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Abstract

This paper presents a new approximation of the marginal likelihood of generative
models which is used as a score for anomaly detection. The score is motivated
by the shortcoming of the popular reconstruction error that it can behave arbitrar-
ily outside the known samples. The proposed score corrects this by orthogonal
combination of the reconstruction error and the likelihood in the latent space. As
experimentally shown on benchmark problems from anomaly detection and illus-
trated on a toy problem, this combination lends the score robustness to outliers.
Generative models evaluated with this score outperformed the competing meth-
ods especially in tasks of learning distribution from data corrupted by anomalies.
Finally, the score is compatible with contemporary generative models, namely
variational auto-encoders and generative adversarial networks.

1 Motivation

Generative models have made tremendous progress thanks to neural networks in past years with
primary focus on generation of realistic samples. However, since some of them, such as variational
autoencoder (VAE) [11], are based on the transformation of variables formula, the resulting model
represents an estimate of probability distribution of training samples. Thus, the model can be
used to evaluate probability of a new sample to be generated from the model. However, exact
evaluation requires to integrate over the latent variable which is problematic. While methods for
exact marginalization are available (HMC was proposed even in the first publication proposing
VAE [11]), they are too expansive to run routinely for evaluation of large number of samples as is
common in anomaly detection. Specifically in anomaly detection, it is not important to evaluate
the exact likelihood but only to establish an relative probability between any two data points. Thus
only a score function providing an order of the data is typically required. The score function can be
transformed in any way that preserves order of the data, since the threshold for anomaly classification
is determined in the subsequent step. Thus, both likelihood and log-likelihood function can be used as
scores. Therefore, we will often use term “score” as shorter term for “approximation of the marginal
likelihood”.

The most popular score for generative models is the reconstruction error, which is used for the
autoencodes [1, 23, 22] (although some works utilized it with restricted Boltzmann machines [7]).
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This score corresponds to log-likelihood of the observed data with Dirac approximation of the prior
on the latent variable. An alternative to the reconstruction error score is a score based on probability
of the data projected on the latent variable with respect to the prior distribution [25]. We conjecture
that such approximation is too coarse and its impact on accuracy is so severe that vanilla k-nearest
neighbor with basic L2 distance is frequently superior to approaches based on Variational Auto-
Encoders in [18]. This problem is demonstrated in Figure 1a, where the reconstruction error of
the autoencoder network defines the manifold well but also assigns high probability in areas where
no data have been observed. The distribution in the latent space (image of the encoding function),
assigns correct distribution on the manifold, but due to the many-to-one relation of the encoder, the
areas outside the manifold received probability that is too high Figure 1b .
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Figure 1: Anomaly scores of three different approaches for a toy problem, x “ rz2, zsJ ` e,
where ppzq “ N p0.5, 0.15q and ppeq “ N pr0, 0sJ, 0.01Iq. (a) reconstruction error pREpxq “
exp

`

´ 1
2 ||x´ fpgpxqq||

2
2{σRE

˘

, σRE “ varpx ´ fpgpxqqq, (b) ppzq|z“gpxq, and (c) the proposed
score (4).

As a remedy to above problems, we propose an orthogonal approximation of the marginal likelihood
that: (i) is theoretically justified, (ii) combines advantages of reconstruction error and probability of
the projection to the latent space, and (iii) it has reasonable computational complexity. This work
therefore does not propose a new model/architecture for detecting anomalies, but it proposes a new
score compatible with existing VAE and GAN.

After acceptance of this work, we have found that the same score has been proposed independently to
us in [16]. Since the score is the same, we focus on studying properties of the score with different
generative models (such as vanilla Variational Autoencoder) on a very different suite of problems [15],
and comparing the proposed score to legacy anomaly detectors, namely Isolation Forests [12] and
k-Nearest Neighbors [8]. Although these legacy detectors lacks the fancy "deep" sticker, they perform
very well on problems with hand-designed features, as has been shown in [18]. Thus, this study
nicely complements the work of [16], showing the strength (robustness to outliers in the training set)
and the weakness of the method (sensitivity to the quality of fit of the latent space).

2 Marginal Likelihood of Generative Models

Consider generative distribution of d-dimensional data samples x defined by

ppxq “

ż

pθpx|zqppzqdz pθpx|zq “ N px; fθpzq, σ
2Iq, (1)

and a chosen prior on the latent k-dimensional variable z which is either fixed ppzq “ N p0, Iq, or
with additional parameters pθpzq [20]. Distribution pθpx|zq is known as the decoder with fθpzq
being a neural network parametrizing the mean of the Normal distribution. The aim is to estimate all
parameters from the set of observations, txpiquni“1. Various model introduce auxiliary objects, for
example VAE introduces encoder, which is a conditional probability distribution qφpz|xq parametrized
similarly to the decoder as qφpz|xq “ N pz; gφpxq, diagpσpxqqq. The aim is to estimate parameters
pθ, φq from the data.

The estimated parameters uniquely define marginal likelihood in (1), but since it is a complex integral,
it is for VAE often approximated by the reconstructions error

ppxq «

ż

pθpx|zqδpz ´ gφpxqqdz 9 exp
`

´}x´ fpgpxqq}2
˘

, (2)
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where 9 denotes equality up to a multiplicative constant. Note that in this score, the integration
over z is replaced by an evaluation of the likelihood at the "most probable" point given by the
encoder qφpz|xq. A different approach is used with the flow-based models, such as [14], where the
the probability is evaluated by the change of variables formula (see Appendix B for computational
details):

ppxq “ pzpf
´1pxqq

ˇ

ˇ

ˇ

ˇ

Bf´1pxq

Bx

ˇ

ˇ

ˇ

ˇ

. (3)

However, there are some unexplained phenomena reported in [13] when this formula is used. More-
over, auto-regressive flows can be used only when the dimension of Z is equal to that of X , i.e.
d “ k.

x1

x2 z

z e x

eKz1

We propose an alternative to generative model with isotropic
noise (M1), which uses orthogonal decomposition of the noise (M2):

M1 : x “ fpzq ` e, M2 : x “ fpz1q ` eK,

where z1 is a point in the latent space, and eK is the observation noise
which lies in the normal space of the manifold defined by fθpzq. This
idea is visualized in the figure right, where the conventional noise is
denoted by green and the proposed orthogonal model by red color.

Denoting x1 “ fpz1q we can decompose any point x into

x “ x1 ` eK,

where x1 lies on a k-dimensional manifold, and eK in its normal space (of d´ k dimensions). Due to
the (local) orthogonality, we consider x1 and eK to be independent and the probability distribution ppxq
to be well approximated ppx1qppeKq. The probability of ppx1q is given by the change of coordinate
formula from pzpzq, and the ppeKq « ppeq. This reasoning yields the proposed approximation of the
marginal likelihood:

ppxq « ppx1qppeq “ pzpf
´1px1qq

ˇ

ˇ

ˇ

ˇ

Bf´1px1q

Bx

ˇ

ˇ

ˇ

ˇ

N px´ x1, σ2Iq. (4)

Note that the assignment ppeKq “ ppeq is correct up to a normalizing constant if the z1 point is
correctly estimated. This can be achieved e.g. by optimization, see Appendix A.

Notice that the proposed score uses reconstruction error (2) popular in the prior art together with the
exact likelihood used in (3). It should, therefore, benefit from both scores and prevent pathological
failures, as has been demonstrated on the motivational example in Figure 1. Moreover, unlike models
based on auto-regressive flows, the proposed score is not restricted to cases when the input and the
latent spaces have the same dimension.

3 Experiments: Anomaly Detection

The established definition of an anomaly is an event occurring with a probability so low, that it raises
suspicion of being generated by some other probability distribution. This implies that a sample x is
an anomaly if the probability density function ppxq is very low.

The experimental comparison of the proposed score to the reconstruction error has been performed on
nine problems adapted for use in anomaly detection by [6, 15] . These problems have been also used
in study [18] comparing sophisticated methods based on neural networks to k-nearest neighbor [8]
(kNN) and isolation forests (IF) methods [12] and it was found that kNN and IF dominated VAE and
GAN. The below study uses only easy anomalies, as more difficult anomalous samples are located in
areas of high densities of normal data, which raises doubts if they should be considered anomalous [6].
For each dataset, five distinct train/test splits were created with 80% of the dataset being used for
training and the remaining 20% for evaluation. The training set was either clean without any outliers
or contaminated with up to 10% anomalies. If there was less then 10% of anomalies, all available
anomalous samples were added to the training dataset. Importantly, these anomalies are not labeled
and the generative model is expected to learn the density describing legitimate as well as anomalous
data. It is expected that the threshold for detection of the anomalies has to be set higher than in the
case of clean data.
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no contamination 10% contamination
VAE VAE

Dataset RE Orth kNN IF RE Orth kNN IF
breast-cancer-wisconsin 0.87 0.95 0.98 0.94 0.77 0.93 0.86 0.86
cardiotocography 0.61 0.49 0.62 0.64 0.70 0.82 0.52 0.63
magic-telescope 0.76 0.91 0.86 0.92 0.85 0.91 0.9 0.81
pendigits 0.73 0.97 0.90 0.96 0.57 0.69 0.52 0.58
pima-indians 0.85 0.84 0.86 0.88 0.85 0.92 0.88 0.87
wall-following-robot 0.65 0.70 0.72 0.66 0.50 0.59 0.44 0.52
waveform-1 0.79 0.68 0.79 0.82 0.49 0.70 0.47 0.54
waveform-2 0.81 0.71 0.81 0.83 0.51 0.72 0.48 0.53
yeast 0.63 0.81 0.68 0.75 0.69 0.70 0.63 0.66

Table 1: Area under ROC curve of detectors based on variational autoencoder (VAE) with the
proposed score based on orthogonal decomposition (Orth) and with the usual reconstruction error
(RE), and also that of k-nearest neighbor (kNN) and Isolation forests (IF). The left / right part of the
table show AUCs when the training set does not contain any outliers / is poluted with 10% outliers
(or less if 10% is not present in the data set).

For each dataset and split of the data, a large number of models (280 to be exact) were trained differing
by hidden layer dimensions P t32, 64u, latent layer dimension (if smaller or equal than the data
dimension) P t2, 4, 9u. Both encoder and decoder contained three fully connected hidden layers of
neurons with the "swish" activation function [17]. In order to represent the data space well, the decoder
contained an extra output layer of neurons with linear activation function. All models were optimized
using the ADAM optimizer [10] with default setting and with batch size 100 for 10000 steps. Finally,
all experiments are implemented in the Julia programming language [3] with Flux.jl [9]. The code
for the experiments is available at https://github.com/anomaly-scores/Anomaly-scores.
Variance of the noise σ is treated as a hyper-parameter σ2 P t0.01, 0.1, 1, 10u.

The quality of detection is measured using the area under the ROC curve (AUC), which is considered
as a standard in the field of anomaly detection. In total, 280 models differing by hyper-parameters
were trained for each problem and data-split, the best combination of hyper-parameters was selected
according to AUC on the training set, which simulates the scenario where some examples of anomalies
are available for model selection.2

The results are summarized in Table 1. VAE with the proposed orthogonal score (denoted Orth)
dominates other methods when training set is contaminated with outliers. On the contrary, for
problems where the training data are clean, the reconstruction error is often better than the proposed
score, and the prior art, k-NN and isolation forest, is dominating both of them. We suspect the poor
detection on clean dataset is due to the mismatch between prior and posterior distributions on the
latent space.

3.1 Robustness to outliers

To shed light on the robustness, we have performed a synthetic experiment on the toy problem from the
motivation section, where the data were generated as x “ rz2, zsJ ` e, where ppzq “ N p0.5, 0.15q
and ppeq “ N pr0, 0sJ, 0.01Iq. Furthermore, the training data were contaminated with 4 outliers
sampled uniformly on the displayed grid. For this problem we have trained a vanilla variation
autoencoder with 2 dense layers with a Normal distribution N p0, Iq on the latent space.

Figure 2 shows the true and reconstructed data, samples from prior and projection of the data to the
latent space, exact marginal likelihood, likelihood computed using the reconstruction error, likelihood
using the transformation of variables, and the orthogonal score. We can see how the reconstruction
error is distorted by the outliers, as the auto-encoder thrives to achieve perfect reconstruction. The
posterior in the latent space is relatively well matched, with an occasional numerical outlier at the
bottom. The proposed score is a product of the previous scores, and assigns high probability only to
areas where both of these scores are high. We conjecture that the reason why the proposed orthogonal

2This scenario might not be as unrealistic as it sounds, as one typically has examples of a few anomalies.
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Figure 2: A toy example with data sampled from x “ rz2, zsJ ` e, ppzq “ N p0.5, 0.15q and
ppeq “ N pr0, 0sJ, 0.01Iq, polluted by outliers. Top row in the left to right order shows: i) the
original and reconstructed data, ii) samples from the prior and projection of the data via the encoder,
iii) exact marginal likelihood computed numerically. Bottom row in the left to right order shows: i)
the reconstruction error, ii) likelihood using the change of coordinates formula, and iii) the orthogonal
score.

SVAE VAE
Dataset RE Orth RE Orth
breast cancer 0.70 0.92 0.77 0.93
cardiotocography 0.59 0.88 0.70 0.82
magic-telescope 0.86 0.92 0.85 0.91
pendigits 0.64 0.69 0.57 0.69
pima-indians 0.82 0.94 0.85 0.92
wall-following-robot 0.50 0.62 0.50 0.59
waveform-1 0.52 0.82 0.49 0.70
waveform-2 0.50 0.70 0.51 0.72
yeast 0.75 0.83 0.69 0.70

Table 2: Area under ROC curve of detectors based on spherical variational autoencoder (SVAE) and
regular VAE with the proposed orthogonal score (Orth) and with the usual reconstruction error (RE).

likelihood is robust is that each of the previous scores is sensitive to different artifacts and their
combination allows to suppress them.

The same toy example is used to illustrate the problem with mismatch between the prior and the
encoded data in Figure 3. Note that the reconstruction error is not affected by the mismatch and
identifies the latent space of the data well. However, the change of variables score is too concentrated
on a small part of the data yielding underestimated marginal likelihood.

3.2 Richer prior model using VAMP prior

Below we study an impact of a richer family of prior distributions pz on the latent layer in VAE.
Specifically, we have used Spherical VAE (SVAE) with the VAMP prior [20] instead of a single-
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Figure 3: A toy example with data sampled from x “ rz2, zsJ ` e, ppzq “ N p0.5, 0.15q and
ppeq “ N pr0, 0sJ, 0.01Iq, polluted by outliers. VAE with 1d latent variable. Top row in the left to
right order shows: i) the original and reconstructed data, ii) samples from the prior and projection
of the data via the encoder, iii) exact marginal likelihood computed numerically. Bottom row in the
left to right order shows: i) the reconstruction error likelihood, ii) likelihood using the change of
coordinates formula, and iii) the orthogonal score.

component Normal distribution. Spherical VAE has latent space restricted to unit sphere, hence
the prior distribution in VAMP setting is a mixture of von Mises-Fisher distributions [5]. SVAE
was previously shown to outperform the conventional choice in [2]. The SVAE is trained using
Wasserstein divergence instead the usual KL divergence. The closeness of distributions gpxq where
x „ ppxq and z „ ppzq is measured using the Maximum Mean Discrepancy (MMD) with IMQ
kernel [19], where its width c is treated as a hyper-parameter c P t0.001, 0.01, 0.1, 1u. The number
of components in the prior mixture was treated as a hyper-parameter with values P t1, 4, 16u. Finally,
the trade-off between enforcing reconstruction error and closeness of the distributions represented by
β P t0.01, 0.1, 1, 10u which is also treated as a hyper-parameter.

Table 2 shows AUCs of anomaly detectors based on spherical VAE with a VAMP prior (denoted as
SVAE) and with single Normal distribution (denoted as VAE). While the reconstruction error does
not benefit from the richer prior, as can be expected since it is not part of the score, the proposed
Orthogonal score is significantly better, as has been suggested in the previous section.

4 Conclusion

This work has proposed a new approximation of marginal likelihood of generative models combining
reconstruction error and probability in the latent space. The approximation, which we prefer to call
score rather than an approximate likelihood, is cheaper to compute than scores based on Monte Carlo
marginalization. The experimental comparison to state of the art demonstrated that the new score is
very robust to contamination of the training set by anomalies. In that case, generative models with
the proposed score decisively outperform the conventional reconstruction error score in anomaly
detection, as well as the k-NN and isolation forest methods. From an investigation on a toy problem,
we suspect that the source of robustness is the combination of reconstruction error and likelihood in
the latent space.
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The experimental comparison also revealed that k-NN is frequently better when the training data
are clean, i.e. they do not contain any outliers. We believe that this behavior is due to the mismatch
between prior and posterior distributions in the latent space. In the future work, we would like to
validate this suspicion using more sophisticated priors. Another direction of research would be to
estimate, how the proposed approximation of the marginal likelihood differs from the true likelihood.
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A Analysis of the noise model

Let’s now briefly discuss relation of the isotropic model M1 and the orthogonal model M2. The
assumptions of the latter might seem to be very restrictive at the first sight, as it might not model the
reality accurately. Below it is argued that since in practice one almost always fails to identify the true
f, the assumption does not decrease the expressiveness of the model, but it changes the structure of
the noise. Note that the conventional isotropic residue e can be decomposed into part e‖ lying in the
space tangential to fpzq and orthogonal: e “ e‖ ` eK. Due to the bijection of f there exists z1 such
that fpz1q “ fpzq ` e‖. Consequently, x can be expressed as x “ fpz1q ` eK, which conforms with
model M2. It effectively means that e‖ is absorbed by the distribution on the latent space ppzq and
by the learned decoder f.

Recent analysis of [4] suggests that standard VAE with reduced dimension of the latent variable
is learning well the manifold but no the distribution on it. This indicates that may be learning the
proposed model M2 rather than the assumed model M1.

If we assume that the estimation procedure is learning the standard isotropic model, we can evaluate
local correction of ppz1q. From the above definitions it holds that ε‖ “ fpz1q ´ fpzq. Using Taylor
expansion at point fpz1q to approximate fpzq,

ε‖ “ fpz1q ´ fpzq «
Bfpzq

Bz

ˇ

ˇ

ˇ

ˇ

z1

pz1 ´ zq,

where Jpz1q “ Bfpzq
Bz

ˇ

ˇ

ˇ

z1
denotes Jacobian of f at point z1 and the error term has been omitted. Using

this approximation, z1 can be expressed as

z1 “ z ` Jpz1q´1ε‖.

Now recall that z „ N p0, Iq and ε‖ „ N p0, σ2q, which means that z1 „ N p0, I` σ2Jpz1qJpz1qTq.
This correction removes the discrepancy between model assumed during training and during evalua-
tion and the corrected score equals to

ppxq « N
`

z1|0, I` σ2Jpz1qJpz1qT
˘

ˇ

ˇ

ˇ

ˇ

Bf´1pz1q

Bz1

ˇ

ˇ

ˇ

ˇ

N px´ fpz1q, σ2Iq. (5)
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The above model assumes Jpz1q to be constant, which is not technically correct. Alternatively, in
the evaluation of auto-encoders, we know both z and z1, the Taylor expansion can be made around z
instead in z1, which changes the criterion to

ppxq « N
`

z1|0, I` σ2JpzqJpzqT
˘

ˇ

ˇ

ˇ

ˇ

Bf´1pz1q

Bz1

ˇ

ˇ

ˇ

ˇ

N px´ fpz1q, σ2Iq. (6)

The formulation of the likelihood (6) can be used with generative models identified by GANs. The
point z can be found by solving arg minz }fpzq ´ x}2, however in practice one would probably
use variants with encoders satisfying cyclic properties [24, 21], as they might be faster to solve the
optimization problem and also more stable.

B Determinant of the Jacobian

The calculation of the Jacobian in the evaluation of ppx1q in (4), where x1 “ fpz1q seems to be an
ill-posed problem, because the Jacobian Bfpzq

Bz is a rectangular matrix due to f : Rk Ñ Rd with
d ą k. But recall that x1 always lays on the manifold, and therefore the determinant should be
calculated only with respect to the coordinate system on the manifold, which is of dimension k and
therefore properly defined.

Let’s align the coordinate system on x such that the last d´ k coordinates span the normal space of
fpzq. Then due to the definition of the normal space it holds that the last d´k columns of the Jacobian
are all zeros, i.e. p@j ą kq

´

Bfpzqj
zi

ˇ

ˇ

ˇ

z
“ 0

¯

. Contrary, the first k components of the Jacobian define

a local approximation of the manifold around the point fpzq. If f is a bijection, which is assumed
here, they have a non-zero determinant.

In practice, the determinant can be easily calculated using Singular Value Decomposition of Jpfpzqq.
Specifically, svdpJpfpzqq “ UΣV˚, where U and V are unitary matrices and Σ is a diagonal
matrix with k non-zero singular values on the diagonal. The columns of V corresponding to zero
singular values form a base of the normal space, and those corresponding to non-zero singular values
form a base of the local approximation of the manifold. Since determinant is equal to the product of
eigenvalues and singular values are their square roots, the product of squares of non-zero singular
values is equal to the determinant of Jpfpzqq with fpzq determining the manifold.

C Is there a manifold in the data?
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Figure 4: AUC of anomaly detection for a range
of latent dimensions for the proposed criteria (red)
and reconstruction error score (blue).

Since the data lie in the full space, it should
be possible to find a mapping to the same di-
mensional latent space, in a similar manner as
the flow based methods. The decomposition
into a manifold and noise part may be seen as
a simplification of the full model. We test if
this modeling assumption is valid on an exhaus-
tive search over all possible dimensions of the
latent space on the "breast-cancer-wisconsin"
dataset which has eight dimensions. The re-
sults of anomaly detection for all possible latent
dimensions are displayed in Figure 4 with vari-
ability with respect to the splits of test/train data
and hyper-parameters.

Note that while the conventional score based
on reconstruction error is almost insensitive to
the latent dimension, the performance of the
anomaly detection based on the proposed score has a flat peak at 4–6 dimensions with decreasing
performance for lower as well as higher dimensions. This suggests, that the modeling assumption
of the low-dimensional latent space is beneficial. This may be relevant to the discussion on the
performance of the full-dimensional latent space [13].
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