Flexible Text Modeling with
Semi-Implicit Latent Representations

Hao Fu Chunyuan Li Ke Bai
Duke University Microsoft Research Duke University
hao.fu@duke.edu chunyl@microsoft.com ke.bai@duke.edu
Jianfeng Gao Lawrence Carin
Microsoft Research Duke University
jfgao@microsoft.com lcarin@duke.edu
Abstract

Variational autoencoders (VAEs) have been used recently to learn probabilistic
representations in many natural language processing (NLP) applications. Training
deficiency has been witnessed when an auto-regressive decoder is used: the learned
latent codes becomes almost identical to the prior distribution (termed “posterior
collapse,” resulting in a vanishing of the Kullback-Leibler term in the variational
expression). We hypothesize that the source of deficiency is due partially to the
approximate Gaussian posterior often used in variational inference. We use semi-
implicit (SI) representations for the latent distributions of the natural languages. It
extends the commonly used Gaussian distribution family, by mixing the variational
parameter with a flexible implicit distribution. The increasing representational
power of SI is demonstrated on two NLP tasks, showing that it provides more
informative latent codes in language modeling, and generates more diverse dialog
responses.

1 Introduction

Deep latent-variable models such as variational autoencoders (VAEs) [13| 21] are becoming increas-
ingly popular in natural language processing (NLP). They have contributed to fundamental advances
in many NLP tasks, such as language modeling [1} [17]] and dialog response generation [27, 25]]. For a
text sequence of length 7', ¢ = [z1, - - - , x|, neural language models [[18]] generate the ¢-th token x;

conditioned on the previously generated tokens: p(x) = H75T:1 p(x¢|x<¢), where x o, indicates all
tokens before t. However, language models lack an efficient inference mechanism, preventing them
from reasoning about data at an abstract level. For instance, language models don’t allow the sort of
neural sentence manipulations showcased in [1]].

The VAE was introduced to fill the gap, simultaneously learning generative models with higher-quality
sentence samples while learning an efficient inference network [13} 21} [1]]. The decoder draws a
continuous latent vector z from prior p(z), and generates the text sequence « from a conditional
distribution pg (x|z); p(z) is typically assumed a multivariate Gaussian, and 6 represents the network
parameters. The following auto-regressive decoding process is usually used:

T
po(x|2) = [[po(wilz<i, 2). (M
t=1

The true posterior pg(z|x) x pg(x|z)p(z) is approximated via the variational distribution g4 (2|x).
This distribution is often produced with an encoder, implemented via a ¢-parameterized neural

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

Path A
_Path B
t=1,---T k=0, - K t=1,---T
(a) Vanilla VAE with an auto-regressive decoder (b) SI-VAE with an auto-regressive decoder

Figure 1: [llustration of learning bottleneck in the two different methods. For the VAE model with an
auto-regressive decoder, two paths are considered from « to its reconstruction: Path A via {¢, 0}
and Path B via 6. The circles with blue, green and red indicate observed, latent, reconstructed
variables, respectively. (a) Vanilla VAE with Gaussian posteriors represents the observation x as
Gaussian latent code z, which encodes all information flow in Path A to decode its reconstruction. (b)
Semi-implicit VAE represents the latent code of observation x as the mixture of Gaussian {z k}fzo,
whose variational parameter Ay, is generated using « and auxiliary noise samples €.

network. It yields the evidence lower bound (ELBO) as an objective:

logpe(x) > L =E — R, with 2)
€ =Ey,(zle) [logpo(z|2)] 3)
R = KL(ge(z[Z)[|p(2)) “4)

where £ is the log-likelihood term, and R is a Kullback-Leibler (KL) regularization term.

KL Vanishing Issues The ELBO can be viewed as a regularized version of the autoencoder
(AE) [7]]. It is thus natural to extend the negative of £ in (2)) by introducing a hyper-parameter 3
to control the strength of regularization [10]: £z = £ — fR. When 8 = 1 (constant) during the
training procedure, R quickly becomes vanishingly small during training [[1]]. This is known as the
KL vanishing issue, which causes undesirable outcomes: the encoder produces posteriors almost
identical to the Gaussian prior, for all observations; the decoder ignores the z, and the VAE model
reduces to a simpler language model. To address this issue, a monotonic annealing schedule was
proposed to increase 3 from 0 to 1 during the early stage of VAE learning [1]]. The cyclical annealing
schedule further proposed to repeat this annealing process multiple time [5]] during training.

2 Semi-Implicit Text Representations

2.1 Diagnostics of KL Vanishing

It has been shown recently that the auto-regressive decoder in the VAE has two paths working together
to generate text sequences, and the KL vanishing issue happens due to the destructive competition
between the two paths for the information flows [3]], illustrated in Figure a). Path A consists of
{¢, 0} passing through z. It first extracts the global representation z, then generates x directly. Path
B employs the partial ground-truth information of & at every time step of the sequential decoding,
and it generates x; conditioned on x ;. Hence, both paths compete to generate the observed text; the
KL vanishing issue appears when Path B dominates Path A.

However, it is unknown why Path A tends to be weak in this competition. In this paper, we hypothesize
that there is a bottleneck on Path A that may weaken the information flow from x to z,. Typically,
¢¢(z|x) is modeled as a fully factorized Gaussian distribution:

¢ (z|lz) =N (p, diag(c?)), p,0* = fg(x) (5)

where f4 is a ¢-parameterized inference network, which outputs the mean p and variance o2 of the
Gaussian distribution.

The inference network aims to find the variational parameters for all sentences in the space of a
Gaussian distribution. The performance is determined by two factors [3]: (i) the capacity of the
Gaussian form to match the true posterior; and (ii) the ability of the inference network to produce
good variational parameters for each sentence. In practice, the inference networks may always have a

capacity limit, which can result in imperfect variational parameters. In certain extreme cases, the
limited capacity may produce all variational Gaussian parameters that share a similar configuration
such as the prior, i.e., KL vanishing. It is thus promising to relax the Gaussian approximation to more
expressive forms.

2.2 From GMM to Semi-Implicit Posteriors

We seek to extend the Gaussian posterior in (3] to more flexible distribution via Gaussian Mixture
Models (GMM) [18]]:

K
ag(zl2) =Y N (1, diag(07)),

k=1
. 2\ K
with {7y, g, 0% by = fo(T), (6)
where K is the number of Gaussian components, p;, and o2 is the mean and variance of the k-th
component, and 7w = [71, - , x| is the mixture coefficient. The traditional GMM is restrictive

in that (i) K needs to be pre-defined, and (i) the size of network ¢ for amortized inference will
increase as K increases.

To bypass these issues, we propose the following semi-implicit (SI) form of GMM [26]:
as(212) = [a(zINgo(Aa) a)
by

where A = [, 0%] is the mean and variance for Gaussian distribution ¢(z|\) = N(z; u, ?), whose
distribution parameters are drawn from an implicit distribution A ~ ¢g(A|x). Specifically, the
sampling process is:

A= fo(x, €), with € ~ go(€) 3
where gy (€) is an easy-to-sample distribution, fy is a ¢-parameterized network with input {x, €}.

Note that (7)) can be viewed as a GMM with an infinite number of components: once ¢ is well trained,
one can draw an arbitrary number of samples via (8], each of which corresponds to a new Gaussian
component. In contrast to (6], this sampling process only requires adding a small constant number of
network parameters in ¢.

We show the probabilistic graphical model of SI in Figure [I{b). Path A is now composed of
{z,e} - X = z — =z, where ¢4 (z|z) has a much more flexible distribution family to choose from
than a Gaussian form. It allows z to encode & more easily. The enriched z can strength path A, and
help it stay informative in the competition.

2.3 Learning and Inference with SI

Though flexible, the SI representation in (/) introduces additional difficulty in learning: the evaluation
of the KL term in (2)) becomes inefficient because its closed form disappears. Fortunately, there is a
upper bound for the KL term:

R =KL(qg(z|z)|[p(2)))
=KL(Eq, A12)9(2|N)[[p(2))
<Eq,x2) [KL(g(2]A)||p(2))] = R. (10)

Note that (I0) is efficient to evaluate due to the Gaussian form of g(z|A). Therefore, we can
maximize the lower bound of the ELBO:

L=E-R>E-RE2L (11)

However, directly optimizing (IT) causes a degeneracy issue, characterized by ¢ (A|x) converging
to a point mass density, making ¢ (z|) reduce to the vanilla Gaussian form. To prevent degeneracy,
a repulsive term is added to regularize £ [206]:

BK:EA,A(U,...,A(K)~q¢(A|m)KL(q(Z|)‘)||C.7K(Z|)‘))

» A=Y a(z A1)

where G (z|\) Kol

12)

(a) Constant (b) Monotonic (c) Cyclical

Figure 2: Comparison of VAE (top row) and SI (bottom row) in the learned latent spaces for the three
schedules.

Methods BLEU BOW Embedding Intra Distinct | Inter Distinct L
R P Fl A E G dist-1 dist-2 | dist-1 dist-2
HRED 0262 0.262 0.262 | 0.820 0.537 0.832 | 0.813 0.452 | 0.081 0.045 | 12.1
CVAE 0.295 0.258 0.275 | 0.836 0.572 0.846 | 0.803 0.415 | 0.112 0.102 | 124

CVAE+BOW 0.298 0.272 0.284 | 0.828 0.555 0.840 | 0.819 0.493 | 0.107 0.099 | 12.5
CVAE+CO 0.299 0.269 0.283 | 0.839 0.557 0.855 | 0.863 0.581 | 0.111 0.110 | 10.3
DialogWAE 0.394 0.254 0.309 | 0.897 0.627 0.887 | 0.713 0.651 | 0.245 0.413 | 155

DialogWAE+GMP | 0.420 0.258 0.319 | 0.925 0.661 0.894 | 0.713 0.671 | 0.333 0.555 | 15.2

SI+M 0.376 0.248 0.299 | 0.888 0.640 0.890 | 0.832 0.461 | 0.209 0.298 | 11.5
CVAE + M 0.360 0.245 0.292 | 0.884 0.634 0.884 | 0.826 0.459 | 0.204 0.282 | 11.2
SI+C 0.441 0246 0315] 0937 0.683 0905 | 0.888 0.782 | 0.499 0.77 | 12.1

CVAE + C 0.440 0244 0314 | 0937 0.688 0906 | 0.876 0.741 | 0461 0.72 | 12.0

Table 1: Performance comparison on the SwitchBoard dataset (P: precision, R: recall, L: average
length). Blue numbers indicate SI performs than VAE. Bold means the highest compared with all
other methods.

This leads to L £ [+ Bg. Note that maximizing £, with K > 1 would encourage positive B
and drive g4 (A|x) away from degeneracy. In other words, By guarantees the SI in (7)) to spread out
as an infinite number of Gaussian mixtures, rather than collapsing into one single Gaussian.

In the Appendix [A] we describe how SI mitigates the KL issue, with various training techniques,
including 3 schedules (Monotonic and Cyclical), as well as Aggressive encoder training [9]. We also
discuss related work in the Appendix

3 Experiments

We implement SI in Pytorch. We provide a detailed description of the settings, datasets, evaluation
metrics in Appendix.

3.1 Visualization of Latent Spaces

To illustrate the learned z of SI and VAE, in Figure 2] we visualize the latent space of a synthetic
dataset of 10 sequences, where each color corresponds to z ~ ¢(z|n), forn = 1,---,10. The
Gaussian VAE results are in the top row. The constant schedule produces heavily mixed latent codes z
for different sequences. The monotonic schedule divides the space into a mixture of 10 thin and long
cluttered Gaussians. The cyclical schedule behaves similarly but with more circled distributions. This
shows that the Gaussian VAE results heavily depend on the 3-scheduling schemes. This is perhaps
because the learning process is conducted in the restrictive space of Gaussian variational forms, and
hence carefully-crafted searching schedules play an important role. However, the proposed SI method
consistently produces well-divided latent representations for all three schedules. Importantly, its
posteriors ¢(z|n) have non-Gaussian forms such as slice-shaped distributions.

Methods | AUt MIt KLt PPL| IWP|
VAE| | 056 068 946 93.1

M SA - - 1.05 109.2 -
SI 7 273 483 1056 96.73
VAE 4 095 126 9574 96.23
C SA - 226 108.7

SI 5 4.08 2.63 1063 96.87

VAE | 14 333 9.02 1019 92.26
SI 32 373 9.20 1003 88.51

MA

Table 2: Results on PTB. The SA-VAE results are from [S]. Blue numbers indicate SI performs than
VAE. Bold means the highest compared with all other methods.

3.2 Language Modeling

The results on Penn Tree Bank (PTB) dataset [15]] are reported in Table[2] We first compare SI with
the VAE trained with a monotonic and cyclical 8 schedule. We see that SI achieves higher AU, MI,
and KL than VAE for both schedules. This means SI can provide more informative latent codes
than VAE. We compare with the semi-amortized (SA) training [11]. SI outperforms SA in terms
of KL while maintaining the same PPL. This implies that learning with more flexible distribution
forms yields more informative latent codes. When training VAE and SI with the aggressive encoder
training, both methods are improved. SI still achieves substantially better results than VAE in terms
of AU. Interestingly, it activates all 32 latent units. We argue that the aggressive encoder training
can be particularly important for the proposed SI, as it allows SI getting fully optimized to reach its
representational power.

3.3 Dialogue Response Generation

Table summarizes the results for the various methods. All baseline results are from [8]]. We compare
ST with Gaussian CVAE for both monotonic and cyclical /3 schedules. SI improves CVAE in terms of
all evaluation metrics for the monotonic schedule. When the cyclical schedule is used, SI provides
higher BLEU scores than CVAE, indicating that SI is able to generate more relevant responses. This
also implies that SI is able to learn more informative 2z, and suffers less from the KL vanishing issue.
When comparing with the state-of-the-art methods, SI provides the highest BLEU Recall and BOW
Embedding (A). Meanwhile, SI achieves the best Intra/Inter Distinct values, showing evidence that
SI can produce the most diverse response generation.

Table 4 in Appendix shows examples of generated responses from the CVAE and SI. Given a context,
five samples are drawn for each method. SI-CVAE can generate more coherent responses that cover
multiple plausible aspects.

4 Conclusion

We have introduced a semi-implicit approximation in the posterior learning of VAEs to infer text
representations. The flexibility of SI helps reduce the representational bottleneck in the latent space
and thus alleviates the KL vanishing issue. The effectiveness of SI is validated with the clear latent
space division in the synthetic dataset and improved performance on two NLP tasks: providing more
informative latent codes in VAE language modeling, and promoting the diversity in conditioned
dialogue response generation.

References

[1] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. ACL, 2016.

[2] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

[3] Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational
autoencoders. ICML, 2018.

[4] Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein
variational gradient descent. UAI, 2017.

[5] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin.
Cyclical annealing schedule: A simple approach to mitigating KL. vanishing. NAACL, 2019.

[6] John J Godfrey and Edward Holliman. Switchboard-1 release 2. Linguistic Data Consortium,
Philadelphia, 926:927, 1997.

[7] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning, volume 1. MIT press
Cambridge, 2016.

[8] Xiaodong Gu, Kyunghyun Cho, Jungwoo Ha, and Sunghun Kim. DialogWAE: Multimodal
response generation with conditional Wasserstein auto-encoder. /CLR, 2019.

[9] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and posterior collapse in variational autoencoders. ICLR, 2019.

[10] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual concepts with a
constrained variational framework. In /CLR, 2017.

[11] Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexander M Rush. Semi-
amortized variational autoencoders. ICML, 2018.

[12] Yoon Kim, Sam Wiseman, and Alexander M Rush. A tutorial on deep latent variable models of
natural language. arXiv preprint arXiv:1812.06834, 2018.

[13] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. ICLR, 2013.

[14] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adver-
sarial autoencoders. ICLR workshop, 2016.

[15] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 1993.

[16] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes:
Unifying variational autoencoders and generative adversarial networks. In ICML, 2017.

[17] Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text processing. In
ICML, 2016.

[18] Tomés Mikolov, Martin Karafidt, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[19] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

[20] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

[21] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. I[CML, 2014.

[22] Tulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and Joelle Pineau.
Building end-to-end dialogue systems using generative hierarchical neural network models. In
AAAI 2016.

[23] Tulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. A hierarchical latent variable encoder-decoder model for
generating dialogues. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[24] Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg. Improving variational encoder-decoders
in dialogue generation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[25] Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and Steve Young. Latent intention dialogue
models. ICML, 2017.

[26] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. ICML, 2018.

[27] Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders. ACL, 2017.

Table 3: Comparisons of vanilla VAE and SI.

| VAE | SI
K K=0 K>1
Speed Fast Larger K yields higher compute cost
Flexibility | Limited Larger K yields higher flexibility

A Mitigating KL. Vanishing with SI

The KL vanishing issue happens due to a lack of good latent codes z in the initial stages of decoder
training [9} 5], and the decoder passively chooses to use the previous word tokens z ., alone to
generate the next word z;. Based on this observation, two algorithms are proposed independently:

e Aggressive encoder training: He et al. [9] propose to aggressively optimize the encoder
T, times (T, > 0) before performing each model update.

e Cyclical S-annealing schedule: Fu et al. [5] propose simply repeats the monotonic 3
annealing procedure M times (M > 1). Within each cycle, only a proportion R € (0,1) is
used to increase § from O to 1, and while the 1 — R for fixing 5 = 1. A linear annealing
scheme is:

SR with 7 = T/M . (13)

5, = {T/R <R . mod(t — 1, [T/M])

Both works share a similar motivation: improving the quality of z before it is used for decoder
training. However, they optimize the latent codes in the space of Gaussian distribution, due to the
variational assumption.

In this paper, we propose to further mitigate the KL issue through improving the latent codes using
SI. The update of SI is based on the tractable bound:

Ly=L+Bx=E+R+ Bk (14)
=K. gy (zx)[l0gPo(T|2) + P(2) — dr (2|N)].

K
Z[logpe (wl2;) + logp(z)—log 7 (Y a(zs1M) +a(z W], (19)
k=1

where the expectation in is estimated via .J samples in (I5), with the j-th sample drawn as:
zj ~4(2|A5)s Aj ~ ap(Alz) (16)

On the impact of X' The representational power of SI relies on K, the number of samples used to
approximate (7). Each sample is used to construct the variational parameters for one Gaussian mixture,
thus larger K indicates more Gaussian mixtures. It has been shown in [[26] that the regularized lower
bound L is an asymptotically exact ELBO that satisfies L, = £ and limg_,00 L = L.

We summarize the connection/comparison of vanilla VAE and SI in Table[3] Note that vanilla VAE
can be considered as a special case of SI-VAE when K = 0. SI can balance the trade-off between the
posterior flexibility and the computational cost using K. To leverage both advantages, we suggest an
annealing training procedure via scheduling K. It performs in two stages: (i) A small K is first used.
We can leverage the speed advantage to push the variational distribution towards the target distribution
at a fast pace. (i) We gradually increase K to a pre-defined Ky,ax. It refines the distribution learned
in the first stage into highly flexible SI representations.

This annealing training procedure can be integrated into the aggressive encoder training [9]] or the
cyclical schedule [5] to get better performance, while maintaining low computational cost. Note the
key to reduce KL vanishing is to feed high-quality z to decode in the initial stage of decode learning.
Here, this initial stage means the time after each aggressive training loop ends in [9], or each cyclical
period ends in [S)]. Hence, the SI annealing training periods can be synchronized with them. By the
time the next aggressive loop or cyclical period start, we can make sure the flexible SI latent codes
are fed into the decoder.

We summarize the full training in Algorithm 1. K is iteration-dependent; it is reserved to implement
the stacked training. Note that when M/ = 1 and R < 0.5, we have the standard monotonical
annealing scheme. When T, = 0 we have the standard encoder-decoder update.

8

o NN A AW N =

L i
NN R W=D

Algorithm 1: SI Training
Input :encoder ¢, decoder 0, K;, T,, M, R

Initialize: ¢, 9,
fort=1,2,...,Tdo
% [annealing schedule
Evaluate j3; using (13) ;
% Aggressive encoder training
fort,=1,2,...,T,do
Sample a minibatch X ;
Compute gradient g = V4 Lg, ,(X) 3
Update ¢ using gradient g ;
end
% SI update
Sample a minibatch X ;
Sample Ay using @) for k =1,--- | K; ;
Sample z; using (I6) for j =1,---,J;
Compute gradient gy 0=V 6Ls, ,(X);
Update 8, ¢ using gradient g¢ g;
end

B Related Work

Good latent representations are key for a wide range of NLP tasks. We recommend [12] for a
comprehensive study for deep latent variable models in natural languages. Several VAE model
variants have been developed to reduce the approximate errors in Gaussian proposals via more
flexible posteriors, including normalizing flows (NFs) [20], adversarial variational Bayes (AVB) [16],
particle-based methods [4]]. Our method is based on on [26]. It bypasses the strict invertibility
requirement of NFs, the instability of adversarial training in AVB, and prohibitive computation
in particle-based methods. Nevertheless, all these methods can provide more accurate posterior
approximate than the Gaussian variants when carefully tuned. However, to the best of our knowledge,
they are only evaluated on image datasets with MLP/CNN decoders. In the text domain, the use of
auto-regressive decoders in VAE brings additional difficulties in learning representations. Our paper
presents the first work to investigate the flexible posterior learning for auto-regressive decoders. We
gain the insights that the KL vanishing issue is less severe than previously thought when trained with
more flexible posteriors such as SI.

C Visualization

Each sequence is a 10-dimensional one-hot vector with the value 1 appearing in different positions.
A 2-dimensional latent space is used for the convenience of visualization. A 1-layer LSTM with
hidden units is employed for the decoder in analog with the sentence decoding process. The encoder
is implemented using a 2-layer MLP with 64 hidden. We use T'=4K total iterations, K = J = 100.
Three [3-scheduling schemes are considered [5]].

We refer g(z) = 25:1 q(z|n)g(n) as the aggregated posterior [[14]. This marginal distribution
characterizes the aggregated z after embedding the entire dataset into the latent space. Good latent
representations should have low KL(¢(z)||p(2)). Ideally, it means the overall shape of z samples is
close to p(z) = N (0, 1). The flexibility of SI allows the learned posteriors to adapt arbitrarily well
to fit the prior, thus produces high-quality ¢(z). In contrast, the limitation of Gaussian assumptions
in vanilla VAE leads to some holes between ¢(z|n) and p(z), making ¢(z) violate the constraint of
p(2z). The SI representations capture more clear patterns and structured information is captured in z,
which is beneficial in downstream applications below.

D Language Modeling

Dataset and Setup We first consider applying VAEs to the language modeling task on the Penn
Tree Bank (PTB) dataset [[15]. Following [11} 9], we set the word embedding dimension as 512. The
encoder and decoder are LSTMs with 1024 hidden units, respectively. J =5, K is linearly increased
to K nax = 50.

Context mind of the jury is probably a better vehicle for sentencing than the judge himself
because then there’s the consensus thing rather than a single person
Target well there is an argument in that a judge has seen a lot more cases and you know perhaps he sees one crime

1. yeah that is true 1. yeah
SI 2. that’s a very good idea i guess is not even the jury system CVAE 2. that’s right
3. i think the judges should be a little more like a man 3. um - hum
4. uh - huh 4. oh i can’t believe that
5. right i should be able to get on the jury that’s not necessarily 5. uh - huh yeah i think that’s a good idea but i’m not sure
the way about it

Table 4: Generated dialog responses from SI and CVAE methods.

Evaluation In addition to generating high-quality sentences as in the traditional language models
that only, VAEs also aim to learn a good posterior distribution in the latent space. The language
modeling performance is evaluated with ELBO, perplexity (PPL) and importance weighted perplexity
(IWP) [9]. Note that IWP provides a tighter bound to log p(x) than PPL. Higher ELBO and lower
PPL/IWP indicate the model fits the observed sentences better. More importantly, we are interested
in the learned z, which is evaluated using the following three metrics:

o AU: The total number of active units in z, defined as A, = Covy(E.q(z|2)[2]) > 0.01 [2];

e MI: The mutual information I (x, z);

e KL: The posterior-prior KL divergence, i.e., R defined in (2). The KL for SI is reported as
its bound R - + Bx.

E Conditional VAE for Dialog
E.1 Model Description

Each conversation can be represented via three random variables: the dialog context ¢ composed
of the dialog history, the response utterance «, and a latent variable z, which is used to capture the
latent distribution over the valid responses(8 = 1) [27]. The ELBO can be written as:

log pe(x|c) > Leipo (17)
= Eq,(21z.0) [l0g po (|2, ¢)| — BKL(gg (2|2, c)||p(2]c))

Dataset and Setup The conditional VAE (CVAE) is often used in dialogue response generation,
the learned representations are crucial in generating relevant and diverse responses. We evaluate our
model on Switchboard dataset [6]], which contains 2,400 two-way telephone conversations under 70
specified topics. We use SI to replace the Gaussian posteriors in CVAE. Our model architecture and
hyper-parameters are identical to [27]] except that we concatenate the context and sentence embedding
with 100-dim noise vector as the input of the SI inference network. J =5, K is linearly increased to
Kinax = 30.

Baselines We compare the performance of SI-CVAE with six recently-proposed baselines for
dialogue modeling: (1) HRED: a generalized sequence-to-sequence model with hierarchical RNN
encoder [22]]; (2) CVAE: a conditional VAE model with KL-annealing [23]] [27]; (3) CVAE-BOW: a
conditional VAE model with a BOW loss [27]; (4) CVAE-CO: a collaborative conditional VAE model
[24]; (5) DialogWAE: a conditional Wasserstein autoencoder model [8] and (6) DialogWAE-GMP: a
conditional Wasserstein autoencoder model with Gaussian mixture prior [8]].

E.2 Evaluation
We adopted the same metrics from [8]] to quantify the performance for dialog response generation:

e BLEU: BLEU measures how much a generated response contains n-gram overlaps with the
reference.

e BOW Embedding: The cosine similarity of bag-of-words embeddings between the hypoth-
esis and the reference. The Glove vectors [19] are used. For each test context, we report the
maximum BOW embedding score among the 10 sampled responses. We use three metrics
to compute the word embedding similarity: Average, Extrema and Greedy.

e Intra & Inter Distinct: dist-n is defined as the ratio of unique n-grams (n = 1, 2) over all
n-grams in the generated responses. Note that intra-dist and and inter-dist are defined as the

average of distinct values within each sampled response and among all sampled responses,
respectively. Higher values indicate higher diversity.

10

	Introduction
	Semi-Implicit Text Representations
	Diagnostics of KL Vanishing
	From GMM to Semi-Implicit Posteriors
	Learning and Inference with SI

	Experiments
	Visualization of Latent Spaces
	Language Modeling
	Dialogue Response Generation

	Conclusion
	Mitigating KL Vanishing with SI
	Related Work
	Visualization
	Language Modeling
	Conditional VAE for Dialog
	Model Description
	Evaluation

