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Abstract

We propose a new variational family for Bayesian neural networks. We decompose
the variational posterior into two components, where the radial component cap-
tures the strength of each neuron in terms of its magnitude; while the directional
component captures the statistical dependencies among the weight parameters. The
dependencies learned via the directional density provide better modeling perfor-
mance compared to the widely-used Gaussian mean-field-type variational family.
In addition, the strength of input and output neurons learned via the radial density
provides a structured way to compress neural networks. Indeed, experiments show
that our variational family improves predictive performance and yields compressed
networks simultaneously.

1 Introduction

In the realm of neural networks, Bayesian approaches are relatively new focusing on developing
foundations of Bayesian theory for neural networks and tackling fundamental issues such as com-
plexity. Recently, variants of such techniques were proposed in [1, 5, 3, 8], which differ in the
choice of prior and posterior pairs that are often chosen for computational tractability. The so-called
mean-field variational family in these works assumes the posterior distributions to be all factorizing,
and hence neglects the possibility of modelling statistical dependencies (i.e., correlations) among
weight parameters [4, 1, 7, 12, 11].

Nevertheless, capturing dependencies between the weight parameters and their uncertainties is likely
to yield better models in terms of predictability [8, 14]. In this paper, we propose a new variational
family with the aim of not only tackling the modelling side of BNNs in terms of capturing correlations
among weight parameters but also addressing the issue of sparsification of over-parameterized neural
network models. Our contributions are as briefly as follows we propose a new variational family that
has two components by decomposing a weight vector into its magnitude (radius) used mostly for
sparsity and compression and angle (direction) to capture correlations between the weight parameters;
propose an approximation method for numerically stable gradient estimation. Thus we achieve
competitive predictive and compression performance.
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2 Radial and Directional Posteriors

In variational Bayesian neural networks, in an attempt to capture distributional behaviors of the
weights, we often assume a tractable parametric family for the prior distribution pθ(W) and the
approximate posterior qφ(W), where the parameters for each distribution are denoted by θ and φ,
respectively. Given a dataset D, we maximize the variational (evidence) lower bound (ELBO) to the
marginal data likelihood

L(D;φ,θ) = Eqφ(W)[log p(D|W)]−DKL(qφ(W)||pθ(W)) (1)

in order to choose the parameters of prior and posterior distributions.

One of the most commonly used variational family is fully factorized distribution referred to as the
mean-field variational family [4]

We propose a new variational family, which is an instance of structured mean-field approximation
where each row (and/or column) of W(l) is factorized, q(W) =
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row-wise factorization here. But we discuss both row and column-wise factorizations later which are
combined with elementwise multiplication to construct a weight matrix.

This formulation assumes independence between variational parameters. However, this variational
family ignores any statistical correlations between the weight parameters, which is the issue we
address in this paper.

Directional density We take the prior p(l)r,dir and the posterior q(l)r,dir distributions to be the von
Mises-Fisher (vMF) distribution [10], which is a probability density on a unit (hyper)sphere
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where vMF (x|µ, κ) = Cd(κ) exp (κµTx), where Cd(κ) = κd/2−1(κ)
(2π)d/2Id/2−1(κ)

. The location parame-
ter µ is also a d-dimensional unit vector, κ is the concentration parameter, and Id/2−1 is the modified
Bessel function of the first kind at order d/2− 1. The vMF distribution is intuitively understood as
multivariate Gaussian distribution with a diagonal covariance matrix on unit (hyper)sphere.

In our prior and posterior distributions, we assume that the concentration parameter is shared across
all the rows in each layer, by assigning a single concentration parameter, while the mean vector
parameters are separately assigned for each row. This way we can reduce the number of variational
and prior parameters significantly.

Explicitly modelling the directional component using vMF allows us to capture the dependence
within the weight parameters of each row. Having the same concentration parameter across all the
rows within each layer induces a particular way of dependence in the weight parameters within the
same layer. If the mean parameters of each row’s weights are close to each other, having the same
concentration level, possibly a high concentration level (which we expect if the posterior confidence
is high) makes the row-wise directional densities more similar to each other, and vice versa.

This particular way of parameterizing the variational parameters allows us to capture the dependence
across rows without assigning concentration parameters to each of the rows and layers separately.

Radial density While we could adopt any probability distribution with a non-negative support
for the radial density, we focus on distributions that can promote sparsity in the resulting posterior.
Specifically, inspired by the group horseshoe prior proposed by [9], we take a product of two Half-
Cauchy distributions to be our prior in order to induce sparsity in the norms of the weights. First, we
write down the norm of each row given a layer as a product of two independent half-Cauchy random
variables, ‖w(l)

r ‖2 = s(l)z̄
(l)
r , where s(l) ∼ C+(γ), z̄

(l)
r ∼ C+(1), and the prior is given by

p
(l)
r,rad(‖w

(l)
r ‖2) = C+(s(l)|γ) · C+(z̄(l)r |1), (3)

where the probability density function for a half-Cauchy distributed random variable x is given by
C+(x|γ) = 2

πγ(1+(x/γ)2) , with a scale parameter γ > 0. The smaller the scale parameter gets, the
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larger the probability mass concentrates around zero. At this point, it might not be immediately clear
why we chose to use two Half-Cauchy distributions as a prior rather than one. Our explanation is as
follows.

What we ultimately hope to control is the level of sparsity in the weights drawn from the resulting
posterior distribution. We allow the posterior to have two different levels of sparsity, namely, local
(row-wise) sparsity and global (layer-wise) sparsity. The reason we write the norm as a product
of two terms ‖w(l)

r ‖2 = s(l)z̄
(l)
r is that each of these terms affects the local sparsity via z̄(l)r and

global sparsity via s(l) in the posterior distribution, respectively. Even when all radii are small, the
largest one among them has significant influence in model performance. Thus, we can use the relative
strength of radius densities to prune out.

3 Optimizing evidence lower bound with RDP

Recall that as far as our objective function eq. 1 is concerned, two conditions need to be met for the
gradients of this objective function to well behave. The first condition (about MC estimates of the
expected log-likelihood term) is whether our posterior is reparameterizable. In fact, we can represent
our choice of posterior by a differentiable function h(ε,φ), where the variational parameters φ are
separated from the random source, ε ∼ s(ε).

The second condition is whether the KL term is closed-form, which is the case as we choose the prior
and posterior pair considering this condition. The KL term DKL(qφ(W)‖pθ(W)) is given by

∑
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r
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The closed-form expressions of directional and radial components are given below and in [9],
respectively.

Although the KL term between the vMF prior and posterior is elegantly written in closed-form,

DKL(vMF (µq, κq)‖vMF (µp, κp)) = (κq − κpµTp µq)
Id/2(κq)

Id/2−1(κq)
+ log(Cd(κq))− log(Cd(κp))

the gradient expressions with respect to the variational parameters require computing the ratio
Id/2(κq)

Id/2−1(κq)
[2], which is numerically unstable. This is due to the fact that the modified Bessel function

of the first kind (Bessel function) decays rapidly, so the computation of ratios of Bessel functions
causes numerical errors when it tries to compute 0

0 . This gets worse with higher dimensions, and
occurs even for moderate dimensions such as 50 to 100. Hence, rather than numerically computing
the ratio of Bessel functions, we resort to the following Theorem,

Theorem 1.

B2(ν, z) <
Iν(z)

Iν−1(z)
< B0(ν, z), when ν ≥ 1/2 (4)

where Bα(ν, z) = z

δα(ν,z)+
√
δα(ν,z)2+z2

, δα(ν, z) = (ν − 1/2) + λ
2
√
λ2+z2

, λ = ν + (α− 1)/2, and

ν denotes the dimension and z denotes the concentration parameter.

We observe that the gap between the upper and lower bounds of the ratio becomes tighter as the
dimension grows in preliminary experiment. Even in low dimensions, the gap is less than e−10 for
various concentration parameter values (z). Using this fact, we simply approximate the ratio by the
average over the lower and upper bounds, Iν(z)

Iν−1(z)
≈ B2(ν,z)+B0(ν,z)

2 .

Empirically we find that this simple approximation allows us to obtain numerically stable gradients on
dimensions of several thousands. Furthermore, this approximation saves us from directly computing
modified Bessel function. Since the modified Bessel function of the first kind of high order is not
supported yet in most deep learning frameworks, using this approximation, variational inference with
high dimensional vMF distributions can enjoy GPU acceleration without extra efforts on CUDA
implementations of Bessel functions.
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Dataset N d VI PBP Dropout VMG RDP

Boston 506 13 -2.90±.07 -2.57±.09 -2.46±.25 -2.46±.09 -2.60±.03
Concrete 1030 8 -3.33±.02 -3.16±.02 -3.04±.09 -3.01±.03 -2.61±.02
Energy 768 8 -2.39±.03 -2.04±.02 -1.99±.09 -1.06±.03 -1.18±.03
Kin8nm 8192 8 0.90±.01 0.90±.01 0.95±.03 1.10±.01 2.17±.00
Naval 11934 16 3.37±.12 3.73±.01 3.80±.05 2.46±.00 2.50±.00
Pow.Plant 9568 4 -2.89±.01 -2.84±.01 -2.80±.15 -2.82±.01 -0.14±.01
Protein 45730 9 -2.99±.01 -2.97±.00 -2.89±.01 -2.84±.00 -1.34±.01
Wine 1599 11 -0.98±.01 -0.97±.01 -0.93±.06 -0.95±.01 -0.45±.00
Yacht 308 6 -3.43±.16 -1.63±.02 -1.55±.12 -1.30±.02 -2.36±.04
Year 515345 90 -3.62±NA -3.60±NA -3.59±NA -3.59±NA -3.51±NA

Table 1: Average test log-likelihood on UCI regression tasks. Our method (RDP) achieves the better
test likelihoods (6 out of 10 datasets) than other methods.

4 Experiments

Here, we provide empirical evidences supporting RDP’s strengths. In the prediction task on UCI
datasets, we compare RDP with mean-field based BNNs [4, 1, 5] and a BNN designed to capture
dependency [8] in order to show RDP’s capability to explain dependency between weights. In the
compression task on MNIST dataset with LeNet arcthitecture, in order to check whether effective
RDP’s structure accommodates compression tasks, we compare RDP with various compression
methods in terms of the amount of pruning and FLOPs. In all experiment, we use Adam optimizer [6]
with Pytorch default setting. In both tasks, double grouping was used.

Regression using UCI data Only with the change in the first hidden layer, we can see improvement
over mean-field based BNNs, such as, Variational Inference (VI) [4], Probabilistic BackPropaga-
tion(PBP) [5], Dropout [3]. Compared to another dependency awaring posterior, Variational Matrix
Gaussian (VMG) [8], 6 out of 10 dataset, RDP shows better test log-likelihood(LL).

Compression on MNIST Classification The approach achieves competitive results with the state-
of-the-art methods. As given in Table 2, the RDP architecture shows better compression for convolu-
tional layers, which makes it score good at FLOPs. The proposed pruning with a third of parameters
of FLOPs as a Direct Optimization Objective(100K) (FDOO) is only slightly more computationally
heavy. Similarly, RDP comes only second to BC-GHS in terms of parameter number but running
with two-thirds of parameters of Bayesian Compression-Group Normal Jeffrey (BC-GNJ).

Method Architecture FLOPs Params Error
RDP 4-7-110-66 125K 20K 1.0%

5-7-45-20 BC-GNJ 8-13-88-13 307K 22K 1.0%
BC-GHS 5-10-76-16 169K 15K 1.0%

FDOO(100K) 2-7-112-478 119K 66K 1.1%
FDOO(200K) 3-8-128-499 163K 81K 1.0%

GL 3-12-192-500 236K 134K 1.0%
GD 7-13-208-16 298K 49K 1.1%
SBP 3-18-284-283 295K 164K 0.9%

Table 2: The structured pruning of LeNet-5-Caffe with architecture 20-50-800-500. We benchmark
our method against BC-GNJ, Bayesian Compression-Group HorseShoe(BC-GHS) [9], FDOO [15],
Generalized Dropout(GD) [13], Group Lasso(GL) [16], Structured Bayesian Pruning(SBP) [12].
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