Recurrent neural-linear posterior sampling for
non-stationary bandits

Paulo Rauber Aditya Ramesh Jiirgen Schmidhuber
IDSIA, USI, SUPSI USI IDSIA, USI, SUPSI, NNAISENSE
Lugano, Switzerland Lugano, Switzerland Lugano, Switzerland

paulo@idsia.ch aditya.ramesh@usi.ch juergen@idsia.ch
Abstract

An agent in a non-stationary multi-armed bandit problem should balance between
exploration and the exploitation of (periodical or structural) patterns present in
its previous experiences. Current successful agents require a handcrafted context
that allows treating a non-stationary problem as a contextual multi-armed bandit
problem. Unfortunately, even a carefully designed context may introduce spurious
relationships or lack a convenient representation of crucial information. In order to
address these issues, we propose an approach that learns to represent the relevant
context for a decision based solely on the raw history of interactions between the
agent and the environment. This approach relies on a combination of Bayesian
recurrent neural networks and posterior sampling. Preliminary experiments show
that our recurrent approach outperforms its feedforward counterpart in simple
non-stationary problems when the handcrafted context is less than ideal.

1 Introduction

In a multi-armed bandit problem, an agent chooses an action (arm) based on its previous interactions
with an environment (multi-armed bandit). In response, the environment transitions into a new hidden
state and provides a reward. The goal of the agent is to maximize cumulative reward through a finite
number of interactions with the environment, which requires balancing exploration and exploitation.

A multi-armed bandit problem is non-stationary if every policy that always chooses the same action
should be considered poor, even if this action is the so-called best fixed action in hindsight [1]. Many
interesting problems are naturally non-stationary. For instance, consider the problem of product
recommendation. The acceptance rate for a recommendation may depend both on the time of the
year (periodicity) and the results of previous recommendations (structure).

There are two main classes of agents that deal with non-stationary problems. Passive agents bias
their decisions based on recent interactions, while active agents attempt to detect when a significant
change occurs [2, 3]. Unfortunately, agents in both classes are incapable of exploiting periodicity and
structure. An often successful alternative is to transform a non-stationary problem into a contextual
multi-armed bandit problem, where the agent receives a context that informs its decision during each
interaction [1]. In the product recommendation example, such context could encode the time of the
year and the results of previous recommendations, which allows generalization from experience.

Riquelme et al. [4] recently showed that a simple Bayesian approach to represent uncertainty about
feedforward neural network models achieves remarkable success in contextual multi-armed bandit
problems when combined with posterior sampling (Thompson sampling) [5]. In this setting, posterior
sampling relies on a posterior over models of the reward given the context and each prospective action.
A single model is drawn from this posterior before each interaction, and the best action according to
this model is chosen. Intuitively, increased certainty leads to decreased exploration.

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

The feedforward neural-linear approach of Riquelme et al. [4] requires a handcrafted context when
applied to non-stationary problems. Unfortunately, even a carefully designed context may introduce
spurious relationships or lack a convenient representation of crucial information. In order to address
these issues, we propose a recurrent neural-linear approach that learns to represent the relevant
context based solely on the history of interactions. Preliminary experimental results indicate that the
recurrent approach outperforms the feedforward approach in simple non-stationary problems when
the handcrafted context is less than ideal.

2 Neural-linear posterior sampling

Notation. We denote random variables by upper case letters and assignments to these variables by
corresponding lower case letters. A multi-armed bandit problem is a special case of the following
partially observable reinforcement learning problem. The agent interacts with the environment
(multi-armed bandit) during a single episode. At a given time step ¢, the environment is in a hidden
state S;, and the agent uses a policy to choose an action (arm) A;,, given the history H;, which
encodes the actions A;.; and the rewards R;.;. In response to this choice, the environment transitions
into a hidden state S;11 and outputs a reward R;.,. This process is represented by the graphical
model in Figure 1. Note that this formulation includes environments where an optimal policy is not
necessarily greedy at every time step, although such environments are out of our scope.

Figure 1: Multi-armed bandit problem. Figure 2: Recurrent neural-linear network.

We consider two approaches to maximize the reward at a given time step ¢ + 1. They are both based
on building a model of the distribution over R;; given the history h; and each possible action.

Feedforward neural-linear posterior sampling. For a given time step ¢, consider the supervised
dataset Dy = {(¢p(hy—1,ar),7)}_,, where ¢ is a function that encodes the information that
allows predicting the reward ry from the history hy 1 and the action ay. For example, ¢ may
encode (a periodic function of) the current time step, statistics regarding each arm, and the last n
actions and rewards. Given a choice of parametric model and prior, a posterior distribution may be
obtained from this dataset. All that is needed to complete posterior sampling is to draw a model from
this posterior and choose the arm a;11 with maximum expected reward given ¢(hy, az11)-

In the feedforward neural-linear approach, the model is based on a feedforward neural network.
Parameter uncertainty is represented by a simple method that is highly successful in contextual
bandit problems [4]. The first step of this method consists of fitting a feedforward neural network
to the dataset D; by minimizing the usual (regularized) mean squared error. The last layer of this
network has a linear unit (with no bias). After the network is fit, let z;» denote the output of its
penultimate layer (last hidden layer) when given ¢(hy—1,as) as input, and consider the dataset
Zy = {(zv,)} _,. The second step of the method consists of applying Bayesian linear regression
to Z;. In this work, we assume that the reward R given a history h;_1 and an action a; is Gaussian
with mean z; - w* and known variance o2. We also assume a Gaussian prior over W with mean
zero and covariance matrix 721. Given these choices, the corresponding (Gaussian) posterior over W
given Z; can be obtained analytically [6, Section 3.3], which makes posterior sampling very efficient.

Recurrent neural-linear posterior sampling. In this approach, the model is based on a recurrent
neural network (Figure 2). At a given time step ¢, this network receives the reward r;_; and the
action a, as inputs, and outputs an estimate of the reward ;. Such estimates attempt to minimize the
usual (regularized) mean squared error. Suppose that the last layer of this network has a linear unit
(with no bias), and let uy denote the output of its penultimate layer (last hidden layer) when given the
rewards 7.4 and the actions a1, as inputs. Analogously to the previous approach, Bayesian linear
regression may be applied to the dataset Uy = {(uy, 7)}. _; in order to allow efficient posterior

sampling. Most importantly, note that the recurrent neural-linear approach eliminates the need for a
handcrafted feature map ¢.

3 Experiments

Multi-armed bandits. We performed preliminary experiments in two unstructured and two struc-
tured problems, which were chosen for their simplicity and flexibility. In the flipping Bernoulli
problem, the reward for each arm k is Bernoulli, with a mean that changes from py, to 1 — py, every h
time steps. Similarly, in the flipping Gaussian problem, the mean of the Gaussian reward for each arm
k changes from i, to —ju, every h time steps, while the corresponding variance s? is fixed across
arms. In the circular Markov chain problem, the reward for every arm is Gaussian with mean p and
variance s2, except for a single arm whose reward is Gaussian with mean p* > j. After this arm is
chosen, it trades place with the next arm in a predefined cyclic order. In the graph distance problem,
each arm is a node in a random graph. At a given time step, there is a single reference arm k. The
reward given by each arm j is Gaussian with mean exp(—d,) and fixed variance s2, where d; j, is
the (graph) distance between j and k. After the reference arm k is chosen, a random arm becomes
the new reference arm. The problem settings used in our experiments are detailed in Appendix A.

Policies. We compared at least five policies for each multi-armed bandit problem. The Random
policy chooses arms at random. The Best (R)NN policy uses the best (feedforward or recurrent)
neural-linear posterior sampling hyperparameters found for a given problem, while the Default (R)NN
policy uses hyperparameters that work well across problems. Appendix B details our implementation
and hyperparameter search. '

Results. The regret at a given time step is the difference between the expected cumulative reward of
an oracle that knows which arm has maximum expected reward at every time step and the cumulative
reward obtained by an agent. Experimental results are represented by regret plots in Appendix C.

Analysis. Figures 3 and 5 show the results for the flipping Bernoulli problem and for the flipping
Gaussian problem when A = 8. In both cases, the feature map ¢ encodes periodic functions of the
current time step for a fixed set of periods A that includes the period 2/ underlying the changes in
the environments. The feedforward approaches clearly outperform the recurrent approaches in the
flipping Bernoulli problem, while both approaches obtain comparable performance in the flipping
Gaussian problem. However, when neither the period 2k nor one of its multiples is in the set of periods
A, the recurrent approaches outperform the feedforward approaches, as shown by Figures 4 and 6 for
h = 10. The performance of the feedforward approaches shown in Figure 6 does not make it obvious
that important information is being ignored, which is a general issue with handcrafted contexts. Most
interestingly, Figures 7 and 8 show that the presence of periodic functions of the current time step in
the handcrafted context significantly compromises the performance of the feedforward approaches in
both the circular Markov chain problem and the graph distance problem, which illustrates the risk
of encoding irrelevant information. Finally, Figure 9 shows that the recurrent approaches achieve
similar performance to a Beta-Bernoulli posterior sampling baseline in a stationary flipping Bernoulli
problem (h = oc0), which is evidence of their robustness to model misspecification.

4 Conclusion

We introduced a recurrent neural-linear posterior sampling approach that may be applied to solve
arbitrary non-stationary multi-armed bandit problems. This approach learns to represent the relevant
context for a decision based solely on the history of interactions between the agent and the environ-
ment, which avoids carefully handcrafted contexts required by previous approaches. Preliminary
experiments show that our recurrent approach outperforms its feedforward counterpart in simple
non-stationary problems when the handcrafted context introduces spurious relationships or lacks a
convenient representation of crucial information. We hypothesize that our approach may be particu-
larly useful for a problem that is both non-stationary and contextual, since handcrafting features may
become even more challenging. We hope to find an appropriate problem to test this hypothesis in
future work. We are also interested in comparing the neural-linear approach to other Bayesian neural

' An open-source implementation is available on https://github. com/paulorauber/rnlps.

https://github.com/paulorauber/rnlps

network approaches. Finally, our approach may also benefit from specially designed recurrent neural
network architectures, which were found to be very useful in other applications.

Acknowledgments

We would like to thank Sjoerd van Steenkiste, Francesco Faccio, Raoul Malm, and Imanol Schlag for
their valuable feedback. This research was supported by the Swiss Natural Science Foundation grant
(200021_165675/1).

References

[1] Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press (draft),
2019.

[2] Fang Liu, Joohyun Lee, and Ness Shroff. A change-detection based framework for piecewise-
stationary multi-armed bandit problem. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[3] Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly optimal adaptive procedure
with change detection for piecewise-stationary bandit. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 418-427, 2019.

[4] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian bandits showdown: An
empirical comparison of Bayesian deep networks for Thompson sampling. In International
Conference on Learning Representations, 2018.

[5] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Information science and statistics.
Springer, 2013. ISBN 9788132209065.

[7]1 D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations, 2014.

[8] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997.

[9] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10):2451-2471, 2000.

A Multi-armed bandit problems

In our experiments, the following settings were used for each problem.

Flipping Bernoulli: 8 arms, initial means in {0.1,0.2,...,0.9} \ {0.5}.

Flipping Gaussian: 8 arms, initial means in {0.1,0.2,...,0.9} \ {0.5}, variance s> = 0.12.
Circular Markov Chain: 8 arms, common mean p = 0, best mean p* = 1, variance s2 = 0.052.

Graph distance: 8 arms, variance s> = 0.052, edge probability 0.5.

B Policies

In our experiments, a trial comprises 2048 time steps. The results for a given policy aggregate ten
independent trials, and show bootstrapped confidence intervals of 95%. This appendix details the
neural-linear posterior sampling policies and the hyperparameter search protocol.

B.1 Feedforward neural-linear posterior sampling

Inputs. For a given time step ¢, the feature map ¢ encodes the action a; together with the last n
pairs of actions and rewards {(a¢—, 7+—%)}}_,, Wwhere n is the so-called order. Actions are one-hot
encoded. The feature map ¢ also encodes different periodic functions of the current time step ¢.
Concretely, for each A in a given set of periods A, the pair (sin ay, cos «y) is encoded by ¢, where
ax = 2mtA~ L. In words, for each A € A, the feature map ¢ encodes the sine and the cosine of the
angle), of a (counterclockwise) rotating particle that completes one revolution every A time steps.
Depending on the experiment, the set of periods A is either {2,4, 8,16, 32} or empty.

Network architecture. The network has three hidden layers. The first hidden layer has L; linear
units. The second and third hidden layers have Ly and L3 hyperbolic tangent units, respectively. The
last layer has one linear unit (with no bias).

Training. The network is trained to minimize the mean-squared error with an L2 regularization
penalty of 0.001. A sequence of e training steps is performed every ¢ time steps using Adam [7] with
a learning rate 7). Note that each training step requires computing the gradient of the loss on the entire
dataset. The linear regression posterior is recomputed using the entire dataset at every time step. One
forward pass is required to evaluate each available action.

Hyperparameter search An independent grid search is required to find the Best NN policy for
each multi-armed bandit problem. This policy achieves maximum cumulative reward averaged over
five independent trials. The hyperparameter grid is described below. The underlined hyperparameters
correspond to the Default NN policy, which (somewhat subjectively) works well across problems.

e Ordern: 1, 4.

e Numbers of units (L1, Lo, L3): (16,16, 16), (32, 32, 32), (64, 64, 64).

e Learning rate n: 0.001, 0.01, 0.1.

e Number of epochs e by training step: 16, 64.

e Interval ¢ between training steps: 32, 128.

o Assumed variance o2 of the reward distribution: 0.1, 0.3.

e Variance 72 of the prior distribution over each weight: 0.5, 1.

B.2 Recurrent neural-linear posterior sampling.

Inputs. At a given time step ¢, the input to the recurrent neural network is the reward r;_; and the
action a;. This action is one-hot encoded.

Network architecture. The network has three hidden layers. The first hidden layer has L; linear
units. The second hidden layer has Ly long short-term memory units [8, 9]. The third hidden layer
has L3 hyperbolic tangent units. The last layer has one linear unit (with no bias).

Training. The network is trained to minimize the mean-squared error with an L2 regularization
penalty of 0.001. A sequence of e training steps is performed every ¢ time steps using Adam [7]
with a learning rate 7. Note that each training step requires computing the gradient of the loss on the
entire sequence. The linear regression posterior is recomputed using the entire dataset at every time
step. One forward pass is required to evaluate each available action. Note that this does not require
forward passing the entire sequence for each action.

Hyperparameter search An independent grid search is required to find the Best RNN policy for
each multi-armed bandit problem. This policy achieves maximum cumulative reward averaged over
five independent trials. The hyperparameter grid is described below. The underlined hyperparameters
correspond to the Default RNN, which (somewhat subjectively) works well across problems.

Numbers of units (L1, L2, L3): (16,16, 16), (32, 32, 32).
Learning rate n: 0.001, 0.01, 0.1.
Number of epochs e by training step: 16, 64.

Interval ¢ between training steps: 32, 128.

Assumed variance o2 of the reward distribution: 0.1, 0.3.

e Variance 72 of the prior distribution over each weight: 0.5, 1

Experimental results

goo — Default NN 800 = Default NN
——— Best NN —— Best NN
= Default RNN = Default RNN
600 = Best RNN 600 == Best RNN
= Random = Random
o =
o S
2400 2400
I <
200 200
0 0
0 512 1024 1536 2048 0 512 1024 1536 2048
time step time step
Figure 3: Flipping Bernoulli (h = 8). Figure 4: Flipping Bernoulli (h = 10).
800 = Default NN 800 = Default NN
= Best NN = Best NN
—— Default RNN = Default RNN
600 == Best RNN 600 == Best RNN
= Random = Random
o o
o o
E;Aoo 3400
200 200
0 0
0 512 1024 1536 2048 0 512 1024 1536 2048
time step time step
Figure 5: Flipping Gaussian (h = 8). Figure 6: Flipping Gaussian (h = 10).
1750 —— Default NN 1400 — pefault NN
~——— Best NN ——— Best NN
1500 : | 1200 - |
= Best NN (empty list of periods) = Best NN (empty list of periods)
1250 — Default RNN 1000 = Default RNN
= Best RNN = Best RNN
©1000 —— Random @ 800 —— Random
o o
£ 750 2 600
500 400
250 200
0 0
0 512 1024 1536 2048 0 512 1024 1536 2048
time step time step
Figure 7: Circular Markov Chain. Figure 8: Graph distance.
800 — Thompson Sampling (a =1, b = 1)
= Default NN
—— Best NN
600 = Best NN (empty list of periods)
= Default RNN
@ —— Best RNN
2400 —— Random

512

1024 1536 2048

time step

Figure 9: Flipping Bernoulli (h = o0).

	Introduction
	Neural-linear posterior sampling
	Experiments
	Conclusion
	Multi-armed bandit problems
	Policies
	Feedforward neural-linear posterior sampling
	Recurrent neural-linear posterior sampling.

	Experimental results

