
Online Bayesian Learning for E-Commerce Query
Reformulation

Gaurush Hiranandani
University of Illinois at Urbana-Champaign

gaurush2@illinois.edu

Sumeet Katariya
Amazon Inc.

katsumee@amazon.com

Nikhil Rao
Amazon Inc.

nikhilsr@amazon.com

Kathik Subbian
Amazon Inc.

ksubbian@amazon.com

1 Introduction
Customers search for products on an e-commerce website by entering a query, and the search engine
returns products which best match the query. In addition to the product metadata such as titles and
description, the search engine relies heavily on past behavioral signals (clicks, purchases, etc.) to
retrieve the best set of items. The performance of the search engine is usually good on head (high
frequency) queries due to the rich availability of historical behavioral signals on these queries. On
the tail (low frequency) queries, however, the performance can be much worse compared to the head
due to the search engine’s over-reliance on the behavioral data. Given that real world user query
distributions are fat-tailed [2], this affects a significant fraction of queries, underlining the need to
design methods that allow the search engine to learn well on the tail. One way to address this issue is
to reformulate a tail query into an appropriate head query that the search engine is attuned to and
which also preserves the purchase intent of the tail query.

The key challenge in mapping a tail query to a head query is preserving the customer’s purchase
intent. From the search engine’s perspective, two queries should be considered equivalent if they lead
to the purchase of the same or similar set of products. This property can be used to define a similarity
metric over the space of queries, which can then be used to learn a representation for queries using
a deep neural network (DNN). However, this similarity metric is noisy for tail queries because a)
tail queries are rare, and b) there is little to no information about products purchased in response to
tail queries, because the search engine may retrieve many irrelevant products for these queries. This
chicken-and-egg problem can result in sub-optimal representations for tail queries [6].

We address this issue by using Bayesian contextual bandit techniques which refine the representations
of the tail queries from the DNN without severely affecting the user experience. In particular, we
explore the space of head queries that a tail query can be mapped to, and use the customer’s actions
in response to the reformulated head query as reward to fine-tune the DNN in an online low-regret
fashion. We make use of Thompson Sampling as well as a nonlinear variant (Bayes by Backprop [1])
to map head and tail query embeddings into a common Euclidean space.

Our contributions are as follows: We define a purchase similarity metric over queries and use this to
learn query representations (embedding) that aligns with their purchase intent. Second, we propose
and formulate a contextual multi-armed bandit problem to explore representations for tail queries
where representation learning is the hardest. Third, we propose two practical Bayesian online learning
algorithms for the query reformulation task and evaluate them on synthetic and real-world datasets.

Notation: While the methods we propose are motivated by mapping tail queries to head, these are
highly generic and can be used to reformulate queries from any distribution, to a query that lies in a
large but predefined set (head queries in our case). To this end, we will interchangeably refer to the
tail query as “source" and reformulated head query as “target" in the rest of the paper.

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

2 Problem Formulation and Implementation

LetH and S represent the sets of head and tail queries respectively, and let γ : (H∪S)× (H∪S)→
[0, 1] be a function that measures the similarity of two queries. We assume that γ(h1, h2) is known
for any h1, h2 ∈ H. The interaction is modeled as follows: at time t, the environment (customer)
chooses a query st ∈ S, and the learning agent returns a query ht ∈ H. The learning agent
receives a reward rt ∼ D(γ(st, ht)), where D is any suitable distribution with mean γ(st, ht). We
define h∗t = arg maxh∈H γ(st, h) to be the query with the highest similarity to st, and measure the
performance of the agent in terms of its expected cumulative regret in n steps as

R(n) =

n∑
t=1

E[γ(st, h
∗
t)− rt] =

n∑
t=1

E[γ(st, h
∗
t)− γ(st, ht)], (1)

where the expectation is taken over the randomness in the choice of st and the reward rt.

Implementation Details: (a) For a query h ∈ H, the relative purchases across all the products
provides us a purchase distribution P (h) for h. We then model γ(h1, h2) = 〈P (h1), P (h2)〉, where
〈·, ·〉 denotes a dot product, and refer it as the purchase-similarity. (b) In the online setting, the reward
rt for the learning agent is set as follows. When a customer enters the query st ∈ S , the search engine
retrieves items corresponding to a reformulated head query ht, and we set rt = 1 if the customer
engages (clicks/purchases) with the retrieved products, and 0 otherwise.

3 Algorithms
We use a siamese transformer-based [9] deep neural network (DNN) that takes as input a pair of
queries (in the form of GLOVE embedding [4]) and outputs a binary label denoting whether the two
queries are purchase-similar. We initially pretrain the model using pairs of head queries fromH, with
ground truth labels generated as 1[〈P (hi), P (hj)〉 ≥ τ], where τ is a pre-defined threshold, and 1[·]
is the indicator function. This pretraining learns a d-dimensional, purchase-similar representation of
the queries (the last dense layer in Figure 1(a)) and allows us to initialize a reasonable embedding
space to map tail queries to the head. Here on, we use st to denote both the query as well as its
d-dimensional representation. We next describe two bayesian bandit methods to refine this embedding.
The derivation of the update equations for both algorithms is provided in Appendix A.

Bayesian Linear Probit Contextual Thompson Sampling (BLIP-CTS) : BLIP-CTS performs
bayesian generalized linear regression [3] on top of the representation of the last layer of the
transformer DNN [5, 8]. It models the similarity between a source query st and a head query ht by
assuming that the engagement reward rt is sampled from a distribution with

P(rt = 1|st, ht;W∗) = φ

(
〈ht,W∗st〉

β

)
, (2)

where W∗ is an unknown matrix, and φ denotes the standard Gaussian CDF. Intuitively, (2) warps the
source query st onto the space of head queries using the matrix W∗, thus learning the proper aligment
between head and tail query spaces. We assume that the entries in W∗ are drawn independently from
a Gaussian distribution with parameters µij , σij . BLIP-CTS maintains a posterior distributionWt

over W∗. At time t, it samples Wt ∼ Wt and selects the head query ht = arg max h∈H〈h,Wtst〉 as
the reformulation of st. The mean and variance parameters {µij , σij}di,j=1 of the distributionWt are
updated using the observed reward rt (lines 7-9 in Algorithm 1).

Bayes By Backprop Contextual Thompson Sampling (BBB-CTS) : Bayes by Backprop [1]
finds a distribution from a tractable family that minimizes the KL divergence to the posterior
distribution over the weights of a neural network. Unlike BLIP-CTS where a neural network with
fixed weights is trained over head queries and exploration is done through bayesian linear regression
on the last layer only, BBB maintains a distribution over all the weights of the neural network.
BBB-CTS samples a DNN from the approximate posterior, and for a given source query st selects
the head query ht that maximizes similarity as measured by the sampled neural network. We can see
that BBB-CTS is a nonlinear variant of the BLIP-CTS method described above.

2

Self Attention

Feed Forward

Self Attention

Feed Forward

Self Attention

Feed Forward

Self Attention

Feed Forward

Dense Layer (32-d)

Glove (64 x 6-d)Glove (64 x 6-d)

Dense Layer (32-d)

Cross Entropy

0/1

q1 q2
6 tokens max 6 tokens max

0 2500 5000 7500 10000 12500 15000 17500 20000
Step t

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
gr

et

|S| = 2500, |T| = 500, d = 3
BLIP-CTS
Random_W
BBB-CTS

Algorithm 1: BLIP-CTS
1. Input: Parameters β > 0, µ0, σ

2
0 ∈ Rd×d

2. For t = 1, 2, · · · , T do
3. Sample Wt ∼ N (µt−1, σ

2
t−1)

4. Observe context st (a source query).
5. Choose optimal action ht = argmax h∈H h

TWtst.

6. Observe reward by sampling rt ∼ φ
(
hT
t W∗st
β

)
7. Set δ2 = β2 + (ht � ht)Tσ2

t−1(st � st)
8. Set µt = µt−1 +

rt
δ
ν
(
rth

T
t µt−1st
δ

) [
hts

T
t � σ2

t−1

]
9. Set σ2

t = σ2
t−1

[
1− 1

δ2
ω
(
rth

T
t µt−1st
δ

) [
(hts

T
t � htsTt)� σ2

t−1

]]
,

where ν(z) = N (z;0,1)
φ(z;0,1)

and ω(z) = ν(z)(ν(z) + z).

10. Output: µ̂, σ̂2. For inference, we take the final matrix Ŵ = µ̂

Figure 1: (a) The siamese transformer model trained for query embedding (left top). (b) BLIP-CTS
and BBB-CTS comparison on simulations (left bottom). (c) Algorithm 1 for BLIP-CTS (right).

4 Experiments
Simulations: We first compare the algorithms in a simulated setting, where the reward model
follows (2). We take two sets S (sources), |S| = 2500 and H (targets), |H| = 500, where each
x ∈ S ∪ H is a 3-dimensional vector generated from standard Gaussian distribution. We define a
W∗ ∈ R3×3, which is unknown to the learning agent. We then compare BLIP-CTS and BBB-CTS in
terms of the regret (1). The regret averaged over 10 runs is reported in Figure 1(b). We observe that
BLIP-CTS outperforms BBB-CTS. This is expected, since we assume a linear reward model as in (2).
Experiments with non-linear reward models are left for the future. Since BLIP-CTS significantly
outperforms BBB-CTS, for now, we use BLIP-CTS to reformulate queries from a real dataset.

Real-World Experiments: We use a dataset of anonymized user logs from one month of a popular
e-commerce website. We create a set of head queries H by considering queries that have been
searched more than 10 times, yielding |H| = 6.2M head queries. For query reformulation, we are
specifically interested in those queries that are very rare and have few or no behavioral information
(clicks, purchases, etc.) from users. Since the number of such queries is huge, we take only 0.5%
of queries that have been searched at most twice, giving us 1.3M tail (source) queries. We pretrain
the siamese transformer network on H, with τ = 0.01, sampling random negatives, and using the
cross-entropy loss. All hyperparameters are tuned on a held out validation set. The transformers
have 2 attention layers with mean-pooling followed by a dense layer to yield 32-dimensional query
embeddings. We call this model M0.

Next, we refine the embeddings from M0 via Algorithm 1, and call this new model M1. For
prototyping purposes we use a “proxy" oracle to yield rewards. Specifically, we use a classifier
f(·) trained on a separate set of human annotated queries with their product category provided. f(·)
takes as input a query, and returns it’s product category. For our reward mechanism, we sample
rt ∼ φ((f(st) == f(ht))/β). We choose this oracle as f(·) has been found to achieve a high
product category classification accuracy, and identifying product category provides a considerable
information regarding the purchase intent for an e-commerce query [7]. However, since this oracle
has persistent noise in the reward mechanism (i.e. f(·) can make deterministic errors), we perform
majority voting via multiple source and head queries before updating the statistics in BLIP-CTS.
Moreover, since this is a pseudo-oracle, the best action for a source query s is chosen via: ht =

arg max h∈H h · (I + λŴ)st, where λ is cross-validated and controls the alignment of embedding
space through product category matches, and Ŵ denotes the matrix learned by BLIP-CTS.

We report some results for λ = 0.2 in Table 1. Please see Table 2 in Appendix B for more results.
We see that BLIP-CTS captures the purchase intent behind the source queries remarkably well in
comparison to M0. For Source 1, though M0 captures most of the intent behind the query, the
refinement in BLIP-CTS helps achieve much better results. In Source 2, M0 suggests outdoor trash
can related items (the transformer embedding is inaccurate); whereas, BLIP-CTS suggests trash bags
while retaining the context that it is needed for outdoor purposes (via careful exploration). In Source
3, M0 misunderstands the user intent, while BLIP-CTS correctly narrows down to auto sun shades.

3

Table 1: Qualitative evaluation of the methods. We show the nearest five neighbors for a given source
query. Our proposed (BLIP-CTS) method outperforms the baseline (M0) on multiple source queries.

M0 M1 (BLIP-CTS) M0 M1 (BLIP-CTS)
Source 1: under armor underw Source 2: keter outdoor trash can trash bags

under armour wwp under armour tech boxerjock hefty step garbage can outdoor trash bags
under armour barren under armour magnetico pro outdoor trash can storage shed black outdoor trash bags

under armour sportstyle under armour tech outside trash bin hefty step garbage can
under armour breathelux under armour ua tech 2.0 outside trash bin storage large outdoor trash bags

under armour culver under armour tech 2.0 outside trash can storage grow bags 30 gallon with handles
Source 3: auto shade, land rover discovery Source 4: cat6a 32ft

las vegas sail boat dodgers sunshade for cars cat6a cat6a 200ft
shade shore ohio state car mats cat6a 200ft cat6a plenum

shade & shore car cover outside land rover lr3 cat6a plenum cat6a
a shade of vampire 77 carolina skiff boat cover vandesail cat7 cat6a 500ft

carolina skiff boat cover detroit lions car mats ftdi ttl-232r-3v3 cat6a 1000ft

For Source 4, we see that BLIP-CTS results in more relevant query reformulations even down the
order when compared to M0.

5 Conclusions and Future Work
We conclude that the proposed purchase-similarity metric over queries helps to learn a reasonable
query embedding that aligns with purchase intent. We propose two Bayesian online learning al-
gorithms, BLIP-CTS and BBB-CTS, to refine the embeddings for tail queries. We observe that
BLIP-CTS performs better than the initial model trained on signals from head queries alone. We
are working to deploy this model and replace the pseudo-reward by an engagement based reward.
This reward contains much more information than just the product category match. Note that in our
simulations, BLIP-CTS is expected to outperform BBB-CTS since the reward is modeled by (2).
We conjecture that under complex reward models, BBB-CTS will show better query reformulation
performance in comparison to BLIP-CTS. Therefore, we plan to study alternate non-linear reward
models and evaluate BBB-CTS under these settings. Proving theoretical guarantees for BBB-CTS is
also an interesting research direction for the future.

References
[1] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty

in neural network. In ICML, pages 1613–1622, 2015.

[2] Sharad Goel, Andrei Broder, Evgeniy Gabrilovich, and Bo Pang. Anatomy of the long tail:
ordinary people with extraordinary tastes. In WSDM, pages 201–210. ACM, 2010.

[3] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich. Web-scale
bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search
engine. In ICML, pages 13–20, 2010.

[4] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543, 2014.

[5] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[6] George Karypis Saurav Manchanda, Mohit Sharma. Intent term selection and refinement in
e-commerce queries. In CIKM, pages 5998–6008, 2017.

[7] Gyanit Singh, Nish Parikh, and Neel Sundaresan. Rewriting null e-commerce queries to recom-
mend products. In WWW, pages 73–82. ACM, 2012.

[8] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In ICML, pages 2171–2180, 2015.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

4

Appendices
A Derivation of Updates

A.1 BLIP-CTS Algorithm Updates

We assume that the probability model governing the click/purchase (label) is a probit link function.
Let us denote the label (click or no-click) by r. Therefore,

P(r|st, ht;W) = φ

(
r〈ht,Wst〉

β

)
, (3)

where φ(z) =
∫ z
−∞N (a)da is the cumulative distribution function for a standard normal random

variable. The parameter β scales the steepness of the distribution. We also assume that the prior
distribution over W is the product of d independent normal random variables,

P(W) = Πd
i=1Πd

j=1N (Wij ;µij , σij) (4)

parametrized by a mean matrix µ ∈ Rd×d and a variance matrix σ ∈ Rd×d.

We sequentially iterate over the data and update the distribution of the weight matrix observation for
a given data set {(ht, st, rt)}Tt=1. For ease of notation we denote the outcome probability for data
point at time t by

vt(W) := P(rt|W, st, ht). (5)

In each iteration, we form the true posterior distribution and then approximate it with the best
matching chosen parametric distribution. In BLIP-CTS, the approximating distribution is chosen
to be a product of joint independent normal random variables and is found through minimizing the
Kullback-Liebler (KL) divergence. In particular, the following two steps are performed in each
iteration:

1. Denote the prior distribution over W with mean and variance matrix (µt, σ
2
t) by

qt(W) := Πd
i=1Πd

j=1N (Wtij ;utij , σ
2
tij) (6)

and the posterior distribution given (ht, st, rt) by p̂t using the Bayes rule:

p̂t(W |ht, st, rt) :=
vt(W)qt(W)∫

W
vt(W)qt(W)dW

. (7)

2. Find the closest independent normal approximation

q̂t(W) = Πi=1Πj=1N (Wij ; µ̂ij , σ̂
2
ij) (8)

to the posterior (7) by minizming the KL divergence:

µt+1, σ
2
t+1 = arg min

µ̂,σ̂2

KL(p̂t(W |ht, st, rt)||q̂(W)). (9)

Next, we discuss the solution of the above minimization problem. For ease of notation, we will
remove the subscript t and instead use the subscript “new" to denote the parameters for the posterior
distribution (µnew, σ

2
new). The KL divergence from the approximate normal distribution q̂ to the

exact posterior distribution p̂ is

F (µnew, σ
2
new) := KL(p̂(W |h, s, y)||q̂(W |µnew, σ2

new))

=

∫
W

(p̂ log p̂− p̂ log q̂)dW.

While minimizing F , we only need to focus the second part in the integral, because the first part is
not a function of the new parameters. From (8), we have

log q̂ = −1

2

d∑
i=1

d∑
j=1

log 2πσ2
newij

+

d∑
i=1

d∑
j=1

(Wij − µnewij)2

σ2
newij

. (10)

5

Thus, the parameters for the posterior distribution are

µnew, σ
2
new = arg min

µ,σ2

1

2

∫
W

p̂

∑
i

∑
j

log 2πσ2
ij +

∑
i=1

∑
j=1

(Wij − µij)2

σ2
ij

dW

 . (11)

Setting ∂F
∂µij

= 0 yields,

µnewij
=

∫
W

p̂WijdW = Ep̂[Wij]. (12)

Setting ∂F
∂σ2

ij
= 0 yields,

σ2
newij

=

∫
W

p̂(Wij − µnewij
)2dW = Ep̂[(Wij − µnewij

)2]. (13)

The Hessian of F at the above mean and variance estimates comes out to be positive definite as well
(the details will be shown in an extended version of the paper); therefore, satisfying the sufficient
condition for them being the minimizer for F .

Now, let the normalizing constant in (7) be Z :=
∫
W
v(W)q(W)dW .

∂ logZ

∂µij
=

1

Z

∂Z

∂µij

=
1

Z

∫
W

v(W)
∂q

∂µij
(W)dW

=
1

Z

∫
W

v(W)
(
Πd
m=1,m 6=iΠ

d
n=1,n6=jN (Wmn;µmn, σ

2
mn)

) ∂N (Wij ;µij , σ
2
ij)

∂µij
dW

=

∫
W

v(W)q(W)

Z

(
Wij − µij

σ2
ij

)
dW

=
1

σ2
ij

(Ep̂[Wij − µij])

Putting this in (12), we get

µnewij
:= µij + σ2

ij

∂ logZ

∂µij
. (14)

Similarly, taking the derivative of logZ w.r.t the σ2
ij yields,

∂ logZ

∂σ2
ij

=
1

Z

∫
W

v(W)
(
Πd
m=1,m 6=iΠ

d
n=1,n6=jN (Wmn;µmn, σ

2
mn)

) ∂N (Wij ;µij , σ
2
ij)

∂σ2
ij

dW

=
1

Z

∫
W

v(W)
(
Πd
m=1,m 6=iΠ

d
n=1,n6=jN (Wmn;µmn, σ

2
mn)

)
N (Wij ;µij , σ

2
ij)×

×

(
− 1

2σ2
ij

+
1

2

(Wij − µij)2

σ4
ij

)
dW

=

∫
W

p̂(W)

(
− 1

2σ2
ij

+
1

2

(Wij − µij)2

σ4
ij

)

= − 1

2σ2
ij

+
1

2σ4
ij

(Ep̂[W 2
ij]− 2µnewij

µij + µ2
ij)

= − 1

2σij
+

1

2σ4
ij

(
Ep̂[W 2

ij]− (µnewij)2 + σ4

(
∂ logZ

∂µij

)2
)

6

Since Ep̂[W 2
ij]− (µnewij)2 is σ2

newij
, the update equations become:

σ2
newij

= σ2
ij + σ4

ij

(
2
∂Z

∂σ2
ij

−
(
∂ logZ

∂µij

)2
)
. (15)

Update equations (14) and (15) are independent of the reward model assumptions. When the reward
is taken to be probit link function as described in (3), then it is easy to re-write the above update
equations as follows:

δ2 = β2 + (h� h)Tσ2(s� s)

µnew = µ+
r

δ
ν

(
rhTµs

δ

)[
hsT � σ2

]
σ2
new = σ2

[
1− 1

δ2
ω

(
rhTµs

δ

)[
(hsT � hsT)� σ2

]]
,

where ν(z) = N (z;0,1)
φ(z;0,1) and ω(z) = ν(z)(ν(z) + z), and � denotes the Hadamard product. These

are the update equations in lines 7-9 in Algorithm 1.

A.2 BBB-CTS Algorithm with Parameter Updates

In this section, we discuss the application of Bayes by Backprop algorithm [1] in the contextual
bandit based query reformulation problem. We assume a posterior distribution over weighs W of a
neural network,

P(W |D) =
P(D|W)P(W)

P(D)
=

P(D|W)P(W)∫
W

P(D|W)P(W)dW
, (16)

where D is the the training data occurring sequentially with time in the form of a set {(h, s, r)t},
P(W |D) is the posterior probability of W , P(D|W) is the likelihood of W , P(W) is the prior
probability on W , and P(D) is the evidence of the data. Furthermore, the inference is done by taking
the weighted expectation over all possible values of W :

P(r̂|h, s) = EP(W |D)[P(r̂|h, s,W)] =

∫
P(r̂|h, s,W)P(W)dW, (17)

where P(r̂|h, s,W) is the conditional probability of the reward (click/purchase) given h, s,W .
Variational inference involves constructing a new variational posterior distribution q(W |θ) with
parameters θ, that approximates the true posterior P(W |D) i.e.:

θ∗ = arg min
θ

KL[q(W |θ)‖P (W |D)].

The resulting loss function is:

F(D, θ) =

∫
q(W |θ) log

q(W |θ)
P (W)

− q(W |θ) logP (D|W)dW (18)

= KL[q(W |θ)‖P (W)]− Eq(W |θ)[logP (D|W)]. (19)

Computing the expectation of the likelihood over the variational posterior is computationally in-
tractable, so we approximate the cost function using sampled weights as follows:

F(D, θ) ≈
n∑
i=1

log q(w(i)|θ)− logP (w(i))− logP (D|w(i)). (20)

Thus, one can now use the automatic differentiation provided by tools such as TensorFlow or PyTorch
to minimize this function. We only look into the sampling of weights and setting up the cost function

7

Algorithm 2: BBB-CTS
1. Input: Parameters β > 0, µ0, ρ0 ∈ Rd×d, learning rate α
2. For t = 0, 1, · · · , T do
3. Sample εt ∼ N (0, I)
4. Let Wt = µt + log(1 + exp(ρt))� εt
5. Let θt = (µt, ρt)
6. Observe a source query st ∈ S.
7. Choose optimal action ht = argmax h∈H h

TWtst (following the reward model in (2)).

8. Observe reward by sampling rt ∼ φ
(
hT
t W∗st
β

)
9. Let f(Wt, θt) = log q(Wt|θt)− log P(Wt)P(D|Wt), where D = {hk, sk, rk}tk=0

10. Calculate the gradient with respect to the mean µ: ∇µ = ∂f(W,θ)
∂W

+ ∂f(W,θ)
∂µ

11. Calculate the gradient with respect to the standard deviation parameter ρ:
∇ρ = ∂f(W,θ)

∂W
ε

1+exp(−ρ) +
∂f(W,θ)
∂ρ

12. Update the variational parameters: µ← µ− α∇µ, ρ← ρ− α∇ρ.
13. Output:µT , σ2

T . For inference, we take the final matrix Ŵ = µ̂T

Table 2: Qualitative evaluation: We show the nearest five neighbors for a given source query. Our
proposed BLIP-CTS model (M1) outperforms the baseline (M0) on multiple source queries.

M0 M1 (BLIP-CTS) M0 M1 (BLIP-CTS)
Source 1: under armor underw Source 2: keter outdoor trash can trash bags

under armour wwp under armour tech boxerjock hefty step garbage can outdoor trash bags
under armour barren under armour magnetico pro outdoor trash can storage shed black outdoor trash bags

under armour sportstyle under armour tech outside trash bin hefty step garbage can
under armour breathelux under armour ua tech 2.0 outside trash bin storage large outdoor trash bags

under armour culver under armour tech 2.0 outside trash can storage grow bags 30 gallon with handles
Source 3: auto shade, land rover discovery Source 4: cat6a 32ft

las vegas sail boat dodgers sunshade for cars cat6a cat6a 200ft
shade shore ohio state car mats cat6a 200ft cat6a plenum

shade & shore car cover outside land rover lr3 cat6a plenum cat6a
a shade of vampire 77 carolina skiff boat cover vandesail cat7 cat6a 500ft

carolina skiff boat cover detroit lions car mats ftdi ttl-232r-3v3 cat6a 1000ft
Source 5: tye die use shirt Source 6: rug dig bed

tye die tshirt tye die shirt rug foam under bed rug
tye die shirt tye die tshirt bed rug rug for under bed

state line tack tie die shirt kit rug for bed bed rug
tye die shirts tye die shirts rug for under bed aqua throw rug

tie die shirt kit state line tack under bed rug rug under bed
Source 7: oneplus 5 sticker skin Source 8: 2006 prius rubber mats

gameboy sticker gameboy sticker toyota corolla rubber floor mats dodge ram rubber floor mats
lightening mcqueen stickers airpod sticker skin 2002 f250 floor mats toyota corolla rubber floor mats

final fantasy 7 decal lightening mcqueen stickers honda accord rubber floor mats toyota tacoma rubber floor mats
paint by number anime iphone x sticker skin 2010 f150 floor mats supercrew honda accord rubber floor mats 500ft

stickers 400 pcs state line tack 2009 camry floor mats 2002 f150 floor mats
Source 9: atoms sound bar Source 10: dark green twill tape

gogroove sound bar megacra sound bar dark green tape dark green tape
nakamichi sound bar wetsound sound bar skin luminous tape dark brown tape
wetsounds sound bar kuryakyn sound bar od green tape dark brown duck tape

boes sound bar meidong sound bar blue hockey tape dark tape
naxa sound bar zvox sound bar florist tape green od green tape

as above. We can then leverage the usual backpropagation methods to train a model. It is found to be
good approximation for diagonal Gaussian distribution [1], i.e.:

θ = (µ, ρ), σ = log (1 + eρ), P (W) =
∏
i,j

N (Wij |0, σ2).

Following the above formulation, in Algorithm 2, we discuss the online learning algorithm BBB-CTS
for query reformulation including the update rules.

B Extended Results

In Table 2, we show some additional results comparingM0 and BLIP-CTS. We see that the embedding
from BLIP-CTS gives much better results for query reformulation in comparison to M0.

8

	Introduction
	Problem Formulation and Implementation
	Algorithms
	Experiments
	Conclusions and Future Work
	Appendices
	Derivation of Updates
	BLIP-CTS Algorithm Updates
	BBB-CTS Algorithm with Parameter Updates

	Extended Results

