
Neural Tree Kernel Learning

Suwen Lin∗
University of Notre Dame

Notre Dame, IN 46556, USA
slin4@nd.edu

Martin Wistuba
IBM Research

Dublin, D15HN66, Ireland
martin.wistuba@ibm.com

Ambrish Rawat
IBM Research

Dublin, D15HN66, Ireland
ambrish.rawat@ie.ibm.com

Nitesh Chawla
University of Notre Dame

Notre Dame, IN 46556, USA
nchawla@nd.edu

Abstract

We propose an interpretable and scalable kernel, Neural Tree Kernel, which com-
bines neural networks with the principles of decision trees for developing kernel
methods which are both, highly flexible and interpretable. Specifically, the Neural
Tree Kernel transforms the inputs of base kernels, such as RBF kernels, through the
designed neural trees. The proposed kernel operates as an independent unit and can
be easily applied as a drop-in replacement for any base kernel in a kernel-based
model, such as a Gaussian Process (GP). To validate the effectiveness of our Neural
Tree Kernel, we conduct classification experiments on 20 datasets from the UCI
repository and show the promising performance of our model. We also demonstrate
the interpretability of our kernel in a classification task and its practical usefulness
in automating machine learning for natural language tasks (Appendix A).

1 Introduction

With the advent of artificial intelligence, significant efforts have been devoted to research on neural
network architectures and applications, such as Deep Neural Networks (Bengio et al., 2009) and
Convolutional Neural Networks (CNN) (LeCun et al., 2015). Many works have further demonstrated
the ability of neural networks to capture meaningful representations from data (Cao et al., 2017;
Ballinger et al., 2018). On the other hand, Gaussian Processes (GPs) have attracted some attention,
as they provide promising performance and quantify uncertainties in various tasks while being
non-parametric (Rasmussen and Williams, 2005). Moreover, recent work has claimed that expressive
kernel functions, when used in combination with a GP, are highly capable of discovering rich data
structures (Wilson, 2014; Yang et al., 2015). Then, the question becomes whether we can combine
and take advantage of these two methods.

To this end, recent research has shed light on the work of the integration of GP kernel development
and neural network architectures. Wilson et al. (2016) developed deep kernels based on multi-layer
neural networks and showed the decent performance on various tasks. However, it also carries its
own limitations on the interpretability, as is often the case for neural networks and deep learning
methods. In this paper, we further this investigation and resolve these concerns by introducing tree
structures into the neural networks used in the kernel functions. Many have worked for the neural
tree constructions, such as deep neural forest (Kontschieder et al., 2015) and neural trees (Yang et al.,
2018). To the best of our knowledge, the exploration of tree structures to model kernel functions is
yet unexplored.

∗Work done while an intern at IBM Research.

Preprint. Under review.



(a) Example of a decision tree (b) Structure of Neural Tree Kernel (c) Structure of neural forest

Figure 1: The Neural Tree Kernel Framework.

For developing Neural Tree Kernel we first adopt and modify the neural tree structure from the work
of Kontschieder et al. (2015). Then, we apply it as a transformation to the base kernel inputs, e.g. for
an RBF kernel. We jointly learn the parameters of the neural tree structures and the base kernels via
maximizing the log marginal likelihood of the GP.

2 The Neural Tree Kernel Framework

Designing suitable kernels for different tasks and datasets is a challenging task and a large amount of
research has been devoted to develop appropriate kernel functions for various applications (Micchelli
et al., 2006; Snoek et al., 2012; Yogatama and Mann, 2014). However, these conventional approaches
fall short on model interpretability. Thus, we propose the Neural Tree Kernel (NTK), which employs
a tree structure in its definition and consequently enables a natural way towards interpretability.
Additionally, it also utilises the expressive power of neural network architectures to enable learning
for high-dimensional unstructured data.

One of the appealing advantages of a decision tree is that one can easily trace paths in the tree
structures to explain the relationship between input and output variables. We leverage this in our
work and build upon the neural tree model (Kontschieder et al., 2015) to enable kernel learning.
Specifically, starting from a base kernel κθ(xi,xj) with hyperparameters θ, we extend the kernel by
incorporating a neural tree to model the transformation mapping g of the inputs, κθ(gΨ(xi), gΨ(xj)).
In order to enable joint learning for the parameters Ψ and θ, we design the transformation function
gΨ(x) as a differentiable version of decision tree, namely a neural decision tree. The basic structure
of our neural tree is shown in Figure 1(b). It shares many commonalities with a decision tree. It
consists of a set of internal nodes Q and a set of leaf nodes L. For an input x ∈ X , the output is
obtained by traversing the paths from the root node to the leaf nodes. Each internal node q ∈ Q is
associated with a decision function dq(·), which defines the routing through the tree. Each leaf node
l ∈ L is assigned a value, πl, that is used to estimate the model output. It differs from decision tree
in two aspects. A standard decision tree has a deterministic routing and thus the output for an input is
determined by only one leaf node (Figure 1(a)). However, the routing of a neural tree is stochastic.
The output of the decision function of a node q,

dq,w(x) = ϕ(fq(x;w)) , (1)

where ϕ is the logistic function and fq is a neural network with parameters w. This defines the
probability of selecting the left and right subtree, correspondingly. As a result, the output of the tree
is not determined by just one leaf, but by the sum of all paths weighted by the path probability υl,w,

tΨ(x) =
∑
l∈L

υl,w(x)πl . (2)

A neural forest is a combination of T neural trees where each tree is trained on a random subset
of the data with feature drop out rate γ ∈ (0, 1]. We use a neural forest to model our Neural Tree
Kernel. The output of the kernel is defined as the concatenation of the tree outputs (Figure 1(c)). We
apply this kernel for GPs and learn all parameters jointly by maximizing the marginal likelihood. To
address the scalability issue of GPs, we use the KISS-GP (Wilson and Nickisch, 2015).

2



(a) Tree structure (b) Leaf parameter distribution

(c) Path probability distribution. (d) Model weights of internal nodes.

Figure 2: Interpreting the model.

3 Experiments

Classification We evaluate the proposed Neural Tree Kernel on 20 classification tasks randomly
chosen from the UCI repository (Dua and Graff, 2017) and compare it with two baselines: the RBF
kernel Vert et al. (2004) and the deep kernel Wilson et al. (2016). Our proposed kernel provides the
best result on 15 of these datasets, while DLK outperforms in 7 cases and the RBF kernel in none.
Detailed results are provided in Table 1.

Interpretability We use the German Credit Risk dataset (Dua and Graff, 2017) to demonstrate
model interpretability. The task is to evaluate the credit risk level of customers according to a set of
attributes, involving 20 categorical and integer features. The tree structure is shown in Figure 2(a)
and the values of the leaf parameters in Figure 2(b). Similarly, we visualize the distribution of path
probabilities of the data in Figure 2(c) and the model weights of the decision functions in Figure 2(d).
We note the following main observations for the obtained results. The leaf parameters π3, π4 and π8

have small values in Figure 2(b) and the path probabilities υ5 and υ6 are also close to 0 in Figure 2(c).
Thus, they have only little impact on the prediction and the leaf nodes one, two and seven are the
most important. Figure 2(c) underlines this statement. The distribution of path probabilities differ
significantly between the two classes for paths related to these three leaves. Now, we have a look at
all features with high absolute values in the decision function which are d2, d4 and d8 (Figure 2(d)).
Those are the most important predictors for our model. These features describe attributes of the
customer such as the ownership of house and existence of critical credits and are exactly those
features we were assuming to be the most important. Finally, we notice that the network parameters
for nodes d5 and d6 are much smaller than others. Thus, the corresponding node probabilities for
these two are close to 0.5 and could be merged.

We also explored the efficacy of our model on a large-scale experiment of fine-tuning models for
language tasks. However, for the sake of brevity we discuss this in Appendix A.

4 Conclusion

In this work, we propose the novel Neural Tree Kernel that is effective, scalable and interpretable
on a number of inference tasks. In the proposed kernel, we introduce a neural network architecture

3



Table 1: Classification task performance w.r.t. accuracy and statistics on UCI datasets.

Data RBF DKL Neural Tree Kernel #categorical #numeric #samples #class

balance-scale 0.8571 0.9683 0.9762 0 4 625 3
car 0.8642 0.9971 1.0000 6 0 1728 4
cleveland 0.5333 0.5667 0.5667 7 6 303 5
contraceptive 0.3986 0.5203 0.5068 4 5 1473 3
dermatology 0.8784 0.9865 1.0000 33 1 366 6
dna 0.8953 0.9501 0.9277 180 0 3186 3
iris 0.8667 0.9333 0.9667 0 4 150 3
new-thyroid 0.8372 0.9535 0.9767 0 5 215 3
nursey 0.9094 1.0000 1.0000 8 0 12958 4
page-blocks 0.9334 0.9626 0.9644 0 10 5473 5
pendigits 0.8628 0.9255 0.9882 0 16 10992 10
satimage 0.7885 0.8425 0.8526 0 36 6430 6
segment 0.8463 0.9589 0.9567 0 19 2310 7
splice 0.8868 0.9119 0.9355 60 0 3190 3
tae 0.3548 0.4194 0.4839 2 3 151 3
tic-tac-toe 0.8186 0.9896 0.9845 9 0 958 2
texture 0.8836 0.9155 0.9945 0 40 5500 11
vehicle 0.5439 0.7135 0.7427 0 18 846 4
waveform 0.7632 0.8452 0.8242 0 40 5000 3
wine-quality 0.3994 0.5170 0.5201 0 11 1599 6

Wins/Total 0/20 7/20 15/20 – – – –

to construct tree structures the output of which is fed into a base kernel. Then we jointly learn the
parameters of the tree and base kernel. Extensive experiments on a number of datasets demonstrate
the effectiveness and efficacy of our kernel. Through a classification task, we demonstrate how
the model can be interpreted and decisions can be explained. Additionally, we demonstrate the
interpretability of our model stemming from the inherent tree structure and show the usefulness of
our model in a large-scale experiment on hyperparameter optimisation.

References
Alberto, T. C., Lochter, J. V., and Almeida, T. A. (2015). Tubespam: Comment spam filtering on

youtube. In 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), pages 138–143. IEEE.

Ballinger, B., Hsieh, J., Singh, A., Sohoni, N., Wang, J., Tison, G. H., Marcus, G. M., Sanchez,
J. M., Maguire, C., Olgin, J. E., et al. (2018). Deepheart: semi-supervised sequence learning for
cardiovascular risk prediction. In Thirty-Second AAAI Conference on Artificial Intelligence.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends® in Machine
Learning, 2(1):1–127.

Cao, B., Zheng, L., Zhang, C., Yu, P. S., Piscitello, A., Zulueta, J., Ajilore, O., Ryan, K., and
Leow, A. D. (2017). Deepmood: modeling mobile phone typing dynamics for mood detection. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 747–755. ACM.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146.

Kontschieder, P., Fiterau, M., Criminisi, A., and Rota Bulo, S. (2015). Deep neural decision forests.
In Proceedings of the IEEE international conference on computer vision, pages 1467–1475.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

4



Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011). Learning word
vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies-volume 1, pages 142–150. Association
for Computational Linguistics.

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal of Machine Learning
Research, 7(Dec):2651–2667.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–2959.

Vert, J.-P., Tsuda, K., and Schölkopf, B. (2004). A primer on kernel methods. Kernel methods in
computational biology, 47:35–70.

Warstadt, A., Singh, A., and Bowman, S. R. (2018). Neural network acceptability judgments. arXiv
preprint arXiv:1805.12471.

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In International Conference on Machine Learning, pages 1775–1784.

Wilson, A. G. (2014). Covariance kernels for fast automatic pattern discovery and extrapolation
with Gaussian processes. PhD thesis, University of Cambridge.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Deep kernel learning. In Artificial
Intelligence and Statistics, pages 370–378.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2018). Scalable gaussian process-based transfer
surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78.

Yang, Y., Morillo, I. G., and Hospedales, T. M. (2018). Deep neural decision trees. arXiv preprint
arXiv:1806.06988.

Yang, Z., Wilson, A., Smola, A., and Song, L. (2015). A la carte–learning fast kernels. In Artificial
Intelligence and Statistics, pages 1098–1106.

Yogatama, D. and Mann, G. (2014). Efficient transfer learning method for automatic hyperparameter
tuning. In Artificial intelligence and statistics, pages 1077–1085.

A Case Study: AutoML

In this experiment we address the following research question: How does our Neural Tree Kernel
perform compared to contemporary baselines in the application of automated machine learning
(AutoML)? For this, we use a Gaussian Process with the proposed Neural Tree Kernel in a Bayesian
optimization setting and optimize the hyperparameters of machine learning pipelines to fine-tune
BERT-based classifiers (Devlin et al., 2018) on four text datasets with varied statistics (Table 2).
BERT is a very popular language model which is pre-trained on a large text corpus so as to yield
high performance on transfer learning tasks. However this requires high computational effort during
training (Devlin et al., 2018). á

Table 2: Detailed dataset statistics for the AutoML experiments.

Data #class #sample reference
CoLA 2 9077 Warstadt et al. (2018)
YouTube 2 1954 Alberto et al. (2015)
RDBN 4 8844 project data
IMDB 2 50000 Maas et al. (2011)

5



Experiment description Bayesian optimization has become of the most popular means to optimize
hyperparameters automatically Snoek et al. (2012). This framework consists of two components, a
surrogate model, which predicts a hyperparameter configuration’s performance, and an acquisition
function, which evaluates the expected utility of a hyperparameter configuration based on the surrogate
model’s predicted distribution. Sequentially, the hyperparameter configuration that maximizes the
expected utility is selected and the model is trained with these settings. The resulting response is
employed to update the surrogate model. GPs are the most common choice for the surrogate model
and they have successfully demonstrated their usefulness in different scenarios (Snoek et al., 2012;
Wistuba et al., 2018). For the acquisition function we choose expected improvement.

In the experiments, we set 80% data for training, 10% for validation and 10% data for testing. We
further adopt Random Search (RS) and GP with Matérn kernel (matern) as baselines. The considered
hyperparameters are learning rate schedule, additional layers, layer freezing, batch size, number of
epochs and regularization parameters such as weight decay and dropout. We elaborate now on the
specific search space in this experiment. Three different learning rate schedulers are considered:
linear schedule, cosine schedule and constant schedule, each of them having one or more additional
hyperparameters. The learning rate ranges from 10−8 to 10−3, the warmup proportion from 0 to 0.5,
the ratio for gradual layer learning rate from 1 to 5 (Howard and Ruder, 2018). Further choices are
the addition of no to up to three additional dense layers, the batch size (16,24,32), number of epochs
(1-5), dropout rate (0-0.8) and the weight decay ranges from 10−8 to 10−2 Finally, it is decided
whether the layers are incrementally unfrozen during training (Howard and Ruder, 2018). Note that
we use the same starting points for both the runs with Matérn and Neural Tree Kernel and fix the
maximal number of considered hyperparameters to 100. The experiment is repeated five times, the
average test performance across these repetitions is shown in Figure 3.

0 25 50 75 100
#trials

0.65

0.70

0.75

0.80

0.85

0.90

be
st

 a
cc

ur
ac

y

RS
matern
tree

(a) CoLA

0 25 50 75 100
#trials

0.80

0.85

0.90

0.95

1.00

be
st

 a
cc

ur
ac

y

RS
matern
tree

(b) YouTube

0 25 50 75 100
#trials

0.70

0.75

0.80

0.85

0.90

be
st

 a
cc

ur
ac

y

RS
matern
tree

(c) RDBN

0 25 50 75 100
#trials

0.70

0.75

0.80

0.85

0.90

be
st

 a
cc

ur
ac

y

RS
matern
tree

(d) IMDB

Figure 3: Optimization progress for Random Search (RS), Matérn kernel and Neural Tree Kernel.

Results From Figure 3, we have the following main observations:

• The Neural Tree Kernel achieves the best performance within the 100 trials compared to the
baselines on CoLA, RDBN and YouTube datasets while its performance on IMDB is still
comparable. It demonstrates the advantage of our Neural Tree Kernel also for applications
in AutoML.

• Moreover, it is notable that Bayesian optimization with our kernel converges faster to
well-performing hyperparameters than the baselines for three datasets. Therefore, fewer
computational-expensive BERT-based classifiers are required to train.

In conclusion, the above observations suggest that the Neural Tree Kernel is a strong addition to
current state-of-the-art hyperparameter optimization framework, yielding a promising performance.

6


	Introduction
	The Neural Tree Kernel Framework
	Experiments
	Conclusion
	Case Study: AutoML

