
Differential Bayesian Neural Nets

Andreas Look and Melih Kandemir
Bosch Center for Artificial Intelligence

{andreas.look, melih.kandemir}@de.bosch.com

Abstract

Neural Ordinary Differential Equations (N-ODEs) are a powerful building block for
learning systems, which extend residual networks to a continuous-time dynamical
system. We propose a Bayesian version of N-ODEs that enables well-calibrated
quantification of prediction uncertainty, while maintaining the expressive power of
their deterministic counterpart. We assign Bayesian Neural Nets (BNNs) to both the
drift and the diffusion terms of a Stochastic Differential Equation (SDE) that models
the flow of the activation map in time. We infer the posterior on the BNN weights
using a straightforward adaptation of Stochastic Gradient Langevin Dynamics
(SGLD). We illustrate significantly improved stability on two synthetic time series
prediction tasks and report better model fit on UCI regression benchmarks with our
method when compared to its non-Bayesian counterpart.

1 Introduction

Deep neural nets are in widespread use of machine learning applications. They owe their unprece-
dented expressive power to repetitive application of a function that non-linearly transforms the input
pattern. Furthermore, if the transformation is designed to be a ResNet module [3], the processing
pipeline can be viewed as an ODE system discretized across even time intervals [1]. Rephrasing this
model in terms of a continuous-time ODE is referred to as a Neural ODE. While the generalization ca-
pabilities of Neural ODEs have been closely investigated by [1], their success as a Bayesian inference
building block remains unexplored. In order to answer this question, we devise a generic Bayesian
neural model that solves a SDE [8] as an intermediate step to model the flow of the activation maps.
Our method differs from earlier work in that we model the drift and diffusion functions of an SDE as
Bayesian Neural Nets (BNN), instead of the mean and covariance functions of the Gaussian Process
(GP) posterior predictive [4] or a vanilla neural net with a fixed dropout rate global to the synaptic
connections [7]. Other attempts of coupling SDEs with neural networks consist of finding unknown
parameters to otherwise known functions [9].

The contributions of our work are as follows: i) we build a Neural SDE by assigning two seperate and
potentially overlapping BNNs on the drift and diffusion terms, ii) we show how SGLD can naturally
be used to infer the consequent model as an alternative to variational inference, iii) and we illustrate
how crucial uncertainty-aware learning is for time series modeling with Neural ODEs.

2 Stochastic Differential Equations

An SDE can be expressed in the following generic form

dx(t) = µ(x(t), t)dt+ σ(x(t), t)dW (t). (1)

The equation is governed by the drift µ(x(t)), which models the deterministic dynamics, and the
diffusion σ(x(t)), which models the stochasticity in the system. Further, dt represents the time
increment and W (t) is a Wiener process. There does not exist any closed-form solution to generic

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

SDEs, hence numerical approximation techniques are employed, possibly the most popular of which
is the Euler-Maruyama discretization method, which suggests the following update rule

xi+1 = xi + µ(xi, ti)∆t+ σ(xi, ti)∆W, (2)

where ∆W ∼ N (0,∆t). The same approximation holds when the variable xi is a vector x ∈ RD.
In this case the diffusion term is a matrix-valued function of the input and time σ(xi, ti) ∈ RD×P

and corresponding ∆W is modeled as P independent Wiener processes ∆W ∼ N (0,∆tIP), where
IP is a P -dimensional identity matrix [8].

3 Differential Bayesian Neural Nets

Assume for brevity that we are given a supervised learning problem, i.e. we aim to find a mapping
from inputs x to outputs y. We pose the below probabilistic model

θ1, θ2 ∼ p(θ1)p(θ2), prior

h(t) ∼ p(h(t)|θ1, θ2), DBNN

y|h(T), x ∼ p(y|h(T)). s.t. h(0) ∼ δx. likelihood

x

DBNN

h(T)

y|h(T)

θ ∼

Figure 1: Illustration of
our algorithm. First an
input x is passed through
the DBNN. The resulting
distribution is then used
to calculate y|h(T).

The last step above is a likelihood suitable to the learning setup Dirac
delta δx evaluated on the input observation x and for some chosen T that
represent the duration of the flow, namely the model capacity. The critical
intermediate step of the model is the stochastic process on the continuous-
time activation maps h(t), which we refer to as the Differential Bayesian
Neural Net (DBNN):

p(h(t)|θ1, θ2) =

∫
mθ1(h(t), t)dt+

∫
Lθ2(h(t), t)dB(t)

, where θ1 and θ2 are the synaptic weights of BNNs mθ1(·) ∈ RD on the
drift vector and Lθ2(·) ∈ RD×P on the diffusion matrix, respectively, for
some rank 0 < P ≤ D. The distributions p(θ1) and p(θ2) are priors on
the BNN weights, hence their properties are known or designable a-priori.
The function B(t) is Brownian motion implied by a Wiener process W (t)
with zero mean and unit covariance without loss of generality, and the
related operation around Lθ2(h(t), t) is the Itô integral [8]. Note that
these BNNs may have shared weights, i.e. θ1 ∩ θ2 6= ∅. The dynamics
of the resultant stochastic process are given by the below stochastic
differential equation

dx(t) = mθ1(x(t), t)dt+ Lθ2(x(t), t)dW (t).

The process p(h(t)|θ1, θ2) does not have a closed-form solution, sometimes does not even have an
expressable density function, generalizeable to the neural net architecture. However, it is possible to
take approximate samples from it by a discretization rule such as Euler-Maruyama. As a work-around,
we first marginalize the stochastic process out of the likelihood by Monte Carlo integration

p(y|θ1, θ2, x) =

∫
p(y|h(T), θ1, θ2, x)p(h(T)|x)dh(T) ≈ 1

M

M∑
m=1

p(y|h̃Tm, θ1, θ2, x),

where h̃Tm is the T th time point realization of the Euler-Maruyama draw m. This approximation
appears in the literature as the simulated likelihood method [10]. Having integrated out the stochastic
process, the rest is a plain approximate posterior inference problem on p(θ1, θ2|x, y). The sample-
driven solution to the stochastic process h(T) integrates naturally into a Markov Chain Monte Carlo
(MCMC) scheme. We choose Stochastic Gradient Langevin Dynamics (SGLD) [12] with a block
decay structure [6] to benefit from the loss gradient. Our training scheme is detailed in Algorithm 1.

2

Algorithm 1 DBNN Inference

Inputs: Initial weights θ0 := (θ01, θ
0
2), Decay rate λ, Flow time T , Minibatch size K, Iteration count I

Outputs: BNN weights {θi}i=1:I

for i← 1 : I do
Sample minibatch {xk, yk}k=1:K

for k ← 1 : K do
h0
km = xk

for m← 0 : M do
for t← 0 : T do
h̃t+1
km ← h̃tkm +mθ1(h̃tkm, t)∆t+ Lθ2(h̃tkm, t)∆W

end for
end for
p̃(yk|θi−1

1 , θi−1
2 , xk)← 1

M

∑M
m=1 p(yk|h̃

T
km, θ

i−1
1 , θi−1

2 , xk)
end for
θi ← θi−1 + ε

2

[
∇ log p(θi−1) + N

K

∑K
k=1∇ log p̃(yk|θi−1

1 , θi−1
2 , xk)

]
+N (0, ε)

if i mod λ = 0 then
ε← ε/2

end if
end for

4 Experiments

We compare our method DBNN against Neural SDE (N-SDE) [7], its closest and most-recent relative,
which applies a fixed-rate dropout on the neural net of the diffusion matrix and uses RMSE as loss
function. Hence, we evaluate how making both drift and diffusion neural nets fully Bayesian and
using a modified variant of SGLD for posterior weight inference improves the results.

Time series modeling. In the first experiment one draw of the Vasicek model [11] with equally
spaced observations is given. We specify the model as dx = 0.5(1− x)dt+ 0.25dW . It starts from
the initial point (0,0), converges to 1, and then oscillates around it. Figure 2a plots the results. Our
method is capable of modeling the underlying dynamics and reflects the noisy nature of the data. In
contrast, the NSDE approach results in excessively smooth predictions and uncalibrated uncertainty
scores. Figure 2b shows results for non-equally spaced data. Ground truth is the centered sigmoid
function, from which 20 noisy observations have been sampled. DBNN is capable of representing
the predictive uncertainty and shows increasing uncertainty in the interpolation and extrapolation
areas. Although N-SDE learns an accurate predictive mean, its uncertainty scores show little to no
correlation to the observed data. In both experiments we observed that N-SDE did not converge for
dropout rates > 5%. Additionally we found N-SDE to behave sensitive towards the choice of time
dependence for drift and diffusion. Our results demonstrate the necessarity to properly account for
uncertainty during training, as we do in DBNN, in order to get well calibrated predictive uncertainty.

0 2 4 6 8 10
x1

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

N-SDE

DBNN

True

(a) Time series prediction based on noisy and equally
spaced observations. Underlying ground truth func-
tion is the stochastic Vasicek model.

−4 −2 0 2 4
x1

−1.0

−0.5

0.0

0.5

1.0

x
2

N-SDE

DBNN

True

Training points

(b) Time series prediction based on noisy and ran-
domly distributed observations. Underlying ground
truth function is the centered sigmoid function.

Figure 2: Time series prediction results for DBNN and N-SDE with fixed dropout diffusion [7].

3

Regression. For regression, we place an additional linear layer above h(T) in order to match the
output dimensionality. Since we can estimate the properties of the distribution p(h(T)|x), with
mean mθ1 and covariance Lθ2L

T
θ2

= Σθ2 , we propagate both moments through the linear layer. The
predictive mean is thus modeled as

∑
aimθ1,i + bi and predictive variance as

∑
aiajΣθ2,i,j . It

is possible to design Lθ2 as a diagonal matrix assuming uncorrelated activation map dimensions.
Further, Lθ2 can be parameterized by assigning the DBNN output on its Cholesky decomposition, or
it can take any other structure of the form RD×P . When choosing P < D, it is possible to heavily
reduce the number of learnable parameters. Table 1 shows results for the UCI benchmark dataset. We
use the experiment setup (network architecture and train/test splitting schemes) defined in [5]. Further,
we choose the hyperparameters of N-SDE as in [2]. DBNN brings either improved or competitive fit
on test data in all data sets. Modeling correlated noise also improves the results in most data sets.

Table 1: Test log likelihood values of 8 benchmark datasets.

boston energy concrete wine_red kin8mn power naval protein

N 506 768 1,030 1,599 8,192 9,568 11,934 45,730
D 13 8 8 22 8 4 26 9

PBP [5] -2.57(0.09) -2.04(0.02) -3.16(0.02) -0.97(0.01) 0.90(0.01) -2.84(0.01) 3.73(0.01) -2.97(0.00)
Dropout [2] -2.46(0.06) -1.99(0.02) -3.04(0.02) -0.93(0.01) 0.95(0.01) -2.80(0.01) 3.80(0.01) -2.89(0.00)
N-SDE [7] Dropout -2.48(0.03) -1.35(0.01) -3.05(0.03) -0.97(0.01) 0.94(0.02) -2.82(0.01) 3.83(0.03) -2.89(0.00)
DBNN Diagonal -2.47(0.04) -1.60(0.09) -3.05(0.03) -0.93(0.02) 1.06(0.01) -2.81(0.01) 2.78(0.00) -2.85(0.01)
DBNN Cholesky -2.45(0.03) -1.22(0.05) -3.05(0.03) -0.92(0.02) 1.08(0.01) -2.80(0.00) 2.97(0.09) -2.81(0.00)

5 Conclusion

We extend Neural ODEs to a fully Bayesian setting. The model flows an input observation through
stochastic dynamics, where both the drift and the diffusion follow a BNN. The posterior on the
BNN weights is approximated by a modified variant of SGLD. The resultant model, called DBNN,
outperforms the recent N-SDE in a number of time series prediction and regression tasks. Our model
benefits from the natural flexibility of using a variety of possible network designs for mθ1 and Lθ2 ,
as long as the input and output dimensions remain same. Thus the model is easily extendable towards
other tasks, such as image segmentation or reinforcement learning.

References
[1] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary Differential Equations.

NeurIPS, 2018.

[2] Y. Gal and Z. Ghahramani. Dropout As a Bayesian Approximation: Representing Model Uncertainty in
Deep Learning. ICML, 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. CVPR, 2016.

[4] P. Hegde, M. Heinonen, H. Lähdesmäki, and S. Kaski. Deep learning with differential Gaussian process
flows. AISTATS, 2019.

[5] J. M. Hernández-Lobato and R. P. Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian
Neural Networks. ICML, 2015.

[6] C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned Stochastic Gradient Langevin Dynamics for
Deep Neural Networks. AAAI, 2016.

[7] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh. Neural SDE: Stabilizing Neural ODE Networks
with Stochastic Noise. ArXiv, abs/1906.02355, 2019.

[8] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer, 2003.

[9] T. Ryder, A. Golightly, A. S. McGough, and D. Prangle. Black-Box Variational Inference for Stochastic
Differential Equations. ICML, 2018.

[10] S. Särkkä and A. Solin. Applied Stochastic Differential Equations. Cambridge University Press., 2019.

[11] O. Vasicek. An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2),
1977.

[12] M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. ICML, 2011.

4

	Introduction
	Stochastic Differential Equations
	Differential Bayesian Neural Nets
	Experiments
	Conclusion

