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Abstract

Learning suitable latent representations for observed, high-dimensional data is an
important research topic underlying many recent advances in machine learning.
While traditionally the Gaussian normal distribution has been the go-to latent
parameterization, recently a variety of works have successfully proposed the use of
manifold-valued latents. In one such work [4], the authors empirically show the
potential benefits of using a hyperspherical von Mises-Fisher (vMF) distribution
in low dimensionality. However, due to the unique distributional form of the
vMF, expressivity in higher dimensional space is limited as a result of its scalar
concentration parameter leading to a ‘hyperspherical bottleneck’. In this work
we propose to extend the usability of hyperspherical parameterizations to higher
dimensions using a product-space instead, showing improved results on a selection
of image datasets.

1 Introduction

Following the manifold hypothesis, in unsupervised generative learning we strive to recover a
distribution on a (low-dimensional) latent manifold, capable of explaining observed, high-dimensional
data, e.g. images. One of the most popular frameworks to achieve this goal is the Variational
Auto-Encoder (VAE) [13, 22], a latent variable model which combines variational inference and
auto-encoding to directly optimize the parameters of some latent distribution. While originally
restricted to ‘flat’ space using the classic Gaussian normal distribution, there has recently been a
surge in research extending the VAE to distributions defined on manifolds with non-trivial topologies
[4, 6, 16, 17, 21, 8, 7]. This is fruitful, as most data is not best represented by distributions on flat
space, which can lead to undesired ‘manifold mismatch’ behavior.

In [4], the authors propose a hyperspherical parameterization of the VAE using a von Mises-Fisher
distribution, demonstrating the improved results over the especially bad pairing of the ‘blob-like’
Gaussian distribution and hyperspherical data. Surprisingly, they further show that these positive
results extend to datasets without a clear hyperspherical interpretation, which they mostly attribute
to the restricted surface area and the absence of a ‘mean-biased’ prior in the vMF as the Uniform
distribution is feasible in the compact, hyperspherical space. However, as dimensionality increases
performance begins to decrease. This could possibly be explained by taking a closer look at the
vMF’s functional form

q(z|µ, κ) = Cm(κ) exp (κµT z), (1)

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (2)

where ||µ||2 = 1, κ a scalar, Cm(κ) is the normalizing constant, and Iv denotes the modified Bessel
function of the first kind at order v. Note that the scalar concentration parameter κ is fixed in all
dimensions, severely limiting the distribution’s expressiveness as dimensionality increases.
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2 Method: A Hyperspherical Product-Space

To improve on the vMF’s per-dimension concentration flexibility limitation we propose a simple idea:
breaking up the single latent hyperspherical assumption, into a concatenation of multiple independent
hyperspherical distributions. Such a compositional construction increases flexibility through the
addition of a new concentration parameter for each hypersphere, as well as providing the possibility
of sub-structure forming . Given a hyperspherical random variable z ∈ SM , we want to choose
z0, z1, · · · , zk in respectively SM0 ,SM1 , · · · ,SMk

s.t.
∑k

i=0Mi =M , and z = z0 _ z1 _ · · ·_
zk, where (_) denotes concatenation. The probabilistic model becomes:

p(z) = p(z0, z1, · · · , zk)
∗
=

k∏
i=0

p(zi), (3)

which factorizes in (*) if we assume independence between the new sub-structures. Assuming condi-
tional independence of the approximate posterior as well, i.e. q(z|x) = q(z0|x)q(z1|x) · · · q(zk|x),
it can be shown1 that the Kullback-Leibler divergence simplifies as

KL(q(z|x)||p(z)) =
∫
SM

q(z|x) log q(z|x)
p(z)

dz =
∑
i

KL(q(zi|x)||p(zi)) (4)

Flexibility Trade-Off Given a single hypersphere and keeping the ambient space fixed, for each
additional ‘break’, a degree of freedom is exchanged for a concentration parameter. In the base case
of Sk+1, we can potentially support k + 1 ‘independent’ feature dimensions, that must share a single
concentration parameter κ, and hence are globally restricted in their flexibility per dimension. On the
other hand, the moment we break Sk+1 up in the Cartesian cross-product of Sk/2×Sk/2, we ‘lose’ an
independent dimensions (or degree of freedom), but in exchange the two resulting sub-hyperspheres
have to share their concentration parameters κ1, κ2 over fewer dimensions increasing flexibility2.

The reason a vMF is uniquely suited for such a decomposition as opposed to a Gaussian, is that
assuming a factorized variance the Gaussian distribution is already equipped with a concentration
parameter for each dimension. However, in the case of the vMF, which has only a single concentration
parameter κ for all dimensions, we gain flexibility. This is an important distinction: while all
dimensions are implicitly connected through the shared loss objective in both cases, in the case of the
vMF this connection is amplified through the direct connection of the shared concentration parameter.

Related Work The work closest to our model is that of [20], where a Cartesian product of Gaussian
Mixture Models (GMMMs) is proposed, with hyperpriors on all separate components to create a fully
data-inferred model. They use results from [10, 12] on structured VAEs, and extend the work on VAEs
with single GMMs of [18, 5, 11]. Partially following similar motivations to our work, the authors
hypothesize and empirically show the structured compositionality encourages disentanglement. By
working with GMMs instead of single Gaussians, they circumvent the factorized single Gaussian
break-up limitation described before. Another recent work proposing to break up a large, single latent
representation into a composition of sub-structures in the context of Bayesian optimization is [19].

3 Experiments and Discussion

To test the ability of a hyperspherical product-space model to improve performance over its single-
shell counterpart, we perform product-space interpolations breaking up a single shell into an increasing
amount of independent components.

Experimental Setup We conduct experiments on Static MNIST, Omniglot [14], and Caltech 101
Silhouettes [15] mostly following the experimental setup of [4], using a simple MLP encoder-decoder
architecture with ReLU() activations between layers. We train for 300 epochs using early-stopping
with a look-ahead of 50 epochs, and a linear warm-up scheme of 100 epochs as per [2, 23], during
which the KL divergence is annealed from 0 to β [9, 1]. Marginal log-likelihood is estimated using
importance sampling with 500 sample points per [3], reporting the mean over three random seeds.

1See Appendix A for derivation.
2In the most extreme case, this will lead to a latent space of [S1]×(k+1)/2 - which is equal to the n-Torus.
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Table 1: Overview of best results of various S40 product-space ambient dimensionality interpolations
compared to best single Sm-VAE (m ≤ 40) indicated (*). LL represents the negative log-likelihood,
L|q| the ELBO, a indicates the ambient space dimensionality, κ the number of concentration parame-
ters, i.e. breaks, and [Sk] the product-space composition.

a
Static MNIST

κ [Sk] LL L|q| LL* L|q|*
41 4 S10 × [S9]×3 -92.65 -98.23 -93.37 -98.88
41 4 S20×10×6×1 -92.59 -98.27
41 6 S15×10×4×3×2×1 -92.25 -98.10
41 6 [S6]×5 × S5 -92.71 -98.46

Caltech

41 4 S10 × [S9]×3 -139.30 -151.67 -143.49 -152.25
41 4 S20×10×6×1 -140.64 -153.05

Omniglot

41 4 S20×10×6×1 -112.79 -119.17 -113.83 -120.48
41 6 [S6]×5 × S5 -112.58 -118.49
41 10 S4 × [S3]×9 -112.64 -118.67

Keeping in mind the flexibility trade-off consideration, we analyze both the effects of keeping the
total degrees of freedom fixed (increasing ambient space dimensionality), as well as the case of
keeping the ambient space fixed (decreasing the degrees of freedom). We break up S40 respectively
into 2, 4, 6, 10, and 40 sub-spaces. In each break-up, we try a balanced, leveled, and unbalanced
hyperspherical composition.

Results A summary of best results for fixed ambient space is shown in Table 1, with a summary of
best results for fixed degrees of freedom and complete interpolations in Appendix B. Initial inspection
shows that partially breaking up a single S40 hypersphere into a hyperspherical product-space indeed
allows us to improve performance for all examined datasets. Diving deeper into the results, we do
find that both the number of breaks as well as the dimensional composition of these breaks strongly
inform performance and learning stability.

A high number of breaks appears to negatively influence both performance and learning stability.
Indeed, for most datasets the ‘Torus’ setting, i.e. full factorization in S1 components proved too
unstable to train to convergence. One explanation for this result could be found in the fact that we
omit the REINFORCE part of the vMF reparameterization during training3. While only of very
limited influence on a single hyperspherical distribution, the accumulated bias across many shells
might lead to a non-trivial effect. On the other hand, adding as few as four breaks extends the model’s
expressivity enough to outperform a single shell consistently.

Balance of the subspace composition plays a key role as well. We find that when the subspaces
are too unbalanced, e.g. S37 v. [S1]×3, the network starts to ‘choose’ between subspace channels.
Effectively, it will for example start encoding all information in the S1 shells and completely ignore
the S37 shell, leading to an effective latent space of S3 degrees of freedom4, see for example Fig.
2(a). On the contrary, better balanced compositions appear capable of cleanly separating semantically
meaningful features across shells as displayed in Fig. 2(b).

Conclusion and Future Work In summary, breaking up a single hypersphere into multiple compo-
nents effectively increases concentration expressiveness leading to more stable training and improved
results. In future work we’d like to investigate the possibility of learning an optimal break-up as
opposed to fixing it a-priori, as well as mixing sub-spaces with different topologies.

3See [4], Appendix D for more details.
4For a more extended discussion on the interplay between balance and the KL divergence see Appendix B.
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A Dimensionality Decomposition

Given a latent variable z ∈ RM , we choose z0, z1, · · · , zk in respectively RM0 ,RM1 , · · · ,RMk

s.t.
∑k

i=0Mi = M , and z = z0 _ z1 _ · · · _ zk, where (_) denotes concatenation. The
probabilistic model becomes:

p(z) = p(z0, z1, · · · , zk)
∗
=

k∏
i=0

p(zi), (5)

which factorizes in (*) if we assume independence. Assuming conditional independence of the
approximate posterior as well, i.e. q(z|x) = q(z0|x)q(z1|x) · · · q(zk|x), the Kullback-Leibler
divergence simplifies as

KL(q(z|x)||p(z)) =
∫
RM

q(z|x) log q(z|x)
p(z)

dz

=

∫
RM0×···×RMk

q(z0|x)q(z1|x) · · · q(zk|x) log
q(z0|x)q(z1|x) · · · q(zk|x)
p(z0)p(z1) · · · p(zk)

dz0 · · · dzk

=

∫
RM0

q(z0|x) log
q(z0)

p(z)
dz0 + · · ·+

∫
RMk

q(zk|x) log
q(zk|x)
p(zk)

dzk

=
∑
i

KL(q(zi|x)||p(zi)), (6)

B Supplementary Tables and Figures
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Figure B.1: Value of the von Mises-Fisher Kullback-Leibler divergence varying the concentration
parameter κ on the y-axis, and the dimensionality m on the x-axis. (Best viewed in color)

Another way of understanding the importance of balance is by examining the KL divergence form
of the vMF and its influence in the loss objective: In order to achieve high quality reconstruction
performance, it is necessary for the concentration parameter κ to concentrate, i.e. take on a high
value. Given the Uniform prior setting in which κ = 0, this logically leads to an increase in the
KL-divergence. The crucial observation here however, is that the strength of the KL-divergence
is also strongly dependent on the dimensionality as can be observed in Fig. B.1. Hence during
learning over a product-space containing several lower dimensionality components and a single high
dimensionality component, if the reconstruction error can be made sufficiently low using the lower
dimensionality components, the optimal loss minimization strategy would be to set the concentration
parameter of the largest component to 0, effectively ignoring it. A possible strategy to prevent this
from happening could be to set separate β parameters for each hyperspherical component, however
we fear that this will quickly blow up the hyperparameter search-space.
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B.1 Fixed Ambient Space

Table 2: Summary of results of S40 ambient interpolations for unsupervised model on Static MNIST.
RE and KL correspond respectively to the reconstruction and the KL part of the ELBO.

m κ [Sk] LL L|q| RE KL

41 2 S20 × S19 -93.18 -98.72 69.78 28.94
41 2 S38 × S1 -95.69 -103.67 71.67 32.01

41 4 S10 × [S9]×3 -92.65 -98.23 70.55 27.68
41 4 S20×10×6×1 -92.59 -98.27 71.33 26.94
41 4 S34 × [S1]×3 -108.42 -116.86 99.62 17.23

41 6 S15×10×4×3×2×1 -92.25 -98.10 69.78 28.32
41 6 S30 × [S1]×5 -93.86 -100.99 69.46 31.54
41 6 [S6]×5 × S5 -92.71 -98.46 70.97 27.48

41 10 S10×5×4×3 × [S2]×3 × [S1]×3 -92.93 -99.07 70.67 28.41
41 10 S22 × [S1]×9 -93.45 -100.29 68.75 31.54
41 10 S4 × [S3]×9 -93.36 -99.40 71.93 27.47

Table 3: Summary of results of S40 ambient interpolations for unsupervised model on Caltech.

m κ [Sk] LL L|q| RE KL

41 2 S20 × S19 -142.43 -155.24 123.35 31.89
41 2 S38 × S1 -147.41 -166.64 130.41 36.22

41 4 S10 × [S9]×3 -139.30 -151.67 120.82 30.85
41 4 S20×10×6×1 -140.64 -153.05 123.23 29.82
41 4 S34 × [S1]×3 -168.25 -186.47 170.44 16.03

41 6 S15×10×4×3×2×1 -142.84 -156.59 126.59 30.00
41 6 S30 × [S1]×5 -169.15 -177.23 161.68 15.55
41 6 [S6]×5 × S5 -139.99 -152.68 121.91 30.77

41 10 S10×5×4×3 × [S2]×3 × [S1]×3 -144.73 -159.27 126.14 33.13
41 10 S22 × [S1]×9 -154.91 -164.90 140.06 24.83
41 10 S4 × [S3]×9 -144.72 -160.13 126.34 33.79

Table 4: Summary of results of S40 ambient interpolations for unsupervised model on Omniglot.

m κ [Sk] LL L|q| RE KL

41 2 S20 × S19 -114.32 -120.72 92.10 28.62
41 2 S38 × S1 -115.19 -122.30 91.82 30.48

41 4 S10 × [S9]×3 -113.29 -118.97 88.93 30.05
41 4 S20×10×6×1 -112.79 -119.17 87.94 31.23
41 4 S34 × [S1]×3 -136.39 -142.03 132.75 9.28

41 6 S15×10×4×3×2×1 -114.07 -119.99 91.26 28.72
41 6 S30 × [S1]×5 -131.55 -137.29 124.66 12.62
41 6 [S6]×5 × S5 -112.58 -118.49 88.27 30.23

41 10 S10×5×4×3 × [S2]×3 × [S1]×3 -113.53 -119.83 90.00 29.83
41 10 S22 × [S1]×9 -114.95 -121.42 92.42 29.00
41 10 S4 × [S3]×9 -112.64 -118.67 88.98 29.68
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B.2 Fixed Degrees of Freedom

Table 5: Overview of best results (mean over 3 runs) of S40 product-space interpolations compared
to best single Sm-VAE (m ≤ 40) indicated (*). Here a indicates the ambient space dimensionality, κ
the number of concentration parameters, i.e. breaks, and [Sk] the product-space composition.

a
Static MNIST

κ [Sk] LL L|q| LL* L|q|*
44 4 [S10]×4 -92.62 -98.26 -93.38 -98.88
46 6 [S7]×5 × S5 -92.59 -98.46
46 6 S15×10×5×4×3×3 -92.50 -98.28
50 10 S10×7×6×5×4×3×2 × [S1]×3 -92.57 -98.81

Caltech

44 4 [S10]×4 -137.95 -150.86 -143.49 -152.25
46 6 [S7]×5 × S5 -139.84 -152.92

Omniglot

44 4 [S10]×4 -112.28 -118.21 -113.83 -120.48
46 6 [S7]×5 × S5 -112.78 -118.84
50 10 [S4]×10 -112.61 -118.70

B.3 Ignored and Disentangled Shells

(a) Ignored Sub-space

(b) Thick to Thin

Figure B.2: S1 interpolations of broken up S9. On top an example of an ‘ignored’ sub-space, leading
to little to no semantic change when decoded. Bottom a semantically meaningful sub-space that
consistently changes the stroke thickness.
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