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Abstract

Estimating global pairwise interaction effects with uncertainty properly quanti-
fied is centrally important in science discovery applications. We propose a non-
parametric probabilistic method for detecting interaction effects of unknown form.
First, the relationship between the features and the output is modelled using a
Bayesian neural network, capable of representing complex interactions. Second,
interaction effects and their uncertainties are estimated from the trained model.
For the second step, we propose an intuitive global interaction measure: Bayesian
Group Expected Hessian (GEH), which aggregates information of local interac-
tions as captured by the Hessian. GEH provides a natural trade-off between type
I and type II error and, moreover, comes with theoretical guarantees ensuring
that the estimated interaction effects and their uncertainties can be improved by
training a more accurate BNN. The method also empirically outperforms available
non-probabilistic alternatives on simulated data.

1 Introduction

Estimating interactions between variables, and the uncertainty of the interactions, is a challenge
common to many data science tasks. For example in y = S121 + Box2 + P12x122 + €, where (14
is the strength of the inferaction. Here the shape of the interaction is known (multiplicative), but
this is not true in general. Estimating the uncertainty is equally important, to assess the statistical
significance of the detected interactions. Traditional methods include two general approaches: 1)
conducting tests for each combination of features, such as ANOVA based methods [5, [17] and
information gains [9, [18]]. These method usually require a polynomial number of tests, and lack
statistical power; 2) interactions are first learned by ’white-box” machine learning models, and then
recover the interaction effects from the trained model. For example, Lasso based methods [2 [10} [11],
and Gaussian processes [1]]. But all possible interactions have to be pre-specified, which restricts the
type of interactions that can be considered.

Here we extend the second approach, by using Bayesian neural network (BNN) to model interactions
without any specified form directly from the data. Intuitively, we first train a BNN on the data, then
find the encoded interactions by interpreting the trained model. However, the currently available
algorithms that both are interpretable and aim to recover all kinds of interactions [7, [12, 14, [16]
neglect uncertainty. In this work, we propose Bayesian Group Expected Hessian (GEH) to estimate
global interactions by aggregating local interactions from a trained BNN. The posterior distribution
of GEH represents the uncertainty of the interaction measure, and it can be seen as a non-parametric
analogy to the posterior distribution of |12 in previous linear model. Moreover it provides a natural
trade-off between type I and type II error by tuning the number of groups.
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2 Modeling Interactions and their Uncertainty

To learn interactions and their uncertainty, we first train a BNN, which both capable model all kinds
of interactions, and captures uncertainty. In practice it is also beneficial to model the main effects
separately from the interactions. We will use linear regression, y™ = 37x, for the main effects, and
a BNN, y™ = gW(x), to capture the interactions. A prediction from this hybrid model is the sum of
the two components y = y™ + y*", and given a dataset {X, Y}, training a BNN through variational
inference is equivalent to optimize:

£(0,5) = / 4 (W) log p(Y 57X + g (X))dW + KL(gs(W)|[p(W)). )

We use concrete dropout [6] per node in this case, i.e. gp Mm(W) = H1L:1 HkK:ll m, ;Bernoulli(1 —
D1k ), Where p; i is the dropout probability for node k of layer I, and my j is a vector of outgoing
weights from node £ in layer (.

3 Detecting Interactions

One way to measure interactions from a trained BNN gW (x) is to use the Hessian of g%V (x) w.r.t.
the input. For the multiplicative case in Section 1 this recovers the coefficient 812. However, for other
interactions, Hessian is not constant and represents interaction only at the point which Hessian was
calculated, making it a local interaction measure. To estimate interaction globally, an intuitive way is
to aggregate local effects into one global effect, and we propose below three ways of doing this.

Expected Absolute Hessian (EAH) and Absolute Expected Hessian (AEH) are the first two intu-
itive ways. EAH aggregates point-wise Hessian by calculating the expectation of its absolute value,
while AEH is defined as the absolute value of expected Hessian, such as:

9%g%W (x) 829W(X)] ‘
8xi8xj 3%6‘1:7 .

where p(x) is the empirical distribution of x. EAH has the lowest FNR (False Negative Rate),
because if there is any region in dom(x) where the Hessian is non-zero, EAH}’ will also be non-zero.
However, EAH has the highest FPR (False Positive Rate), since even when z; and x; do not interact
in the data generating process, the input Hessian between x; and x; will not be exactly 0 due to noise
inherent in the data set. This noisy effect will be further aggregated into the global interaction effect
and thus false interactions may be detected. In contrast with EAH, AEH has the lowest FPR but the
highest FNR. If we assume that noise is distributed with zero mean independently of the location in
dom(x), the noise will cancel when we take the expectation over dom(x). Consequently, FPR will
be low. On the other hand, AEH may also cancel out some true interactions, if the signs of Hessian
are different for different subregions of dom(x), leading to a high FNR.

EAH (W) = B,y [ H , AEH/ (W) = ‘Ep(x) [ @)

Group Expected Hessian (GEH) provides a natural trade-off between EAH and AEH, and thus
between FPR and FNR, by clustering dom(x) into subregions, calculating AEH for each subregion,

and then computing their weighted average. For M groups, M-GEH;’j is

M

.. Am 82 W
M-GEH;’J (W) = Z Z:i'wAk‘Ep(xxeAm) {éz“?;jx)} ‘ (3)
m=1 =1

where |A,,| is the size of the mth subregion A,,, and U,,Af:l A,, = dom(x). By choosing the

subregions A,, properly, GEH has the potential to aggregate only interactions while canceling out the
noise. To see this, assume that the noise is independent in dom(x), but interaction effects are similar
for close-by points in dom(x). Then, a partition can be estimated by a clustering algorithm, such as
k-means, with M clusters. Consequently, datapoints within A,,, are close to each other (with almost
same signs), which GEH will aggregate similarly to EAH. On the other hand, GEH will act like
AEH canceling out the noise when integrating over the subregion. When M = 1, 1-GEH reduces
to AEH, and when M = N, N-GEH becomes EAH, where NV is the number of data. In Eq W is
the weight in a BNN, i.e. a random variable. Therefore, M-GEH;’ (W) is also a random variable
whose distribution follows from the posterior distribution go(W) of W, thus we call it Bayesian
Group Expected Hessian. Unbiased estimators for the mean and variance of the Bayesian GEH can



be obtained through Monte Carlo integration. If we further assume that f(-) and g(-) are L-Lipschitz
functions, we can prove M-GEH satisfies following property (details in Appendix 4):

Accuracy Improvement Property: We can reduce the estimation error of GEH by reducing the
prediction error of g%V (+), and make the uncertainty of the Bayesian GEH arbitrarily well-calibrated
by improving the calibration of the distribution of predictions from g™ (-).

Determining the Number of Clusters: By increasing M, GEH can detect more complex inter-
actions, but also lead to a higher FPR. An ideal M™* is the smallest number that can capture
rich enough interactions for a specific problem, which means the detected interactions should
not change significantly by further increasing M. Based on [8]], we propose rank weighted dis-
tance to compare two interaction effect vectors corresponding to consecutive numbers of clusters:
A2, =3 (war (i) —war—1(2))?(mar (i) — war—1(4))2. Here, wpy (4) is the ith interaction effect with
M (M > 2) clusters, 7y (4) is the rank of wy (7). The contribution to A%, of those interactions
whose relative rank does not change is equal to 0. Otherwise it will be proportional to the squared
Euclidean distance of the effect sizes. One way to determine the number of clusters is to inspect
values of A3, plotted as a function of M, and choose M when A%, approximately converges to 0.

4 Experiments

We apply our approach to simulated toy data sets with 8 features with 7 interaction pairs, using
model: y; = Z?Zl Bl w; + 22:1 Bihy(zk, xr+1) + €, where hy(+) is the functional form of the
kth interaction (specified in Appendix) with weight 3. We compare the performance of interaction

detection of our approach (Bayesian M-GEH with M = 11 determined by A%,) with other non-
probabilistic alternatives (NID [16], SHAP [12] and Lasso [[L1]) for different signal to noise ratios.
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Figure 1: Experiment results on simulation data

Figure[I] (a) shows the ROC curves for the three global interaction methods introduced above, and
M-GEH has the highest AUC. Specifically, AEH failed to detect two symmetric interactions and thus
a high FNR. EAH failed to reject any false interactions on the basis of its 95% CI, so a high FPR .
In (b) we increase the signal-to-noise ratio (S/N) gradually from 0 to see which method can recover
the ground-truth interactions with the smallest S/N. It shows that 11-GEH identifies on average the
true interactions with a smaller S/N ratio than the other methods. Figure|l|(c) shows the estimated
uncertainties of interaction effects according to Bayesian 11-GEH. We observe that almost all true
interaction effects (red crosses) are covered by the corresponding 95% credible intervals (blue bars),
centered on the point estimates (black dots). See details and more experiments in Appendix 1-3.

5 Conclusion

We presented a novel method to learn global pairwise interactions with uncertainty using Bayesian
neural networks. We proposed a flexible global interaction measure, Bayesian Group Expected
Hessian, to detect interactions with uncertainty from a trained BNN. The method comes with
appealing theoretical properties, which ensure that by improving the underlying BNN, interaction
detection can be improved, and it provides a natural trade-off between FPRs and FNRs by tuning the
number of groups, which is important in critical fields. Our results provide meaningful uncertainty
estimations, and also empirically outperformed several non-probabilistic state-of-the-art baselines.
We also demonstrate its ability to detect interactions between higher-level features in Appendix 3.
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Appendix 1: Detail of experiment on simulation datasets

Data generating: x; is drawn uniformly from (0.5, 1.5) when j = 1,3, 5,6, 8, and from (—0.5,0.5)
when j = 2,4, 7. The functional form of the kth interaction is specified above the panels in Figure[2}
Noise € is Gaussian with zero mean and variance adjusted to a specified signal-to-noise ratio. Each
simulated dataset includes 20000 samples for training, 5000 for validation, and 5000 for testing.

Bayesian NN setting: To model interactions, we use a concrete dropout Bayesian neural network
with 3 hidden layers of sizes 100, 100, and 100 nodes for g% (x). During training, we set the
length-scale of the prior distribution  to 10~%, temperature of the Sigmoid function in the concrete
distribution to 0.1, and the learning rate of Adam to 1073,

Comparison methods: We apply Bayesian M-GEH and NID on the same trained neural networks,
using M = 11 which is determined by A%,. We implement SHAP interaction score with learning
rate equal to 0.01, and a Lasso regression containing all pairwise multiplicative interactions with
regularization set to 5 x 10~*. We include a linear regression model with the correct functional forms
for the true interactions and the multiplicative form for other interactions as the *Oracle’. We rank
feature pairs according to the absolute values of interaction scores from each method from low to
high. A good interaction measure should assign the true interactions as small a rank as possible.
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Figure 2: Comparison of detected interactions as a function of S/N. The 11-GEH method detects the
ground-truth interactions clearly better than the others (top left panel), with performance very close
to the Oracle. The rest of the panels show the ranks assigned to each of the seven true interactions.

Appendix 2: Experiment on public datasets

Datasets: We analyze 3 publicly available regression datasets: California housing prices, Bike
sharing, and Energy efficiency datasets. California housing prices dataset [[13]] aims to predict housing
prices using 9 features, such as location, number of rooms, number of people, etc. Bike sharing
dataset [4] predicts the hourly bike rental count from environmental and seasonal information. Energy
efficiency dataset [15]] aims to predict the load of heating and cooling from the shape of a building.
We use 70% of data for training, 20% for validation, and 10% for testing.

Experimental setup: We 1) analyse the original datasets and report and interpret the results, and 2)
construct null hypothesis by permuting the target variable in each dataset, which allows us to estimate
FPRs for the different methods. For each dataset, we construct 500 permutation datasets. Since all
the interactions in permutation datasets are false, if any 95% CI excludes 0, it will be considered as
a false positive, thus we can calculate the false positive rate for AEH, M-GEH, and EAH on each
dataset. The same settings are used as in previous section, except that only one hidden layer with 30
units is used for the third dataset, which has only around 600 data points.



Table 1: Top 3 interactions for real-world datasets without injected interactions

Datasets Interacting Features M-GEH 95% CI Pgayes  Pprermute
total room, population 1.532  (0.030,3.034) 0.026 0.000
California Housing  longitude, latitude 0.901 (0.241,1.561)  0.003 0.000
total room, income 0.531 (0.065,0.997)  0.011 0.000
workingday, hour 0.337  (0.253,0.421)  0.001 0.000
Bike Sharing temperature, humidity 0.183  (0.141,0.225)  0.001 0.000
hour, temperature 0.180  (0.122,0.238)  0.002 0.000
roof area, wall area 1.223  (0.689,1.757)  0.000 0.000
Energy Efficiency  roof area, height 0.938  (0.539,1.336)  0.001 0.000
compactness, roof area  0.699  (0.384,1.013)  0.000 0.000

Table 2: Average FPRs for different M on permuted datasets
AEH M-GEH EAH
California Housing  0.015  0.097 1.000
Bike Sharing 0.017 0.042 0.210
Energy Efficiency  0.013  0.051 0.089

Results: The optimal M for original datasets are 10, 9, and 15 for California housing, bike sharing,
and energy efficiency respectively. Table [I] shows results for top 3 interactions in the datasets. M-
GEH, CI, and Ppgye, are the estimated means, credible intervals, and P values from our method.
We also show a P value obtained by permuting the target multiple times (Ppermute), t0 create an
empirical null distribution of the maximum interaction score. All top interactions are meaningful
and statistically significant based on both our CIs and permutation. Examples are shown in
Figure[3] One strong interaction in the California housing data set is between longitude and latitude,
which together specify the location that obviously affects the price. As another example, whether the
day is a working day or not will affect the peak hours of bike renting.

California Housing Bike Sharing

Energy Efficiency

longitude
hour
compactness

latitude

working day roof area

Figure 3: Visualization of one detected interaction for each dataset.

Table[2] shows the average FPRs of different global interaction measure on 3 datasets. As expected,
AEH has the lowest FPRs, but it is unable to detect complex interactions such as the one between
working day and hour in the bike sharing dataset. EAH has the highest FPR, and in the California
Housing dataset in particular it considers all false interactions significant. The FPRs for M-GEH
are approximately correct (close to 5% when using 95% CIs).

Appendix 3: Detect higher-level feature interactions in MNIST

Motivation: We aim to demonstrate the ability of our method to detect interpretable interactions
between higher-level features. For this, we design a classification task where the positive label
represents a combination of interpretable characteristics of the input. The classification task here is to
identify a given combination of two digits, e.g. (5,3), and the inputs are obtained by concatenating



randomly chosen MNIST digits. Our expectation is that nodes in upper layers represent interpretable
properties of the inputs (e.g. "5 on the left"), such that an interaction between two such nodes
corresponds to the positive label (e.g. "5 on the left" and "3 on the right").

Datasets: We repeat the experiment twice: the first dataset consists of pairs (7,4), (4,7), (0,4), (4,0),
(7,0), (0,7), and the positive label is (7,0); the second dataset consists of pairs (5,4), (4,5), (3,4), (4,3),
(5,3), (3,5), and the positive label is (5,3).

Experimental setup: We train a LeNet (2 convolutional layers, and 3 fully connected layers) with
concrete dropout, and use M-GEH to detect interactions between nodes in the second top fully
connected layer, where nodes can be regarded as some high-level features learned by previous layers.
Clustering is also implemented on the same layer, and the optimal M for each task is 4 and 2,
respectively. We provide interpretations for these high-level features by finding one-digit image
inputs with white on the other side, e.g. (1,-) or (-,6) that, from all possible one-digit images in the
MNIST data, maximize the activation of the node. This is the activation maximization with experts
technique for interpreting nodes in intermediate NN layers [3]], with empirical distribution of digits in
MNIST as the expert.

Results: Figure [ shows the top two interactions in the second-highest layer, and presents inter-
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Figure 4: Higher-level feature interactions on MNIST dataset. The structure of the NN is simplified
for illustrative purposes.

pretations for the interacting nodes. We see that all the interacting nodes represent digits related
to the prediction tasks instead of unrelated digits, such as 3 in the first task or 7 in the second
task. Interestingly, in both tasks the strongest interaction is between nodes whose interpretation
matches the human intuition exactly. In the first task, (7,0) is obtained as an interaction between "7
on the left" and "0 on the right", and similarly for the task of classifying (5,3). The second strongest
interaction in the (5,3) classification is between nodes with interpretations (4,-) and (-,3), which may
be interpreted as excluding digit 4 on the left, when there is 3 on the right. The interaction between
nodes which both have interpretation (7,-) may be related to learning different parts of digit 7.

Appendix 4: Proof of Accuracy Improvement Property

We divide the Accuracy Improvement Property into two parts, and give the proof for each as following:

Property 1 The estimation error in interaction measures, L = . j|M—GEHZ’j - M—GEH}’j , is

linearly upper bounded by the prediction error € of g(-).

Property 2 When g% (-) is a probabilistic model (e.g. BNN), we can make the uncertainty of
the Bayesian GEH arbitrarily well-calibrated by improving the calibration of the distribution of
predictions from g% (-).



Proof of Property 1

The estimation error of interaction effect between feature ¢ and 7, Lhi = \M-GEHZ’j — M-GEH;}J [,
can be further derived through:

M
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where g is the learned neural network, and f is the underlining data generating process. We denote
147 as the estimation error from mth group.
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where p,;, is the highest density of the conditional probability distribution p(x|x € A,,). We divide
the domain of A,, into finite subregions, which contains a rectangle subregion A,,, and several
non-rectangled subregions (for example {A,,,; }?_, in Figure , and the rectangle subregion does
not have to touch the boundary of the group. This is generally true if the domain of each group is
compact.

= Pm

Use Figure 3 as an example, for subregion A,,,,

] 2

—‘ Fx2)) + (g% (xa) = f(xa)) = (g% (x1) = f(x1)) + (9" (x3) — f(x3))

<4e

(6)

where e is the prediction error of g(-). For those non-rectangled subresions, such as A,,1, according
to Green’s theorem:

‘ //A - axza;]f(x)) dz;dx;

—‘% f dfc ‘ < L’?{ dx]’ = L|Az;]|.
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Here we assume that g(-) and f(-) are both L-Lipschitz functions, and Az is the maximum difference
of feature x; in subregion A,,:.

Based on the above reasoning, we can conclude that:
M 1A,
LH = Z —ml I < qe+ BL (8)
M m — ’
m=1 Zk:l |Ak|

thus we proved property 1.

From Eq[8] we can notice that the upper bound consists of two parts: ae and SL. If the area of
the rectangle subregion A, is large, 8 will be small, and the bound will be tighter and also will
be dominated by the prediction error. Moreover, if we want to make the bound even much tighter,
instead of one rectangle we can use a combination of multiple rectangles inside the region.

Thus training a better BNN, can reduce the upper bound of interaction estimation error, thus can
obtain a more stable and accurate estimated interaction effects.

Proof of Property 2

If we denote 7(y, x) = 7(y|x)m(x) is the true model and p(g"W (X)L)}\(/) is the posterior predictive
distribution of model g*¥ (x) given x, we call the uncertainty of p(g"" (x)|x) perfectly calibrated
when 7(y|x) = p(g%W (x)|x). Another way to define calibration is: if the & percentage Bayesian
credible interval of the mean of p(g"W (x)|x) is the same as the £ frequentist confidence interval of the
mean of 7(y|x) for all £ € [0, 1] with an infinite number of data, predictive distribution p(g" (x)|x)
is perfectly calibrated. So if the credible interval is closer to the corresponding confidence interval,
p(gW (x)|x) is better calibrated. Here we assume that the mean of both 7(y|x) and p(g"W (x)|x) are
Gaussian distributed, which is generally true according to CLT.

In the rest of this section, we first define the closeness between the £ credible interval and the £
confidence interval. Then we show that for two predictive model gW1 (-) and g2 (-), if p(¢ W (x)|x)
is better calibrated than p(g™WV2(x)[x), then p(}"; . ¢ig™V* (xV)|x(1€%) is better calibrated than
(X ics #ig¥W2 (x@)[x(1€9)), where x(*¢9) is the set of | S| data points sampled from data distri-
bution. Thus we have proved property 2, because gradient (or Hessian) can be regarded as a linear
combination with infinitesimal changes, thus Eq.?? can be written in the form >°, #;g% (x(¥)) with
properly chosen ¢;.

Closeness between Two Intervals

We denote Crel to be the £ credible interval of 771, the mean of p(g"V (x)|x), and Conl to be the &
confidence interval of m, the mean of m(y|x). Then we define the closeness of Crel¢ and Conl to

be:
_ |CrelI¢ N Conl|

~|Crel¢ U Conlg|’
When 6(§) = 1, two intervals perfectly match, and when §(§) = 0, two intervals have no intersection.

5(¢)

Calibration Improvement Preserved under Linear Combination

We first prove that if p(g"WV' (x)|x) is better calibrated than p(g%W?(x)|x), then p(gW* (x()) +

gW1i(x1))|x® x(9)) is better calibrated than p(gWV2 (x() + gW2(x0))|x®) x(9)).

We denote that 1; ~ N(fi;,67), h; ~ N(ji;, %) where ri2; and ri; are the mean of p(g" (x(*)))

and p(gW (x))) respectively. And m; ~ N(p;,02), m; ~ N(pu;,0%), where m; and m;; are the

mean of 7(y?|x?) and 7(y ) |x7).

We only present the caS(ﬂ when Crel¢ N Conl is different from Crel¢ or Conl¢. We can calculate the

intervals based on Gaussian: CreI,(f) = [1; — ad;, fi; + ab;] and Conlg) = [ — a0y, pi + aoyl,

where « is the value of percent point function for £. Then for data x(*), the closeness of interval is
ofoi +6i) + pi — fls 1

Hi — Hi
51‘0( = = = =1-2 = N , 9
() oo+ 65) + fii — pi afoi +63) + [ — p ®

't is easy to prove when one interval contains another interval.



where we assume fi; + ad; is greater than p; + co; (another case can be shown in the same way).
And also for data x():

aloj +o) v — R _ 4 fij = 1

0j(ar) = ~ A : - .
! aloj +65) + ity — 1 aloj +65) + ity — 1

(10)

The mean of p(gW2(x(") + gW2(x1))|x®, x)) is equal to 17; + 7725, because x* and x7 are
independent. Thus 7i2; + 771 ~ N(fi; + fij, 67 + 67), and also m; +mj ~ N(p; + pj, 07 + 03).

Here we consider the intervals with percent point function equals to v/2a, then Crelij’ga = [ﬂi +

iy = V2062 + 62, i + fi; + V20, /67 + 62] and Conl ) = [+ pj — V2 [0? + 02, i +

Hy + \/?04, /JiQ + 0]2]. Thus the closeness of these two intervals is:

V2a(y/0F + 07 + /67 +62) + (i + ) — (fui + 1)
51,]'(\/5@) = \/ ! ’ ’ ’

V2a(\fo? + 02+ [62 +62) + (i + ) — (s + 115)
(/i + fij) — (pi + p5) (11)
V2a(\[0? + 02 + 62 + %) + (i + i) — (s + 115)

(i + ) = (i + p5)
P - > 0i(a) +dj(a) =1
R R e A

=1-2

>1-2

So when p(gW1 (x)|x) is better calibrated than p(gW2(x)|x), we have 6} (a) > 62(c) and i () >
62(ar). Then the lower bound of 7 ;(v/2c) will be greater than 67 ;(v/2a), and this applies for all o,
s0 p(gW1 (x)+gW1 (x))|x(), xU)) is better calibrated than p(g W2 (x(V)) g W2 (x(1))|x@), x (1)),
When p(gW1(x)|x) is perfectly calibrated, we have 5g’j(ﬂa) > 6 a) + 0j(e) =1 = 1, thus
p(gWr (x®) + gWi (x0))|x® x()) is also perfectly calibrated.

It can be generalized to the distribution of all possible linear combinations of predictions trivially,

since the linear combination of independent Gaussian distributions are also Gaussian distribution
with linearly combined mean and standard deviation. So p(>_,cq ¢ig™* (x()|x(€9)) is also better

calibrated than p(3°,; g $:g™W2 (xV)|x€9)) if p(gW1 (x)|x) is better calibrated than p(gW2(x)|x).
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