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Abstract

A simple approach to obtaining uncertainty-aware neural networks for regression is
to do Bayesian linear regression (BLR) on the representation from the last hidden
layer. Recent work [Riquelme et al.||2018| |Azizzadenesheli et al.,|2018] indicates
that the method is promising, though it has been limited to homoscedastic noise.
In this paper, we propose a novel variation that enables the method to flexibly
model heteroscedastic noise. The method is benchmarked against two prominent
alternative methods on a set of standard datasets, and finally evaluated as an
uncertainty-aware model in model-based reinforcement learning. Our experiments
indicate that the method is competitive with standard ensembling, and ensembles
of BLR outperforms the methods we compared to.

1 Introduction

Obtaining reliable uncertainty estimates from deep neural networks (NNs) is an active field of research
with an abundance of proposed methods, e.g., variational inference, stochastic gradient MCMC, and
ensembling. Two especially prominent methods are Monte-Carlo dropout (MC-dropout, (Gal and
Ghahramani| [2016]]) and Deep Ensembles [Lakshminarayanan et al.,[2017]], but MC-dropout appears
less reliable and Deep Ensembles requires training several copies of the same model, which can be
expensive. While many methods have been proposed, there is not yet a clear winner.

Recently, the simple idea of doing Bayesian linear regression (BLR) on the representation in the
last hidden layer has caught some attention, e.g., for Bayesian optimization [Snoek et al.l [2015]],
Thompson sampling in contextual bandits [Riquelme et al., 2018|], and exploration in model-free
reinforcement learning (RL) [Azizzadenesheli et al., [2018|]. While not as general as some other
methods, it is a simple and fast way to obtain uncertainty estimates from NNs with a linear and
fully-connected output layer. Despite its application in several recent papers, its performance has not
yet been studied in the general regression context.

We begin by describing the method (which we coin Deep BLR), introducing a novel variation which
enables learning heteroscedastic noise, thus addressing a weakness of previous applications of BLR
to deep representations. The method, along with ensembles of it, is then evaluated on a set of standard
datasets, which is common in the literature for BNNs but has not been done for BLR. Finally, we
evaluate Deep BLR as an uncertainty-aware model in a model-based RL algorithm, in which it
replaces Deep Ensembles.

Related work

In prior work [Snoek et al.; 2015} Riquelme et al.|[2018], |Azizzadenesheli et al., 2018]], the predictive
variance is either assumed known or unknown but homoscedastic. We propose a simple modification
which permits learning flexible and heteroscedastic aleatoric uncertainty estimates by incorporating
the underlying NN’s variance prediction.
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Figure 1: The posterior predictive distribution of Deep BLR in a simple toy problem.

2 Method

Given some data X € RY*? with corresponding target values y € R™ (for multi-output problems,
we can, and do, treat the dimensions independently), a NN with a Gaussian output layer (i.e., the NN
predicts mean £(x) and variance o (x) for each input x) is trained by maximizing the log-likelihood.
The NN is then used in two ways in the BLR:

1. Regression is done on the latent representation z(x) obtained from the last hidden layer.
2. The predicted variance o%(x) is used as a “known” variance in the likelihood.

A helpful distinction is between aleatoric and epistemic unertainty, where aleatoric uncertainty is
irreducible uncertainty, e.g., due to noise, and epistemic uncertainty is uncertainty that is due to
our lack of knowledge about the world. In this sense, the Gaussian output estimates the aleatoric
uncertainty whereas the BLR keeps track of epistemic uncertainty, i.e., our uncertainty in w.

Concretely, we choose a normal prior p(w) = N(w|0,9I) and a normal likelihood
p(y|z,w,0%(x)) = N(y|zTw,o%(x)), where g > 0 is a hyperparameter that controls the prior
uncertainty. We assume that both inputs and targets are centered for simplicity. Then, by Bayes’ rule
[Murphyl, 2012], the posterior is N (w | wy, V 5) with parameters

1 —1
Vy = (I+ szlz> ,
g
wy = VyZT2 1y,

where ¥ = diag(02(x1), ...,02(xy)) and Z = [z(x1), ... , z(xy)]" . Furthermore, the posterior
predictive distribution at a test point x, with latent representation z = z(x), is given by

p(y I x,7, X, Y) = N(y | ZTW? UQ(X) + ZTVNZ)'
Here, 02(x) and z” V yz represent the heteroscedastic aleatoric uncertainty and epistemic uncertainty,
respectively. Figure[T|contains an example of Deep BLR applied to a toy 1-D regression problem.

We see that the predictive distribution looks sensible and that the necessary nonlinear prediction is
captured well by the linear regression on the deep representations.

A straightforward extension of Deep BLR is to train an ensemble of M NNs with different random
initializations and apply BLR to each resulting representation. The predictive distribution will then
be a mixture of Gaussians.

3 Experiments

Deep BLR is compared to two prominent alternative methods for uncertainty estimation: MC-dropout
[Gal and Ghahramanil 2016|] and Deep Ensembles [Lakshminarayanan et al., 2017]]. Additionally, we
compare to Deep BLR ensembles. We conduct two experiments: regression on standard datasets and
application in uncertainty-aware model-based reinforcement learning.

3.1 Predictive performance on standard datasets

We evaluate the predictive performance of Deep BLR and Deep BLR ensembles on a set of standard
datasets [[Dua and Graff] [2017] with the same experimental setup as in prior work on uncertainty-



Table 1: Comparison of MC-dropout, Deep Ensembles, Deep BLR, and Deep BLR ensemble on a
set of standard datasets. We report the mean and standard error of predictive NLL across 20 random
training-test splits (5 for Protein Structure, 1 for Year Prediction MSD). The best method for each
dataset is marked in bold.

Predictive NLL

Dataset MC-dropout Deep Ensembles BLR BLR Ensemble
Boston Housing 2.46 +0.25 241 4+0.25 2.36 +0.04 2.37+0.05
Concrete Strength 3.04 £0.09 3.06 £0.18 3.01 £0.04 2.91 +£0.02
Energy Efficiency 1.99 +0.09 1.38 +£0.22 1.32+0.03 1.27 £0.02
Kin8nm —0.95£0.03 —1.20 £ 0.02 —-1.20£0.01 —-1.25+0.00
Naval Propulsion -380£0.05 —-5.63+0.05 —558+£0.05 —5.59+0.02
Power Plant 2.80 +0.05 2.794+0.04 2.81+0.01 2.79+0.01
Protein Structure 2.89 £0.01 2.83 £0.02 2.81 £0.01 2.75+0.01
Wine Quality 0.93 + 0.06 0.94+0.12 1.00 +0.03 0.90 + 0.02
Yacht Hydrodynamics ~ 1.55 £0.12 1.18 +£0.21 0.95+0.01 0.90 + 0.04
Year Prediction MSD 3.59 £ NA 3.35 = NA 3.48 £ NA 3.39 £ NA

aware NNs [Gal and Ghahramani, [2016, [Lakshminarayanan et al., 2017]. See appendix@for full
details. The prior variance g is chosen with a grid search to minimize the negative log-likelihood
(NLL) on a validation set, which is cheap since the NN can be reused.

The resulting performance in terms of NLL, which acts as a proxy measure for the capability to
estimate uncertainty, can be seen in Table[I] We see that Deep BLR performs competitively, and
Deep BLR ensemble achieves the best performance on all datasets except the last, on which only a
single split was done.

3.2 Uncertainty-aware model-based reinforcement learning

PETS [Chua et al [2018]] is a model-based reinforcement learning algorithm which utilizes an
uncertainty-aware dynamics model in the form of an ensemble of NNs. We study the downstream
performance of PETS when the ensemble is replaced with Deep BLR, as well as with a Deep BLR
ensemble. For simplicity, we use hyperparameters identical to Chua et al.| [2018], i.e., the NNs are
not tuned for Deep BLR. The prior variance is set to g = 0.1. We found that larger g values led to
unstable learning, so the regularizing effect appears important.

Figure 2] shows the results in the CartPole and 7-dof Reacher environment for four different types of
models. On CartPole, the poor performance of 1 NN indicates that utilizing epistemic uncertainty is
important for efficient learning in that environment. We see that Deep BLR is competitive with, or
slightly better than, ensembles of NNs, and that Deep BLR ensemble is the clear winner. On 7-dof
Reacher, all methods perform very similarly, indicating that accurate uncertainty estimation does not
aid PETS in learning a good policy in this environment. Thus, even if Deep BLR was significantly
better than Deep Ensembles, we could not distinguish them in this environment.

4 Conclusions and future work

Bayesian linear regression on deep representations is a simple, flexible method for obtaining
uncertainty-aware NNs for regression. Our experiments indicate that Deep BLR is competitive
with (and as an ensemble can outperform) the commonly used ensemble methods, which is consistent
with prior work [Riquelme et al.,[2018]|]. Note that BLR was used on top of the existing architectures
with no tuning, and further tuning may be beneficial.

We believe there is much potential for future work in this direction. In particular, investigating the
connection between the NN architecture and reliability of BLR uncertainty estimates, and extending
the idea to classification. In the case of, e.g., Bayesian logistic regression, there is no analytic
posterior, but perhaps approximations suffice. Further studying the downstream performance of Deep
BLR would also be interesting, e.g., in uncertainty-aware model-based RL.
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Figure 2: Downstream comparison of 1 NN, an ensemble of 5 NNs, Deep BLR, and an ensemble of
5 Deep BLR when used as an uncertainty-aware model for PETS on CartPole and 7-dof Reacher in
the MuJoCo [Todorov et al., [2012] simulator. All NNs parameterize a Gaussian distribution. The
experiment is repeated 10 times and the mean return per episode is reported, with the shaded area
representing one standard error.
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A Experimental details

We replicate the experimental setup in prior work [Gal and Ghahramanil 2016} [Lakshminarayanan
et al.l 2017]. All methods use a NN with a single hidden layer with 50 ReLLU, except for the
larger Protein Structure and Year Prediction MSD datasets where 100 ReLU are used. Each NN
parameterizes a normal distribution and is trained to minimize the negative log-likelihood using
Adam [Kingma and Ba, |2015] for 40 epochs with batch size 32 and learning rate 0.01 (except 0.001
and 0.0001 for Protein Structure and Year Prediction MSD respectively.) All ensembles consist of 5
identical NNs with different random initializations. We evaluate the methods on 20 random 90/10
training/test splits, except for the larger Protein Structure and Year Prediction MSD where only 5 and
1 splits are done respectively. The inputs and outputs are always normalized to have zero mean and
unit variance.
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