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Abstract

Bayesian optimization (BO) is a powerful approach for seeking the global optimum
of expensive black-box functions and has proven successful for fine tuning hyper-
parameters of machine learning models. However, in practice, BO is typically
limited to optimizing 10-20 parameters. To scale BO to high dimensions, we
normally make structural assumptions on the decomposition of the objective and/or
exploit the intrinsic lower dimensionality of the problem, e.g. by using linear
projections. The limitation of aforementioned approaches is the assumption of
a linear subspace. We could achieve a higher compression rate with nonlinear
projections, but learning these nonlinear embeddings typically requires much data.
This contradicts the BO objective of a relatively small evaluation budget. To address
this challenge, we propose to learn a low-dimensional feature space jointly with
(a) the response surface and (b) a reconstruction mapping. Our approach allows
for optimization of the acquisition function in the lower-dimensional subspace.
We reconstruct the original parameter space from the lower-dimensional subspace
for evaluating the black-box function. For meaningful exploration, we solve a
constrained optimization problem.

1 Introduction

Bayesian optimization (BO) is a useful model-based approach to global optimization of black-box
functions that are expensive to evaluate [25) 28| [38]]. This sample-efficient technique for optimization
has proven effective in experimental design of machine learning algorithms [S], robotics applica-
tions [9] and medical therapies [50] for optimization of spinal-cord electro-stimulation. Despite its
great success, BO is practically limited to optimizing 10-20 parameters, and a large body of litera-
ture has been devoted to address scalability issues to elevate BO to high-dimensional optimization
problems, such as discovery of chemical compounds [[16] or automatic software configuration [23].

The standard BO routine consists of two key steps: (i) estimating the black-box function from data
through a probabilistic surrogate model, usually a Gaussian process (GP), referred to as the response
surface; (i) maximizing an acquisition function that computes a score that trades off exploration and
exploitation according to uncertainty and optimality of the response surface. As the dimensionality
of the input space increases, these two steps become challenging. The sample complexity to ensure
good coverage of inputs for learning the response surface is exponential in the number of dimensions
[48]. With only a small evaluation budget the learned response surface and the resulting acquisition
function are characterized by vast flat regions interspersed with highly non convex landscapes [41].
This renders the maximization of the acquisition inherently hard [14].

However, high-dimensional data often possesses a lower intrinsic dimensionality, which can also be
exploited for optimization. A feature mapping can then used to map the original D-dimensional data
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onto a d < D-dimensional manifold. For example, in [54], the authors used random linear mappings
in the context of BO to reduce dimensionality. Similar approaches use linear dimensionality reduction
drive exploration in BO to actively learn this linear
embedding [[14]. While these methods perform well
in practice they are restricted to linear subspaces of
the original domain. With nonlinear embeddings
higher compression rates would be possible.
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A generalization to nonlinear subspaces was proposed ‘
in [[16} 117, 129] and [20Q]. In [16]], a low-dimensional fZ
data representation is learned with variational autoen- |Reshonse Surface
coders (VAEs). A characteristic of this approach “y

is that the required amount of data necessary for
Figure 1: Model for Bayesian optimization

learning a meaningful representation substantially
exceeds small evaluation budgets that often constrain

BO. However, in the specific application of automatic
discovery of molecules, where libraries of existing
compounds are available prior to optimization, this
approach makes much sense. VAE models [35] were
used to propagate uncertainty of latent space repre-

on data manifolds, jointly solving two dis-
tinct tasks: (i) a regression from feature space
to observations (in blue) and (ii) a recon-
struction mapping from feature space to high-
dimensional space (in red).

sentations through the response surface model with

Gaussian process latent variable models |31} 130,151, 132]. However, in [35]], the latent space represen-
tation is not learned specifically for the regression task. Gradient-based methods [[1] have been used
to learn a lower-dimensional Riemannian manifold for optimization and sampling.

Nonlinear embeddings also allow for modeling non-stationary objective functions. In this context,
a composition of GPs, referred to as deep GPs [12, 146, [10L [11} 22] is especially useful when the
response surface is characterized by abrupt changes or has constraints. An extensive investigation
on the employment of deep GP models in BO is presented in [[10} 21]]. In our work, we also exploit
the idea of learning highly nonlinear functions through the composition of simpler ones [33]], but we
rather elaborate on deterministic dimensionality reduction and optimization in feature space.

In this paper, we propose a BO algorithm for high-dimensional optimization, which learns a nonlinear
feature mapping h : RP? — R? to reduce the dimensionality of the inputs, and a reconstruction
mapping g: RY — RP based on GPs to evaluate the true objective function, jointly, see Figure
This allows us to optimize the acquisition function in a lower-dimensional feature space, so that the
overall BO routine scales to high-dimensional problems that possess an intrinsic lower dimensionality.
Finally, we formulate a constrained maximization of the acquisition function in feature space to
prevent meaningless reconstructions.

2 Bayesian optimization in low-dimensional feature spaces

We consider global minimization problems of 1. Input: X, € RNoxP
the form 2: Observations: y, € R0
" . 3: fort=0,1,2,...do
x = arge%m Fx(x) 1) 4:  Response surface learning fx = fz oh

5: Dimensionality reduction Z; = h(X;)

with a high-dimensional input space X = ¢: Low-dimensional surface p(fz|Z:,y:)

[0, l]D , but where the objective fx: X — R 7.  Optimal input selection x; , |

possesses an intrinsic lower dimensionality. In  §: Acquisition z, = argmax a(z)

our setting, we consider functions fx that are . zEZ ~

expensive to evaluate and for which we are al- ~ 9: Input reconstruction X;41 1= X = g(2x)

lowed a small budget of evaluation queries to

express our best guess of the optimum’s location  10:  Evaluation

x*. We further assume we have access only to 11 Yer1 = fx(Xe1) +¢

noisy evaluations of the objective y = fx +¢, 120 XeU{xep1},  yeU{y1}
13: end for

where the noise ¢ ~ N(0,02) is i.i.d. Gaus-
sian. We restrict ourselves to the typical setting,
where neither gradients nor convexity properties
of fx are available.

14: Return x* = arg miny,

Algorithm 1: Key steps of BO in feature space.



The main steps of a BO routine involve (i) response surface learning, (ii) optimal input selection X,
and (iii) evaluation of the objective function fx at x.. The first step trains a probabilistic surrogate
model p(fx ), the response surface, which describes the black-box relationship between inputs x and
observations y. In the ¢ 4 1st iteration of BO, the optimal input selection step finds an input x4 1
that maximizes an acquisition function «(-), which describes the added value of an input x. The
evaluation step observes the noise-corrupted outcome of the true objective function fx (x;41) + € at
the selected location. These steps are summarized in lines 4} [7]and [T0]of Algorithm 1, respectively. In
relatively high-dimensional settings (D > 20) both the response surface learning and optimal input
selection become computationally challenging.

In our work, we exploit the effective low dimensionality of the objective function for BO in a
lower-dimensional feature space Z C R?, where d < D. In particular, we express the true objective
function fx : R? — R as a composition of a feature mapping h : RP — R and a function
fz: Z — Rsothat fx = fz o h. The lower-dimensional feature space allows for both learning
the response surface fx and maximizing an acquisition function « with domain Z, which yields
optimizer z,.

However, we cannot evaluate the true objective fx directly at the low-dimensional features z., but
need to project z, back into the D-dimensional data space X'. We therefore define a reconstruction
mapping g: Z — X. We can think of this mapping as a decoder within an auto-encoder framework.
We model both the composition fx = fz o h and the reconstruction with Gaussian process models.
The algorithm in Algorithm 1 summarizes the main steps of the feature space BO.

In the following, we detail the model (see Figure |1)) for jointly learning the feature map h(-), the
low-dimensional response surface in feature space fz, and the reconstruction mapping g(-).

2.1 Manifold Gaussian processes for response surface learning in feature space

In our optimization problem, we expect the response surface to predict the value of the black-box
objective function fx with calibrated uncertainty associated with each prediction. Gaussian processes
(GPs) [42] are probabilistic models that allow for an analytic computation of posterior predictive
function values within a Bayesian framework, and they are the standard model in BO for modeling
the response surface.

A GP is a distribution over functions fz ~ GP(m(-),k(-,-)) and is fully specified by a mean
function m: Z — R, and a covariance function/kernel k: Z x Z — R. The kernel computes
the covariance between pairs of function values as a function of the corresponding inputs, i.e.
Cov(fz(z), fz(Zz')) = k(z,2'), and thereby encodes regularity assumptions about fz, such as
smoothness or periodicity. Common kernel choices in the BO literature include the squared exponen-
tial and Matérn kernels [[13]].

In our feature space optimization, we address lines [5H6|of Algorithm 1 as a single learning problem.
Therefore, we need a GP that learns useful representations z of inputs x for the regression task
together with f~. A manifold Gaussian process (mGP) [36] 8 [56] addresses this issue by composing
two mappings: The deterministic feature map h with parameters 8, and a GP f; ~ GP(m, k) with
kernel hyper-parameters 8. The GP models the relationship between features z and function values y
in observation space. The resulting composite model fx = fzohisaGP so that fx ~ GP(my,, kn,)
with mean and covariance functions given by

mm(x) = m(h(x)), @)
ki (x,x) = k(h(x), h(x)), (3)

respectively. Given high-dimensional training inputs X and corresponding observations y of the
objective function, we train the model, which is parameterized by {6}, 0}, by maximizing the
log-marginal likelihood (evidence) [42]

{0}, 05} € argmax log p(y|X, 04, 6y,). (4)

hy Uk

This objective allows us to learn a low-dimensional feature embedding as a by-product of the
supervised GP regression framework. Unsupervised dimensionality reduction usually solves an
orthogonal task to that of learning a response surface. Algorithms, such as PCA [40} [24]] or variational
auto-encoders [43, 27, [37]], achieve compact data representations by optimizing objectives that are



not necessarily useful in a supervised setting [53]. The mGP, instead, leads to low-dimensional
representations that are optimal (locally) for the regression task at hand.

We use a multi-layer feedforward neural network with sigmoid activation functions as a feature map
(encoder) h, resulting in a feature space Z = [0, 1]%. Neural networks as an explicit feature map
within an mGP have already been applied successfully for modeling non-smooth responses in bipedal
robot locomotion [8]. Deep network architectures have also proven useful for orientation extraction
from high-dimensional images [56].

With a Gaussian likelihood, the mGP posterior predictive distribution at a test point x, € X is
Gaussian distributed with mean and variance given by

E[fx (x)] = mun (%) + ki (%0, X)K 7 (y = 10 (X))
= m(2.) + k(z., LK, ' (y — m(Z))

V[fX (X*)} = k7n(x*7x*) - km(x*7X)K;L1ykm(X,x*)
= k(2Zs, Zx) — k(Zs, Z)K;lk‘(Z, Zy),

®)

(6)

respectively. Here, kp, (x4, X) = k(z4, Z) = [k(24,2:)] 1 Ky = kn(X,X) + 021 K, :=
k(Z,Z) + 021, k,, (X, X) = k(Z, Z) and m,,,(X) = m(Z) = [m(z;)]; computes the prior mean
function evaluated at the embedded training inputs Z = h(X). Note that posterior predictions can be
computed using both the feature and data space.

The mGP defines a GP on X, but allows us to learn a response surface in the lower-dimensional
feature space Z. This is key for optimizing the acquisition function in a low-dimensional space Z
instead of the original data/parameter space &X'. Thus far we have detailed the feature BO procedure
up to line[8]in Algorithm 1. Once we have found an optimizer z, of the acquisition function, we need
to project it back into the original data space X" in order to evaluate the true objective fx. This can
be done by means of a reconstruction mapping (decoder), which we detail in the following.

2.2 Input reconstruction with manifold multi-output Gaussian processes

Here, we present the reconstruction part (decoder) of our feature space optimization model described
in Figure [T} We are interested in modeling the functional relationship between the feature space
Z and the data space X for step[9]in Algorithm 1, which requires us to evaluate fy. We therefore
consider a vector-valued function g = {g;}2 ,, where each component function g;: Z — X; maps
vectors in feature space to the i-th coordinate of high-dimensional data, i.e. ¢;(z) = £ e X. Multi-
output Gaussian processes (MOGPs) [4, 13, 158, 157, 2 139, 47, |6] define a prior over vector-valued
functions and explicitly allow for output correlations. An MOGP GP(m, K) is fully specified by a
mean vector function m: Z — RP and a positive, semi-definite matrix-valued covariance function
K: Z — RP*P which expresses the correlation between observations in the same output coordinate
and cross-correlation between the D different outputs. Various formulations of the matrix-valued
kernel correspond to specific generative model assumptions for the multiple outputs g;.

In our work, we consider the intrinsic coregionalization model (ICM) 19} 152], which structures the
covariance matrix as a Kronecker product and allows for efficient training and predictions. This
model is particularly suitable for trading off number of model parameters and expressiveness of
the vector valued function. In particular, the ICM facilitates information sharing across different
tasks by adopting the same covariance function and has successfully been adopted in robotics for
learning inverse dynamics [S5]. Hence, this model requires fewer parameters than the linear model
of coregionalization [4]], and allows for exploiting properties of the Kronecker product for efficient
training and posterior computation.

Intrinsic coregionalization model The ICM [19, [52] applies a linear mapping to a set of latent
functions. In particular, we consider a set of P latent functions u;: Z — R, that are assumed to be
sample paths, i.e. sample functions independently drawn from the same GP prior GP(mg, k.). The
ICM model expresses the vector-valued function as a linear combination of these sample functions

g(z) = Au(z), (7)

where u(z) € RY is the collection of the P sample paths’ evaluations at z, and A € RP*F is the
linear mapping that couples the independent vector and parameterizes the ICM model. As a result,



g is a MOGP GP(m, K) with mean function m = Am,, where m. = [m.]%; is obtained by
repeating the single-valued mean function m. in a P-vector. The covariance function is expressed as
K(z,z') = AAT ® k.(z,2'), where k. is the covariance function for the GP prior and ® denotes
the Kronecker product.

Reconstruction Model For the reconstruction task in line O] of Algorithm 1, we introduce the
manifold MOGP with intrinsic coregionalization model (mMOGP), which shares the feature map h
with the manifold GP used for learning the response surface in Section In our work, we assume
without loss of generality a zero-mean vector function for the mMOGP GP(0,B ® kj;), where
Ear(x,%x') = ke(h(x), h(x')) and the matrix B = AA”. We model the composition g o h, which
describes the relationship between the data space X and feature space Z, jointly with the MOGP
mapping from feature space back to the data space X'. Albeit sharing the same set of parameters
6, for the feature mapping, the mMOGP uses a kernel k. # k that differs from the one used for
modeling the response surface (see Section [2.T)).

2.3 Joint training

The joint training of the mGP, which models the response surface, and the mMOGP, which is used
for the reconstruction (see also Figure[I)) is performed via log marginal likelihood maximization.

Lo — yTKgly —log |K,| — x{ K 'xy — log |[Ky| + const (8)

Here, £ comprises terms from both the mGP and mMOGP models, where K, is defined in (E]), and
the covariance matrix of the mMOGP Ky = K + 021 is obtained by evaluating the Kronecker
product K = B ® k.(Z,Z) with the mMOGP kernel k.. The vector xy is a concatenation of the
columns of the data X. The maximizers [0}, 07, 0] of the log-marginal likelihood are the parameters
of the feature map h (which is shared between the mGP and the mMOGP) and the hyper-parameters
of the two kernels k and k. for the mGP and mMOGP, respectively. Optimization of (§) is performed
via gradient-based methods [34} 59].

Modeling the black-box objective function fx is orthogonal to the reconstruction problem. However,
when training these tasks jointly, they have a regularization effect on the optimization of the parameters
0;, of the feature embedding in the sense that the mapping h will not overfit to a single regression task:
the parameters 6}, will give rise to a feature space embedding that is useful for both the modeling of
the objective and the reconstruction of the original inputs.

The major computational bottleneck for evaluating the marginal likelihood comes from the term
x@K;lxv, which requires inverting an ND x N D covariance. We reduce the computational
complexity of this operation to O(N?) + O(D?) by exploiting the properties of the Kronecker
product, tensor algebra [44] and structured GPs [[15,435]]. Details can be found in the Appendix.

3 Constrained acquisition

We defined a joint probabilistic model for the response surface learning and the input reconstruction
tasks, summarized in lines [4H6 and [9] of Algorithm 1, respectively. We are now concerned with the
maximization of the acquisition function in feature space as described in line[§| of Algorithm 1. We
aim at maximizing the acquisition function in a low-dimensional feature space of the original data/
parameter space X. However, one problem that arises with the mMOGP decoding is that locations in
feature space that are too far away from data will be mapped back to the mMOGP prior. Since the
acquisition function is a key driver of exploration in BO, this is a problem. We address this limitation
by introducing a constraint based on the Lipschitz continuity of the mMOGP posterior. This will
ensure that candidates z, € Z selected in feature space will not collapse to the origin 0 € R” if the
reconstruction is defined as X, = p(z.), where p is the posterior mean of the mMOGP.

We want to leverage information from observed data for the multi-output mapping and exploit it
when optimizing the acquisition function in feature space. This can be achieved by introducing an
upper bound to the Euclidean distance
dist(z,Z;) = min |z; —z 9
(2.2:) = min_ |z~ 22 ©)
in feature space between the optimization variable z and the embedded training data Z; = [z, ..., zy,].
Here, NV, is the number of data points available at BO iteration ¢. The desired upper bound is
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Figure 2: Results of BO in feature space with linear embedding. Baselines MGPC-BO and NNC-
BO (solid) apply nonlinearly constrained acquisition maximization and recover same regret as the
unconstrained versions MGP-BO and NN-BO.

obtained by exploiting the Lipschitz continuity property of the multi-output posterior mean for which
le(z) — p(2z')|| < L||z — 2'||. Here, L denotes the Lipschitz constant of the posterior mean g of the
mMOGP. For common kernels, such as Matérnss and squared exponential, the posterior mean is (at
least) twice differentiable, and therefore Lipschitz continuous. The upper bound

dist(z, Z¢) < pimax(z*)/L (10)

allows us to specify how far from the data we can move in feature space without falling back to the
prior on all coordinates of the reconstruction. Here z* minimizes the Euclidean distance in (9), while
the numerator on the right-hand side is the component-wise maximum of p(z*). We estimate the
Lipschitz constant as the maximum norm of the Jacobian of the posterior mean of the mMOGP [18]

L = argmax ||V, u(z)|. (11)
zEZ

This maximization returns a valid Lipschitz constant [18] for the multi-output mapping for any choice
of norm in (TI). The Jacobian of the posterior mean is represented by a D x d matrix and we adopt
the max norm ||V, u(2)|lcc = max |u;g| fori =1,...,D and j = 1,...,d. Lower values of valid
Lipschitz constants L allow for exploration in larger regions of the feature space that still satisfy the
nonlinear constraint in (T0).

4 Results

We report results on a set of high-dimensional benchmark functions that possess an intrinsic low
dimensionality. In particular, we (i) assess the benefits of adopting a model structure as presented
in Figure [T} (ii) analyze the benefits of the constrained optimization of the acquisition function.
Our purpose is to compare empirical performances across (a) different characterizations of the
feature spaces, e.g. linear/nonlinear subspaces; (b) different properties of the objective function, e.g.
additivity/non additivity.

We compare our approach (MGPC-BO) with the random embeddings optimization (REMBO) [54]],
which performs BO on a random linear subspace of the inputs. Additional baselines include additive
models (ADD-BO) [26], which assumes an additive structure (across dimensions) of the objective
fx, and one recently proposed VAE-based model (VAE-BO) [[16] that learns a feature space with
deep networks offline. We also include a version of our model presented in Figure T[] (NNC-BO) that
uses a hierarchical ICM for the input reconstruction mapping g. The hierarchical ICM partitions the
data space into low-dimensional disjoint subsets, i.e. X' = X7 x ... x X, &; C R?3, and assumes
independence between reconstructions of different subsets, i.e. %D 1 %) where x(0 € X,
%) € X; for i # j. Moreover, the baselines MGP-BO and NN-BO correspond to same modeling as
in MGPC-BO and NNC-BO, respectively, but without applying the nonlinear constraint in (T0).

We evaluate the performances of all baselines across a set of common choices of acquisition functions:
expected improvement (EI) [38]], upper confidence bound (UCB) [49] and probability of improvement
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Figure 3: Optimization progression on product of sines with EI|3(a), UCB |3(b)|and PI Both
MGPC-BO and NNC-BO learn low-dimensional representations of the objective that are useful for
optimization.

(PI) [28]]. The maximization of the acquisition function is identical for all baselines: We first perform
a random search step with 5, 000 samples drawn uniformly at random, then we select the best 100
locations and apply gradient-based optimization from these starting locations. For box-constrained
acquisition optimization we use L-BFGS-B [34}59]]. For constrained acquisition optimization with
nonlinear constraints we use a trust-region interior point method [7].

Each BO progression curve shows the mean and standard error of the immediate logarithmic regret
logyo | f (Xbest(t)) — fmin|, Where fuin is the true minimum of fx and Xpes(t) € argmin;—1.+ fx (x;).
Mean and standard error are computed over 20 experiments with different random initializations. All
optimization experiments start with a budget of 10 data points and perform a total of 300 iterations.

4.1 Linear feature space

We consider benchmark functions that are defined in a d = 10-dimensional space. We map their
input space to a D = 60-dimensional space using an orthogonal matrix R%*? so that the overall
objective is fx (x) = f(z) = f(Rx).

Additive objective We minimize the Rosenbrock benchmark function f(z) = Z?;ll [100(z41 —
22)? + (2; — 1)?] in a 10-dimensional feature space. Figure 2] shows that MGPC-BO and NNC-BO
baselines descend quickly to relatively low regret in the early stages of optimization and recover the
same regret at termination as the unconstrained baselines MGP-BO and NN-BO. This highlights the
fast learning of feature-space representations that are effective for optimization when only few data
samples are available. The VAE-BO baseline also improves quickly but lacks exploration due to an
insufficiently expressive reconstruction mapping from feature space to data space. We highlight that
the VAE-BO model was trained on a budget of 500 inputs-observations pairs prior to starting the BO
experiments. This additional budget, however, still does not allow the VAE-BO to compare well with
baselines that learn a feature mapping during optimization. REMBO shows a slower descent due to
a limited exploration in at most d-directions of the data space, while the ADD-BO baseline suffers
from the coupling effects of the linear dimensionality reduction R.

Non-additive objective Here, we optimize the Product of Sines function f(z) =

10sin(z1) H£1 sin(z;) and compare results when the additivity assumption is not satisfied. Figure
shows the regret curves obtained optimizing the objective on a 10-dimensional feature space. Solid
lines describe the Lipschitz-regularized baselines MGPC-BO and NNC-BO (with nonlinear con-
straint), while dashed lines are baselines that apply box-constrained maximization of the acquisition
in feature space. The NN-BO and MGP-BO regrets flatten early. The reason for this is that the
acquisition function highlights locations in feature space that are too far away from the training data.
In this setting, the decoder g returns the same high-dimensional reconstruction, which prevents BO
from exploring. The constrained maximization of the acquisition is beneficial for both models. We
also note that the REMBO baseline conforms to the intrinsic linear low-dimensionality assumption
described Section[.1] However, the linear reconstruction mapping applied by REMBO also suffers
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Figure 4: BO performances expressed as log regret of the product of sines function in a nonlinear
embedding. Results are shown for EI UCB[(b)|and PIJ(c)] This limits the exploration in the
high-dimensional space.

from non-injectivity, and this slows exploration in the high-dimensional space. The linear projection
deteriorates performances of the additive model. ADD-BO assumes independence between axis-
aligned projections of the high-dimensional space, while the linear mapping R couples all subsets
of dimensions. This renders the optimization of independent additive components not effective.
The VAE-BO approach requires much larger amounts of data to learn a meaningful reconstruction
mapping than what is allowed in our BO experiment. As a result most locations in feature space are
mapped to similar reconstructions. This explains the flat curve observed on all VAE-BO progressions
with different acquisitions.

4.2 Nonlinear feature space with non-additive objective

We consider the product of sines functions and apply a nonlinear dimensionality reduction. We define
a single-layer neural network mapping to elevate the dimensionality of the objective to D = 60,
ie. fx(x) = f(oc(Rx)). Here o is the sigmoid activation function. We also compare with a
different parametrization of the covariance function of the decoder g. The baseline DMGP-BO
and DMGPC-BO define a single kernel k. for the reconstruction task while NN-BO and NNC-

BO define different kernels {kﬁ}?zl one for each subset of the partitioning. Figure {4/ shows the
progression of the regret over 300 BO iterations. We can observe consistent improvements of MGPC-
BO and DMGPC-BO with respect to VAE-BO which also assumes a nonlinear embedding for the
objective. The Performance of MGPC-BO and DMGPC-BO also retain better regret at termination
with box-constrained acquisition maximization, namely MGP-BO and DMGP-BO.

Overall, we observe that the constrained maximization of the acquisition function is beneficial for the
proposed model and variants of its reconstruction mapping, i.e. NN-BO, DMGP-BO. The advantages
are more more evident with the product of sines objective while with the Rosenbrock we retain no
worse regret. We also highlight that our performances improve as we move to problems which are
characterized by intrinsic low-dimensionality characterized by a nonlinear dimensionality reduction.

5 Conclusion

We proposed a framework for efficient Bayesian optimization of intrinsically low-dimensional
black-box functions based on nonlinear embeddings. In our model, the manifold GP learns useful
low-dimensional feature representations of high-dimensional data by jointly learning the response
surface and the reconstruction mapping. As a reconstruction mapping we use a manifold MOGP. Our
approach allows for optimizing acquisition functions in a low-dimensional feature space. However,
since exploration in feature space (driven by the acquisition function) does not necessarily mean
exploration in the high-dimensional parameter space, we introduce a nonlinear constraint based on
Lipschitz continuity of predicitons of the mMOGP, which encourages exploration in the vicinity of
the training data and eliminates un-identifiability issues in data space, which would otherwise hinder
optimization.
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