(θ) +
1

4

(
DKL (P(z) ‖ pθ(z)) +DKL (P(x) ‖ qθ(x))

)
+

1

4

(
DKL (qθ(z|x)P(x) ‖ pθ(x, z)) +DKL (pθ(x|z)P(z) ‖ qθ(z,x))

)
(11)

The first term in (11), as discussed above, encourages high mutual information between observations
and latent states. The second term shows that MIM directly encourages the model prior distributions
to match the anchor distributions. Indeed, the KL term between the data anchor and the model prior
is the maximum likelihood objective. The third term encourages consistency between the model
distributions and the anchored distributions, in effect fitting the model decoder to samples drawn
from the anchored encoder (cf. VAE), and, via symmetry, fitting the model encoder to samples
drawn from the anchored decoder (both with reparameterization). In this view, MIM can be seen
as simultaneously training and distilling a model distribution over the data into a latent variable
model. The idea of distilling density models has been used in other domains, e.g., for parallelizing
auto-regressive models [17].

In summary, the MIM loss can be viewed as an upper bound on the entropy of a particular mixture
distributionMS :

LMIM(θ) =
1

2

(
H(MS , qθ (x, z)) + H(MS , pθ (x, z))

)
= H(MS ,Mθ) + RMIM(θ)

≥ H(MS ,Mθ)

≥ H(MS)

= HMS (x) + HMS (z)− IMS (x; z) (12)

Through the MIM loss and the introduction of the parameterized model distributionMθ, we are
pushing down on the entropy of the anchored mixture distributionMS , which is the sum of marginal
entropies minus the mutual information. Minimizing the MIM bound yields consistency of the model
encoder and decoder, and high mutual information ofMS between observations and latent states.

B MIM in terms of Symmetric KL Divergence

As given in Equation (2), the VAE objective can be expressed as minimizing the KL divergence
between the joint anchored encoding and anchored decoding distributions (i.e., which jointly defines
the sample distributionMS(x, z)). Here we refer to P(x) and P(z) as anchors which are given
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externally and are not learned. Below we consider a model formulation using the symmetric KL
divergence (SKL),

SKL(θ) =
1

2
(DKL (pθ(x|z)P(z) ‖ qθ(z|x)P(x)) +DKL (qθ(z|x)P(x) ‖ pθ(x|z)P(z)) ) ,

the second term of which is the VAE objective.

In what follows we explore the relation between SKL, JSD, and MIM. Recall that the JSD is written
as,

JSD(θ) =
1

2

(
DKL (pθ(x|z)P(z) ‖MS) +DKL (qθ(z|x)P(x) ‖MS)

)
.

Using the identity DKL (p ‖ q) = H(p, q)−Hp(x, z), we can express the JSD in terms of entropy
and cross entropy.

JSD(θ) =
1

2

(
H(pθ(x|z)P(z),MS)−Hpθ(x|z)P(z)(x, z)

+ H(qθ(z|x)P(x),MS)−Hqθ(z|x)P(x)(x, z)

)
=

1

2
(H(pθ(x|z)P(z),MS) + H(qθ(z|x)P(x),MS))− RH(θ)

Using Jensen’s inequality, we can bound JSD(θ) from above,

JSD(θ) ≤ 1

4

(
Hpθ(x|z)P(z)(x, z) + H(pθ(x|z)P(z), qθ(z|x)P(x))

+ Hqθ(z|x)P(x)(x, z) + H(qθ(z|x)P(x), pθ(x|z)P(z))

)
− RH(θ) (13)

=
1

4

(
H(pθ(x|z)P(z), qθ(z|x)P(x)) + H(qθ(z|x)P(x), pθ(x|z)P(z))

+ 2RH(θ)

)
− RH(θ)

=
1

4

(
DKL (pθ(x|z)P(z) ‖ qθ(z|x)P(x)) +DKL (qθ(z|x)P(x) ‖ pθ(x|z)P(z))

+ 4RH(θ)

)
− RH(θ)

=
1

4
(DKL (pθ(x|z)P(z) ‖ qθ(z|x)P(x)) +DKL (qθ(z|x)P(x) ‖ pθ(x|z)P(z)))

=
1

2
SKL(θ)

If we add the regularizer RH(θ) and combine terms, we get

1

2
SKL(θ) + RH(θ) =

1

2
(H(MS , qθ(z|x)P(x)) + H(MS , pθ(x|z)P(z)))

When the model priors qθ(x) and pθ(z) are equal to the fixed priors P(x) and P(z), this regularized
SKL and MIM are equivalent. In general, however, the MIM loss is not a bound on the regularized
SKL.

In what follows, we derive the exact relationship between JSD and SKL.

1

2
SKL(θ) + RH(θ) =

1

2
(DKL (MS ‖ qθ(z|x)P(x)) +DKL (MS ‖ pθ(x|z)P(z))) + HMS (x, z)

=
1

2
(DKL (MS ‖ qθ(z|x)P(x)) +DKL (MS ‖ pθ(x|z)P(z)))

+ JSD(θ) + RH(θ)
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which gives the exact relation between JSD and SKL.

1

2
SKL(θ) =

1

2
(DKL (MS ‖ qθ(z|x)P(x)) +DKL (MS ‖ pθ(x|z)P(z))) + JSD(θ)

=
1

2
(DKL (MS ‖ qθ(z|x)P(x)) +DKL (MS ‖ pθ(x|z)P(z)))

+
1

2
(DKL (qθ(z|x)P(x) ‖MS) +DKL (pθ(x|z)P(z) ‖MS))

C Parameterizing qθ(x) and pθ(z) for fair comparison with VAEs

In the MIM framework, there is flexibility in the choice of qθ(x) and pθ(z). To facilitate a direct
comparison with VAEs, we must be careful to keep the architectures consistent and not introduce
additional model parameters. For simplicity and a fair comparison, we set pθ(z) = P(z) and leave
other considerations for future work. For qθ(x), we consider two different approaches that leverage
the decoder distribution pθ(x|z). The first is to consider the marginal decoding distribution,

qθ(x) = EP(z) [pθ(x|z)] . (14)

Which we approximate by drawing one sample from P(z) when we need to evaluate qθ(x). This
can suffer from high variance if the prior is far from the true posterior.

The other is to consider an importance sampling estimate, for which we use the encoder distribution
qθ(x|z),

qθ(x) = Eqθ(z|x)

[
pθ(x|z)P(z)

qθ(z|x)

]
. (15)

Where once again, we approximate using one sample, this time from the encoder distribution, and
multiply by the importance weight P(z)

qθ(x|z) . Samples of z are drawn using the reparameterization
trick [11, 20] in order to allow for gradient-based training. We utilize (14) when sampling from
the decoding distribution during the training of a MIM model, and (15) when sampling from the
encoding distribution.

D Experimentation Details

Following [2], we estimate mutual information using the KSG mutual information estimator [15, 7],
based on a K-NN neighborhoods with k = 5, and measure the quality of the representation with
classification axuliary task.

The learning algorithm is described in Algorithm 1. In what follows we describe in details the
experimental setup, architecture, and training procedure for the experiments that were presented in
the paper.

D.1 2D Mixture Model Data

In all experiments we use Adam optimizer [10] with lr = 1e− 3, and mini-batch of size 128. We
stopped training for all experiments when validation loss has not improved for 10 epochs.

Data are drawn from a Gaussian mixture model with five isotropic components with standard
deviation 0.25, and the latent anchor, P(z), is an isotropic standard normal distribution. The encoder
and decoder are conditional Gaussian distributions, where the means and variances of which are
regressed from the input using two fully connected layers and tanh activation function. Following
[3], the parameterized data prior, qθ(x), is defined to be the marginal of the decoding distribution, or
explicitly qθ(x) = Ez∼pθ(z) [ pθ(x|z) ], where the only model parameters are those of the encoder
and decoder, and the encoding distribution qθ(x, z) is defined to be consistent with the decoding
distribution pθ(x, z). As such we can learn models with MIM and VAE objective that share the same
architectures and parameterizations.
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Algorithm 1 MIM learning with marginal qθ(x)

Require: Samples from anchors P(x),P(z)
Require: Define qθ(x) = Ez∼pθ(z) [pθ(x|z)]

1: while not converged do
2: # Sample encoding distribution
3: Denc ← {xi, zi ∼ qθ(z|x)P(x)}Ni=1
4: # Compute objective, approximate log qθ(x) with 1 sample
5: log qθ(xi) ≈ log pθ(xi|zi) + log pθ(zi)− log qθ(zi|xi)

6: L̂MIM (θ;Denc)← − 1
N

∑N
i=1 (log pθ(xi|zi) + log pθ(zi))

7: # Sample decoding distribution
8: Ddec ← {xi, zi ∼ pθ(x|z)P(z)}Ni=1
9: # Compute objective, approximate log qθ(x) with 1 sample and importance sampling

10: log qθ(xi) ≈ log pθ(xi|zi)
11: L̂MIM (θ;Ddec)← − 1

2N

∑N
i=1 (log qθ(zi|xi) + 2 log pθ(xi|zi) + log pθ(zi))

12: # Minimize loss
13: ∆θ ∝ −∇θ

(
L̂MIM (θ;Ddec) + L̂MIM (θ;Denc)

)
14: end while

D.2 Representation Learning with MIM in High Dimensional Image Data

We experiment with convHVAE (L = 2) model from [21], with Standard (S) prior which is the usual
Normal distributions, and VampPrior (VP) prior which define the prior as a mixture model of the
encoder conditioned on learnable pseudo-inputs uk, or explicitly pθ(z) = 1

K

∑K
k=1 qθ(z|uk). In all

the experiments we used the same setup that was used in [21], and with the same latent dimensionality
z ∈ R80. By doing so we aim to highlight the generality of MIM learning as being architecture
independent, and to provide examples for the training procedure of existing VAE architectures with
MIM learning.

E Additional Results

E.1 2D Mixture Model Data

(a) MI (b) NLL (c) Recon. Error (d) Classif. (5-NN)

Figure 3: Test performance for MIM (blue) and VAE (red) for 2D GMM experiment, all as functions
of the number of hidden units (on x-axis), based on 10 learned models in each case. From left to
right, plots show mutual information, log marginal probability of test points, reconstruction error, and
k-NN classification performance.

Here we quantify the complete experimental results that were presented in Fig. 1. We plot the mutual
information, the average log marginal of test points under the model qθ, the reconstruction error of
test points, and 5-NN classification (predicting which of five GMM components the test points were
drawn from).

E.2 Representation Learning with MIM in High Dimensional Image Data

Training times of MIM models are comparable to training times for VAEs with comparable archi-
tectures. The principal difference will be the time required for sampling from the decoder during
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(a) VAE (VP) (b) A-MIM (VP)

Figure 4: VAE and A-MIM learning with PixelHVAE (VP) for Fashion MNIST dataset. Top three
rows are data samples, VAE, A-MIM, correspondingly. Bottom row is model samples.

training. For certain models, such as auto-regressive decoders [12], this can be significant. In such
cases (i.e., PixelHVAE here), we find that we can also learn the model by changing the sampling
distribution to only include samples from the encoding distribution. By using asymmetric sampling
MS(x, z) = P(x)qθ(z), where we sample from the encoding distribution only (i.e., similar to
VAE), training time is comparable to VAE. We name that model A-MIM.

Here we show qualitative results for the most expressive model, PixelHVAE (VP). Figures (4, 5),
depict reconstruction, and sampling for Fashion-MNIST, and MNIST, correspondingly. The top
three rows of each of the plots depicts data samples, VAE reconstruction, and A-MIM reconstruction,
respectively. The bottom row depicts samples. The results demonstrate comparable samples and
reconstruction for MIM and VAE.
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(a) VAE (VP) (b) A-MIM (VP)

Figure 5: VAE and A-MIM learning with PixelHVAE (VP) for MNIST dataset. Top three rows are
data samples, VAE, A-MIM, correspondingly. Bottom row is model samples.
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