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1 Introduction

Hard visual attention mechanisms control the allocation of limited sensor resources to observe the
environment. Their most prominent example is the human visual system where photoreceptors cover
a 210 degree field of view [14] and are most dense in the centre of the retina [2]. Eye movements,
or saccades, are necessary to apply these sensors to the most salient parts of a scene. Inspired
by this, artificial hard attention mechanisms can solve certain tasks using orders of magnitude
less computation and sensor bandwidth than the alternatives [8, 11]. However, their training is a
reinforcement learning problem and has proven to be difficult for many real-world applications.

We introduce methodology from Bayesian optimal experimental design [3] for generating information-
theoretically near-optimal sequences of glimpse locations for hard attention neural networks. We use
these sequences to partially supervise the training of such neural networks, and show improvements
in training speed and considerable differences in the learned policies. The faster and lower-variance
training we enable makes our approach particularly applicable to architecture search [5] for hard
attention networks. We use this to find a hard attention architecture which achieves higher accuracy
than low-power convolutional neural network (CNN) architectures which process the full-image.
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Figure 1: The hard attention network we consider.
Ateacht =1,...,T, the location network (green)
outputs a distribution from which I; is sampled. A
glimpse of the image at [, is fed into the glimpse
embedder (blue), along with [;. The resulting em-
bedding is input into the RNN (pink), updating the
hidden state to hy. Att = T, the classifier outputs
a classification distribution.

1)
the image as x and label as 6, with the index I
implicit. We consider the model of recurrent X
hard attention shown in Figure 1, which corre-
sponds closely to that of Mnih et al. [10]. At
each non-final time ¢, the neural network outputs
a distribution over possible image locations to
attend to. We denote the location sampled from
this ;. A contiguous square of pixels, which we
call a glimpse and denote y; = falimpse (X, l¢), is
extracted from the image at this location and fed
into the neural network. At some constant final
time 7', the network outputs a classification distribution, ¢4 (8|y1.7,l1.7). A loss calculated with
this output is used to optimise all network parameters, ¢. However, it is typically impossible to
differentiate the glimpse, y;, with respect to l;, and so the attention mechanism cannot be trained by
standard backpropagation. REINFORCE [10, 15] is commonly used instead, with a sparse reward
given by task success (e.g. a 0-1 classification loss). The resulting high variance gradient estimates
have made it difficult to scale hard attention to complex datasets. Some previous attempts have
attempted to avoid the problem of learning long glimpse sequences by computing glimpse locations
with a (possibly downsampled) version of the full image [4, 8, 13]; using large glimpses which can
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solve the task in a single time-step (e.g. several 96 x 96 pixel patches at different resolutions [13]); or
taking many glimpses simultaneously [8]. While these techniques have achieved impressive results,
they make impossible some of the gains in computational efficiency promised by hard attention,
indicating a problematic trade-off between efficiency at inference time and the practicality of training.

3 Bayesian optimal experimental design

We consider the allocation of attention as designing an experiment to infer some parameter, 6.
To clarify the connection, we denote the design of the experiment [ and the observed outcome
y ~ p(y|l,0). In Bayesian experimental design [3, 6], an optimal design is considered to be one
which, on expectation, leads to the least possible uncertainty about 6. This is quantified by the
expected Shannon entropy in the posterior over 6, EPE(l) = E,«)[H [p(fly,1)]]. We consider
sequential experimental design, where a series of experiments are performed and the design of each
can depend on all previous experiments. We therefore select [, at each step ¢ to minimise the expected
posterior entropy, given the designs and outcomes of previous experiments, /1.;_1 and y1.;—1. Both
the posterior over # and the distribution over y; are conditioned on these, giving

EPEY1:t71,l1;t71 (lt) = Ep(yf,\ym,_ull:t) [H [p(9|y11t7 llit)” . (D

In the computer vision setting which we consider, we do not typically have an explicit joint distribution
over images and labels (i.e. p(#,x)). We instead use the dataset to create approximations to the
distributions required to evaluate the expected posterior entropy (Equation 1):

e g(0y1:4,1l1:+) = p(O|y1:t,11.+). This is parameterised by a convolutional neural network (CNN)
which receives the embedding of y;.; and [;.; shown in Figure 4 and outputs a categorical distribu-
tion over §. The CNN is trained to minimise an expectation of Dxp [p(0]y1:¢,11:¢)||g(0]y1:¢,11:¢)]
over t, y1.; and ly.;, which are distributed according to some uniform prior distribution.

® Tolimpse(Y¢|Y1:4—1,01:¢) = P(¥¢|y1:—1,l1:¢). This is sampled from by sampling a full image,
X, from 7img(X|y1:6—1,l1:4—1) = p(x|y1:4—1,l1.4—1) and extracting y; from x at location I,
effectively marginalising out all pixels not in /;. Sampling from 7img (X|y1:t—1, l1.:¢—1) is essentially
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Figure 4: Embedding of y1.; and l1.;. A mask is
created which is zero at unobserved pixels. It is
applied to the image and then concatenated as an
additional channel.

retrieval

Figure 3: Image samples from various techniques,
conditioned on the glimpses in the left column.
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Figure 5: Training iterations before reaching within 0.01 of the best achieved validation accuracy,
with and without supervision sequences.

image completion. Figure 3 shows several techniques we considered for this: a GAN mapping
from y;.; and /;.; to a full image; HMC in the latent space of a pretrained GAN, conditioned on
the observations under a Gaussian likelihood; and probabilistic image retrieval from a synthetic
database of 1.5 x 10° images. We used probabilistic image retrieval as only it gave sufficient
sample diversity.

Using these approximations and an [V-sample Monte Carlo estimate of the expectation gives

N
1
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where y§”> ~ Tglimpse (¥¢|¥1:t—1, l1:¢). The optimal next attention location is found with a grid search

over ;. This process is summarised in Algorithm 1 and Figure 2. It is done for eacht =1,...,7 to
generate a sequence of locations.

4 Training with supervision

We use the generated glimpse sequences to partially supervise the training of a hard attention network.
Taken together, the training procedures for supervised and unsupervised examples can be interpreted
as maximising the joint log-likelihood, L, of the class labels and glimpse sequences,

supervised objective unsupervised objective
L= logqs(0", liplx)+ Y loggs(t'|x’) . 3)
1Esup. 1€unsup.

where ‘sup’ is the subset of training indices with supervision sequences, and ‘unsup’ is the subset
without. On unsupervised examples, a lower bound on the unsupervised objective is maximised by
minimising a standard hard attention loss [1, 10] with REINFORCE gradient estimates. For examples
with supervision, the network’s glimpse locations are fixed to those in the supervision sequence and
it is trained to maximise the log-likelihood of both the class label and the supervision locations.

S Experiments

Improved training We create 600 near-optimal sequences for each of the 40 classification tasks
on the CelebA-HQ dataset [7], and compare training with and without partial supervision. The hard
attention networks use five glimpses, each of 16 x 16 pixels. Figure 5 shows the effect on the number
of iterations taken before convergence. We find that supervision with near-optimal sequences reduces
the number of iterations by a factor of 6.8 on average compared to training without supervision. It
also gives a more than 5x average reduction in variance, and a mean increase in accuracy of 0.4%.

Qualitative comparison of attention policies Figure 6 contrasts the attention policies of the
networks trained with and without supervision. While both forms appear to learn reasonable first
glimpse locations, supervision is required to learn to make use of the later time steps.
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Figure 6: Glimpse locations on the test set for several classification tasks. The colour of each pixel
at each time step corresponds to the proportion of glimpses that attended to a location covering the
pixel, averaged over the test set. The face outlines are given by averaging coordinates from a face
detector. The networks trained without supervision typically attend to a single location at the first
time step, but very broad distributions at later time steps. The network trained with supervision also
attends to a single initial location but learns the salient regions at later time steps as well.

Comparison with CNN baselines Figure 7
compares the accuracy achieved by a hard at- ="
tention network against various CNNs. We con- z
sidered CNNs with the ShuffleNet [9] and Mo- -
bileNet [12] architectures, which are designed
to use a minimal number of floating point opera-
tions (FLOPs). We varied the number of FLOPs
in each by searching over scalar multipliers, c,
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adaptive stopping to trade off computation and
accuracy. This is implemented by an additional
network module which maps from the hidden
state to an estimate of the expected increase in
accuracy for a prediction made after the next glimpse, versus a prediction made now. The network
stops if this is below some threshold, which is varied along the line. Additionally, we found that
training with either no supervision or with supervision by near-optimal sequences led to overfitting
on the small datasets we use. We therefore used a heuristic to create supervision sequences involving
sampling a location independently at each time step from a categorical distribution with log prob-
ability proportional to each location’s negative expected posterior entropy from the first glimpse
(i.e. EPEy 4(l¢)). The hard attention architecture can be seen to improve on the accuracy achievable
by CNNs with less than 0.7 MFLOP, but future work is required to investigate if hard attention is
beneficial for higher computational budgets.

Figure 7: Accuracy versus computation for various
low-power CNNs and a hard attention architecture
with a variable stopping time.

6 Discussion and conclusions

We have demonstrated a novel Bayesian experimental design pipeline for generating near-optimal
glimpse sequences. This pipeline can significantly improve hard attention training, which is par-
ticularly beneficial for applications such as neural architecture search. Our framework could also
be extended to tasks such as question answering where the latent variable of interest is more richly
structured.
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