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Abstract

Flow models have recently made great progress at modelling sensor data such
as images, audio, etc., but are still outperformed by autoregressive models. We
present a novel interpretation of several existing autoregressive models, including
WaveNet, PixelCNN and PixelCNN++, as single-layer flow models defined through
an invertible transformation between uniform noise and data samples. These models
thus admit a latent representation of data. To demonstrate the usefulness of this
interpretation, we explore the latent space of PixelCNN and PixelCNN++ by
inspecting latent image representations and performing latent space interpolations.

1 Introduction

Sensor data like images and audio arise from physical sensors where continuous analog signals
are converted into digital signals. Quantization is used to convert continuous signals to a finite
set of discrete values such as {0, 1, 2, ..., 255}. Signals are typically stored in a quantized format.
Dequantization refers to the process of converting the discrete, quantized values back to continuous
values. Typically, a quantized value q ∈ {0, 1, 2, ..., 255} is converted to a dequantized value
x ∈ [0, 1] by adding uniform noise and scaling, i.e.

x =
q + u

256
where u ∼ Unif(0, 1). (1)

Flow models such as RealNVP [3] and Glow [5] model x ∈ [0, 1]D using a continuous distribution
defined using an invertible transformation f of a latent variable z from a base distribution p(z), i.e.

x = f−1(z) where z ∼ p(z) (2)

such that the density can be computed as

p(x) = p(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ = p(f(x))

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ . (3)

Autoregressive models such as PixelCNN and related models [14, 13, 12, 4, 11, 10, 1, 7, 2], on the
other hand, model q ∈ {0, 1, 2, ..., 255}D directly with a discrete distribution, i.e.

p(q) =

D∏
d=1

p(qd|q1:d−1). (4)

We will show that autoregressive models relying on discrete conditional distributions can equivalently
be viewed as invertible transformations between uniform noise and data samples.
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Figure 1: Illustration of the similarity between (a) the categorical distribution and the continuous
analogue defined by CatFlows and (b) autoregressive distributions, autoregressive flows and inverse
autoregressive flows, exemplified using a causal convolutional autoregressive network [12].

2 PixelCNN as a Flow

PixelCNN and related models [14, 13, 12, 4, 7, 2] model quantized sensor data q such as audio,
images and video using an autoregressive network to parameterize a Categorical distribution, i.e.

p(q) =

D∏
d=1

Cat
(
qd|q1:d−1

)
=

D∏
d=1

K∏
k=1

πdk(q1:d−1)
I(qd=k). (5)

A flow equivalent can be developed using what we will term CatFlows, a piecewise linear transfor-
mation [8] which gives rise to a continuous analogue of the categorical distribution.

Consider a piecewise linear transformation between the points {(xk, zk)}Kk=0, where
0 ≡ x0 < x1 < x2 < ... < xK ≡ 1 (6)
0 ≡ z0 < z1 < z2 < ... < zK ≡ 1. (7)

We define a CatFlow as the case where xk = k
K and zk =

∑k
l=1 πl with

∑K
l=1 πl = 1.

For xk−1 ≤ x < xk and zk−1 ≤ z < zk, a CatFlow f and its inverse f−1 can be written as

z = f(x) = CatFlow(x|π) = zk−1 + πk
x− xk−1
xk − xk−1

(8)

x = f−1(z) = CatFlow−1(z|π) = xk−1 +
1

K

z − zk−1
zk − zk−1

. (9)

By transforming uniform noise z using a CatFlow, i.e. x = CatFlow−1(z|π) with z ∼ Unif(z|0, 1),
we obtain a density

p(x|π) = K

K∏
k=1

π
I(x∈[ k−1

K , k
K ))

k (10)

which is a continuous analogue of the categorical distribution. See App. A for more details. Con-
sequently, specifying an autoregressive flow [6, 9] with CatFlow elementwise transformations that
transform uniform noise to dequantized data samples x ∈ [0, 1]D yields equivalent models to
specifying autoregressive distributions with categorical conditionals for quantized data samples
q ∈ {0, 1, ..., 255}D. This similarity is illustrated in Fig. 1.

PixelCNN++ and related models [11, 10, 1] also use an autoregressive network to model quantized
sensor data. However, instead of using the Categorical distribution for each sub-pixel, they rely on
a multivariate discretized mixture of logistics (DMOL) distribution for each pixel. Due to space
constraints, we refer the reader to App. B for more details on the multivariate DMOL distribution.

A flow equivalent can be developed by 1) rewriting the multivariate DMOL as an autoregressive
distribution, 2) developing a univariate DMOL flow and 3) developing the multivariate DMOL flow
as an autoregressive flow with univariate DMOL flows as the elementwise transformations. Due to
space constraints, we refer the reader to App. C for more details.

With the resulting multivariate DMOL flow, PixelCNN++ can equivalently be viewed as a nested
autoregressive flow. That is, the PixelCNN++ network, which is autoregressive over the spatial
dimensions, outputs parameters for an autoregressive flow along the channel dimension where the
elementwise transformations are given by univariate DMOL flows.
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3 Experiments

PixelCNN, PixelCNN++ and related models are typically viewed as purely autoregressive models
which have no noise/latent space associated with them. Our interpretation of these models as single-
layer flows opens up for exploration of these existing models latent space. To illustrate this possibility,
we trained PixelCNN [14] and PixelCNN++ [11] parameterizing CatFlows and multivariate DMOL
flows on CIFAR-10. The models obtain 3.14 and 2.93 bits/dim, respectively, on the test set, closely
matching the results of [14] and [11] at 3.14 and 2.92 bits/dim.

3.1 Latent Space Inspection

If our model were to exactly match the true data distribution, sampling z ∼
∏D
d=1 Unif(zd|0, 1) and

transforming x = f−1(z) would yield samples from the true distribution. This fact is commonly
used as a qualitative check of generative models, where generated samples are compared to true
samples.

Another approach we could take, which in some sense takes an inverse view, is to take true samples
x and encode them to z = f(x). If the model matches the true distribution, z should correspond
exactly to uniform noise. Here we can both visually inspect latent images z, which typically should
have no discernible patterns left, and perform other quantitative or qualitative checks for uniformity.

To test this, we encode the CIFAR-10 test set using our flow versions of PixelCNN and PixelCNN++.
Some encoded images are shown in Figure 3. In addition to visual checks, we would like to test the
latent z for uniformity. A necessary, but not sufficient, condition for z to be jointly uniform is that the
marginals are uniform. A plot of the marginal distribution of all sub-pixels is shown in Figure 2. A
Kolmogorov–Smirnov test for uniformity of the marginals gives a p-value of 0 (smaller than machine
epsilon) for both models, i.e. a strong reject of the null hypothesis that the samples are uniform. This
suggests that, perhaps not surprisingly, there is still room for improvement.

3.2 Latent Space Interpolation

Next, we demonstrate that we can interpolate in the latent space to obtain image samples between two
existing images. To do this, we first transform two real images x(0) and x(1) to the latent space and
obtain z(0) and z(1). Linearly interpolating in this space does not yield uniform samples. Empirically,
we found this to often give blurry, single-color interpolations. Instead, we first further transformed the
latent images z(0) → y(0) and z(1) → y(1) using the inverse Gaussian CDF for each dimension. As
this is an invertible transformation, we can equivalently consider the base distribution as the isotropic
Gaussian. Subsequently, we interpolated according to

y(w) =
1√

w2 + (1− w)2
[
wy(0) + (1− w)y(1)

]
, for 0 ≤ w ≤ 1. (11)

This yields a path of equally probable samples under the base distribution, i.e. y(w) ∼ N(0, 1)
for y(0),y(1) ∼ N(0, 1). Finally, the intermediate noise variables y(w) are transformed back to
intermediate samples x(w). Some examples of interpolations are shown in Figure 4.
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(b) Encoded z using PixelCNN.
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(c) Encoded z using PixelCNN++.

Figure 2: Marginal distribution of all sub-pixels for the CIFAR-10 test images. We observe that the
encoded marginals have a density lower than 1 at the edges and higher than 1 near the edges.
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Figure 3: CIFAR-10 test set images and the latent encoding from flow versions of a PixelCNN (top
row) and PixelCNN++ (bottom row). We see that certain patterns, such as edges, at times leave
footprints in the latent images. While this effect is visible for both models, it is sometimes more
pronounced for PixelCNN than PixelCNN++.

Figure 4: Latent space interpolations between pairs of CIFAR-10 test set images using flow versions
of PixelCNN (odd rows) and PixelCNN++ (even rows). These models are known for capturing local
correlations well, but typically struggle with long-range dependencies. This is reflected in several of
the interpolated images, which tend to lack global coherence.
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Table 1: Comparison of categorical distribution and distribution arising from transforming uniform
noise using CatFlows. This can be seen as a continuous analogue of the categorical distribution.

Property Categorical Distribution Uniform+CatFlow Distribution

Support x ∈ {1, 2, ...,K} x ∈ [0, 1]

Probability mass/density p(x|π)
∏K

k=1 π
I(x=k)
k K

∏K
k=1 π

I(x∈[ k−1
K

, k
K

))

k

Gradients ∇θ log p(x|π(θ))
∑K

k=1 I(x = k)∇θ log πk(θ)
∑K

k=1 I(x ∈ [ k−1
K
, k
K
))∇θ log πk(θ)

A On the Connections Between CatFlows and the Categorical Distribution

By transforming uniform noise using CatFlows, i.e.
z ∼ Unif(z|0, 1) (12)

x = CatFlow−1(z|π), (13)
we obtain a density of the form

p(x|π) = K

K∏
k=1

π
I(x∈[ k−1

K , k
K ))

k . (14)

As summarized in Table 1 this distribution can be considered a continuous analogue of the categorical
distribution that only differ by a constant scaling factor (of K). Note that the scaling factor arises
from the continuous distribution having to integrate to one over the [0, 1] range (with an average bin
height of 1) rather than sum to one over {1, 2, ...,K} (with an average bin height of 1/K).

B The Discretized Mixture of Logistics Distribution

As described in Section 2.1 of [11], the discretized mixture of logistics (DMOL) distribution for
x ∈ {1, 2, ...,K} is given by

p(x) = DMOL(x|w,µ, s) =


∑M
m=1 wm

[
σ
(

1
256−µm

sm

)]
, for x = 1∑M

m=1 wm

[
σ
(

x
256−µm

sm

)
− σ

( x−1
256 −µm

sm

)]
, for x ∈ {2, ..., 255}∑M

m=1 wm

[
1− σ

(
255
256−µm

sm

)]
, for x = 256.

(15)
where µ and s are the location and scale parameters for each mixture, while w are the mixture
weights with

∑
m wm = 1 and wm ≥ 0 for m = 1, 2, ...,M .

We refer to this as the univariate DMOL distribution and note that it also can be written as
p(x) = DMOL(x|w,µ, s) (16)

=

M∑
m=1

wmDL(x|µm, sm), (17)

where DL is the discretized logistic distribution. The multivariate DMOL distribution, as described
in Section 2.2 of [11], can then be obtained as

p(x) = MultiDMOL(x|w,µ, s, r)

=

M∑
m=1

wmDL(x3|µ3,m(x1, x2, rm), s3,m)

DL(x2|µ2,m(x1, rm), s2,m)DL(x1|µ1,m, s1,m),

(18)

where
µ1,m = µ1,m

µ2,m(x1, rm) = µ2,m + r1,mx1
µ3,m(x1, x2, rm) = µ3,m + r2,mx1 + r3,mx2.

(19)
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C The Discretized Mixture of Logistics Flow

We will develop a flow equivalent of the multivariate DMOL distribution in 3 parts:

1. Develop a univariate DMOL flow.

2. Rewrite the multivariate DMOL distribution as an autoregressive distribution.

3. Obtain the multivariate DMOL flow as an autoregressive flow with univariate DMOL flows
as elementwise transformations.

C.1 The Univariate DMOL Flow

A flow equivalent of the univariate DMOL distribution in Eq. 15 can be developed as a CatFlow with
the bin probabilities π parameterized by a mixture of logistics function. That is, we can let the bin
locations be parameterized by a function h, i.e.

zk =


0, for k = 0

h(xk), for k ∈ {1, 2, ...,K − 1}
1, for k = K.

(20)

such that the bin probabilities are given by πk = h(xk)− h(xk−1). By choosing the function h as

h(x) =

M∑
m=1

wm

[
σ

(
x− µm
sm

)]
, (21)

we obtain a univariate DMOL flow which corresponds to a CatFlow with π given by

πk = h(xk)− h(xk−1) =


∑M
m=1 wm

[
σ
(

1
K−µm

sm

)]
, for k = 1∑M

m=1 wm

[
σ
(

k
K−µm

sm

)
− σ

( k−1
K −µm

sm

)]
, for k ∈ {2, ...,K − 1}∑M

m=1 wm

[
1− σ

( K−1
K −µm

sm

)]
, for k = K

(22)
where w correspond to the mixture weights and µ and s are location and scale parameters. The
forward and inverse transformations are as in Eq. 8 and 9, but with π given by Eq. 22. Thus,
transforming uniform noise with this flow, one obtains a continuous analogue of the univariate DMOL
distribution in Eq. 15.

C.2 Rewriting the Multivariate DMOL Distribution

In order to develop a flow equivalent of the multivariate DMOL distribution, we first rewrite it as an
autoregressive mixture distribution. In the three-dimensional case, we can do this as

p(x) =

M∑
m=1

wmpm(x3|x2, x1)pm(x2|x1)pm(x1) (23)

=

[∑M
m=1 wmpm(x3|x2, x1)pm(x2|x1)pm(x1)∑M

m=1 wmpm(x2|x1)pm(x1)

]
·[∑M

m=1 wmpm(x2|x1)pm(x1)∑M
m=1 wmpm(x1)

]
·[

M∑
m=1

wmpm(x1)

]
(24)

=

[
M∑
m=1

w3,mpm(x3|x2, x1)

][
M∑
m=1

w2,mpm(x2|x1)

][
M∑
m=1

w1,mpm(x1)

]
(25)
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where

w1,m = wm

w2,m =
wmpm(x1)∑M

m′=1 wm′pm′(x1)

w3,m =
wmpm(x2|x1)pm(x1)∑M

m′=1 wm′pm′(x2|x1)pm′(x1)
.

(26)

Note that in this form, the multivariate DMOL is simply an autoregressive distribution with univariate
DMOL conditionals, i.e.

MultiDMOL(x|w,µ, s, r) = DMOL(x3|w(x2, x1),µ(x2, x1, r), s)

·DMOL(x2|w(x1),µ(x1, r), s)

·DMOL(x1|w,µ, s).
(27)

C.3 The Multivariate DMOL Flow

As can be seen in Eq. 27, the multivariate DMOL distribution can be seen as an autoregressive
distribution where each conditional distribution is a univariate DMOL distribution. Using the
univariate DMOL flows developed in App. C.1 and their relation to the univariate DMOL distribution,
we obtain the multivariate DMOL flow simply as an autoregressive flow where each elementwise
transformation is a univariate DMOL flow with mixture weights w given by Eq. 26 and the mixture
means given by Eq. 19.

Transforming uniform noise using the multivariate DMOL flow,

z ∼
3∏
d=1

Unif(zd|0, 1) (28)

x = MultiDMOLFlow−1(z|w,µ, s, r) (29)

we obtain a continuous analogue of the multivariate DMOL distribution.
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