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Abstract

We develop a method for learning robust representations using a Variational Au-
toencoder where we explicitly control the sensitivity to perturbations in observa-
tions. We propose a regularization mechanism to the encoder network where we
let the encoder to target a distribution of pairwise conditional random field that
enforces smoothness in the latent representations. The target of the encoder is
different from the one implied by the original decoder but its marginals can be
calculated easily and the lower bound of the original model is still valid. Under
certain choices of pairwise coupling potentials for the random field, this formu-
lation naturally leads to the minimization of the entropy regularized Wasserstein
distance. Our approach provides an alternative practical approach to circumvent
the difficult task of explicitly regularizing a neural network by putting priors on
the parameters. We illustrate by experiments that improvements in the down-
stream adversarial accuracy can be achieved by learning robust representations
without a reference to a particular downstream task.

1 Introduction

In recent years, significant advances have been made in deep generative models like Variational
AutoEncoders (VAEs) [6, 5] or Generative Adversarial Networks (GANs) [4]. The high quality
of samples suggests an implicit brute force approach towards solving practical problems beyond
data generation: learn representations from abundantly available unlabeled data and then use these
representations as features for a variety of downstream prediction and decision making tasks. If
the captured generative model is rich enough to explain the data generation process there may be
possibly a compact representation that can serve as ’fit for all purposes’ features, that improves data
efficiency and computational requirements for learning.

Unfortunately, the quality of generated samples is not always a good proxy for the quality of the
learned representation. To illustrate this point, we will focus on the VAE, and in particular the
optimization objective, known as the evidence lower bound (ELBO).

The VAE corresponds to the latent variable model p(X|Z, θ)p(Z) with latent variable Z and obser-
vation X . The forward model p(X|Z = z, θ) (the decoder) is represented using a neural network
g with parameters θ, usually the mean of a Gaussian N (X; g(z; θ), vIx) where v is a scalar ob-
servation noise variance and Ix is an identity matrix. The prior is usually a standard Gaussian
p(Z = z) = N (z; 0, Iz). The exact posterior over latent variables p(Z|X = x, θ) is approximated
by a probability model q(Z|X = x, η) with parameters η. A popular choice here is a multivariate
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Gaussian N (Z;µ(x; η),Σ(x; η)), where the mappings (x, η) 7→ µ,Σ are chosen to be neural net-
works (with parameters η to be learned from data). Under the above assumptions, VAE’s are trained
by maximizing the following form of the ELBO,

log p(X = x|θ) ≥ 〈log p(X = x|Z, θ)〉q(Z|X=x,η) −KL(q(Z|X = x, η)||p(Z)) ≡ Bx(η, θ)

The gradient of the Kullback-Leibler (KL) divergence term above is available in closed form. An
unbiased estimate of the gradient of the first term can be obtained via sampling z from q and by
automatic differentiation using the reparametrization trick [6].

1.1 A Problem with the VAE objective

Under the i.i.d. assumption, where each data point x(n), for n = 1 . . . N is independently drawn
from the model an equivalent batch ELBO objective can be defined as

B(η, θ) ≡ 1

N

N∑
n=1

Bx(n)(η, θ) = −KL(π̂(X)q(Z|X, η)||p(X|Z, θ)p(Z)) + const (1)

where the empirical distribution of observed data is denoted as π̂. This form makes it more clear
that the variational lower bound is only calculating the distance between the encoder and decoder
under the support of the empirical distribution. Intuitively, there is no mechanism to force the en-
coder network to change smoothly and the behaviour for a complex network is entirely initialization
dependent.

2 Robust Representations with Smooth Encoders

We propose a novel strategy for training the encoder that is guaranteed not to change the original
objective of the decoder when maximizing the lower bound while obtaining a smoother representa-
tion. The key idea of our approach is that we assume an external selection mechanism that is able
to provide new fictive data point x′ in the vicinity of each observation in our data set x. Here, “in
the vicinity” means that we know that the expected latent state of the original datapoint z = f(x; η)
and the expected latent state of the fictitious point z′ = f(x′; η) should be close to each other in
some sense. Assuming the existence of such an external selection mechanism, we first define the
following augmented distribution

p(X = x,X ′ = x′|θ) ∝
∫
p(X = x|Za, θ)p(X ′ = x′|Zb, θ)ψ(Za, Zb)dZadZb (2)

where

ψ(Za, Zb) = exp(−γ
2
c(Za, Zb))p(Za)p(Zb) (3)

This is a pairwise conditional Markov random field (CRF) model [11], where we take c(za, zb) as a
pairwise cost function. A natural choice here would be, for example, the Euclidean square distance
‖za − zb‖2. Moreover, we choose a nonnegative coupling parameter γ ≥ 0. Both the choice of the
coupling parameter and the cost function is related to the selection mechanism that provides fictive
samples in the vicinity of a true sample. For any pairwise Q(Za, Zb) distribution, the ELBO has the
following form

log p(X = x,X ′ = x′|θ) ≥ 〈log p(X = x|Za, θ)〉Q(Za) + 〈log p(Za)〉Q(Za)

+ 〈log p(X ′ = x′|Zb, θ)〉Q(Zb) + 〈log p(Zb)〉Q(Zb)

−γ
2
〈c(Za, Zb)〉Q(Za,Zb) +H(Q(Za, Zb)) (4)

Instead of the original VAE formulation where both the encoder and decoder collectively optimize
the original lower bound in (1). It seems that our encoder has to now maintain a pairwise approxima-
tion distribution Q(Za, Zb). However, this turns out to be not necessary. Instead, we will define the
marginals of Q(Za, Zb) as Qa(Za) = q(Z|Xa = x, η) and Qb(Zb) = q(Z|Xb = x, η). Once the
marginals are fixed, the only remaining terms that depend on the pair distribution are the final two
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terms in (4). We note that this two terms are just the objective function of the entropy regularized
optimal transport problem [3, 1, 10], defined also variationally (see appendix (5 for further details).

With our choice of the particular form of the variational distribution Q(Za, Zb) we can ensure that
we are still optimizing a lower bound of the original problem. We can achieve this by simply
integrating out the X ′, effectively ignoring the likelihood term for the fictive observations. Our
choice does not modify the original objective of the decoder due to the fact that the marginals are
fixed given η. To see this, take the exponent of (4) and integrate over the unobserved X ′

log p(X = x|θ) = log

∫
dX ′p(X = x,X ′|θ) (5)

≥ 〈log p(X = x|Za, θ)〉Q(Za) + 〈log p(Za)〉Q(Za) + 〈log p(Zb)〉Q(Zb) (6)

−γ
2
〈c(Za, Zb)〉Q(Za,Zb) +H(Q(Za, Zb)) (7)

The gradient of this bound, that we name as the Smooth Encoder ELBO (SE-ELBO) with respect
to the decoder parameters θ is identical to the one of the original objective. This is intuitive as x′ is
an artificially generated sample, we should use only terms that depend on x and not on x′. Another
advantage of this choice is that it is possible to optimize the decoder and encoder concurrently as
in the standard VAE, only an additional term enters for the regularization of the encoder where
the representations obtained via amortized inference q(Za|xa, η) and q(Zb|xb, η) are forced to be
similar with the coupling strength γ. Effectively, we are doing data augmentation for smoothing the
representations obtained by the encoder without changing the actual data distribution.

2.1 Selection mechanism via adversarial attacks

Adversarial attacks are one of the most popular approaches for probing trained models in supervised
tasks. In the supervised learning scenario, the goal of an adversarial attack is finding small perturba-
tions to an input example that would maximally change the output (e.g., flip a classification decision,
change significantly a prediction) [9, 8]. As extra samples are generated, such a training procedure
is referred also as data augmentation. However, in unsupervised learning, where the goal is density
estimation, using data augmentation is not a valid approach as the underlying data distribution would
be altered.

However, as we let the encoder to target a different distribution than the actual decoder, we can
actually use the extra, self generated samples to improve desirable properties of a given model.
Hence our approach could also be interpreted as a ’self-supervised’ learning approach where we
bias our search for a ’good encoder’ and the data selection mechanism acts like a critique, carefully
providing examples that should lead to similar representations. In this paper we restrict ourselves to
Projected Gradient Descent (PGD) attacks popular in adversarial training [2], where the goal of the
attacker is finding a point that would introduce the maximum difference in the Wasserstein distance
of the latent representation ([7]).

3 Conclusions

In our experiments, we have tested and compared the adversarial accuracy of representations learned
using a VAE and our smooth encoder approach. We adopt a two step procedure, where we first
train encoders agnostic to a downstream tasks and then train a simple linear classifier based on the
fixed representation using standard techniques. Ideally, we hope that such an approach will provide
adversarial robustness, without the need for a costly, task specific adversarial training procedure.
We also investigate the effect of the neural network architecture. While it is clear that the nominal
accuracy of an unsupervised approach is expected to be inferior to a supervised training method
that is informed by extra label information, we observe that significant improvements in adversarial
robustness can be achieved by our approach that forces smooth representations. The experimental
details along with results can be found in the appendix 7.
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Appendix

4 KL Divergence

The KL divergence between two Gaussian distributions translates to a well known divergence in the
parameters (in the general case this is a Bregman divergence)

KL(Pa||Pb) =
1

2

(
TrΣ−1

b (Σa − Σb)− log |Σ−1
b Σa|

)
+

1

2
(µa − µb)>Σ−1

b (µa − µb) (8)

where Pa = N (µa,Σa) and Pb = N (µb,Σb) are Gaussian densities with mean µ· and covariance
matrix Σ·, and | · | denotes the determinant for a matrix argument, and Tr denotes the trace. The
KL divergence consists of two terms, the first term is the scale invariant divergence between two
covariance matrices also known as a Itakuro-Saito divergence and the second term is a Mahalonobis
distance between the means. The KL divergence is invariant to the choice of parametrization or the
choice of the coordinate system.
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5 Optimal Transport and Wasserstein distance

Consider a set Γ of joint densities Q(Za, Zb) with the property that Q has fixed marginals Qa(Za)
and Qb(Zb), i.e.,

Γ[Qa, Qb] ≡
{
Q : Qa(Za) =

∫
Q(Za, Zb)dZb, Qb(Zb) =

∫
Q(Za, Zb)dZa

}
(9)

The Wasserstein divergenceWD is defined as the solution of the optimization problem with respect
to pairwise distribution Q

WD[c](Qa, Qb) = inf
Q∈Γ

∫
c(Za, Zb)Q(Za, Zb)dZadZb (10)

where c(za, zb) is a function that specifies the ‘cost’ of transferring a unit of probability mass from
za to zb.

5.1 `2-Wasserstein distanceW

The `2-Wasserstein distanceW2
2 for two Gaussians has an interesting form. The optimum transport

plan, where the minimum of (10) is attained, is given

Q∗(za, zb) = N
((

µa
µb

)
,

(
Σa Ψ
Ψ Σb

))
(11)

where Ψ = ΣaΣ
1/2
b (Σ

1/2
b ΣaΣ

1/2
b )−1/2Σ

1/2
b . It can be checked that this optimal Guassian density

is degenerate in the sense that there exists a linear mapping between za and zb:

za(zb) = µa + ΣaΣ
1/2
b (Σ

1/2
b ΣaΣ

1/2
b )−1/2Σ

−1/2
b (zb − µb)

where A1/2 denotes the matrix square root, a symmetric matrix such that (A1/2)2 = A for a sym-
metric positive semidefinite matrix A. The `2-Wasserstein distance is the value attained by the
optimum transport plan

W2
2 (Pa, Pb) = ‖µa − µb‖22 + Tr

(
Σa + Σb − 2

(
Σ

1/2
b ΣaΣ

1/2
b

)1/2)
(12)

5.2 Entropy Regularized `2-Wasserstein distance

Entropy Regularized `2-Wasserstein is the value attained by the minimizer of the following func-
tional

F [Q] =
γ

2

〈
Tr(Za − Zb)(Za − Zb)>

〉
Q(Za,Zb)

−H[Q(Za, Zb)] (13)

where H is the entropy of the joint distribution Q. Using the form in (11) subject to the semidefinite
constraint Σa −ΨΣ−1

b Ψ> � 0

Tr (za − zb) (za − zb)> = −2Tr(Ψ) + const (14)

The entropy of a Gaussian Q(za, zb) is given by the Schur formula

H[Q(za, zb)] =
D

2
log(2πe) +

1

2
log |Σb||Σa −ΨΣ−1

b Ψ>| (15)

Here, D is the dimension of the vector (za, zb). The entropy regularized problem has a solution
where we need to minimize

F̃ (Ψ) = −γTr(Ψ)− 1

2
Tr log

∣∣Σa −ΨΣ−1
b Ψ>

∣∣ (16)

Taking the derivative and setting to zero

∂F̃ (Ψ)

∂Ψ
= −γI + Σ−1

b Ψ>
(
Σa −ΨΣ−1

b Ψ>
)−1

(17)
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we obtain a particular Matrix Ricatti equation

0 = −ΨΣ−1
b Ψ> − 1

γ
Σ−1
b Ψ> + Σa (18)

that gives us a closed form formula for the specific entropy regularized Wasserstein distance

W2
2,γ(N (ma,Σa),N (mb,Σb)) = ‖ma −mb‖22 + Tr{Σa + Σb − 2Ψ} (19)

WD2,γ(N (ma,Σa),N (mb,Σb)) ≡ γ

2
W2

2,γ(N (ma,Σa),N (mb,Σb)) (20)

−D
2

log(2πe)− 1

2
log |Σb||Σa −ΨΣ−1

b Ψ>| (21)

For the case of two univariate Gaussians, i.e., when the joint distribution has the form

Q(Za, Zb) = N
((

ma

mb

)
,

(
Σa ψ
ψ Σb

))
the solution is given by the solution of the scalar quadratic equation.

f(ψ)′ = ψ2 +
1

γ
ψ − ΣaΣb = 0 (22)

ψ = − 1

2γ
± 1

2|γ|
(
1 + 4γ2ΣaΣb

)1/2
(23)

We take the root that gives a feasible solution as the minimizer. In the scalar case, this is the solution
that satisfies Σa − ψ2/Σb ≥ 0, or equivalently ΣaΣb ≥ ψ2

ψ =
1

2γ
(uγ(Σa,Σb)− 1) (24)

where we have defined
uγ(Σa,Σb) =

(
1 + 4γ2ΣbΣa

)1/2
It can be easily checked that the other root is infeasible. For the scalar ψ case we obtain

WD2,γ(N (ma,Σa),N (mb,Σb)) =
γ

2

(
‖ma −mb‖22 + Σa + Σb

)
− 1

2
(uγ(Σa,Σb)− 1)

+
1

2
log(uγ(Σa,Σb) + 1)− 1

2
log(2ΣbΣa)− log(2π)− 1

6 Summary of the Smooth Encoder algorithm with factorized Gaussian

Assume a factorized encoder distribution of form q(Za|x, η) =
∏Dz

k=1N (Zka ;µka,Σ
k
a) and

q(Zb|x′, η) =
∏Dz

k=1N (Zkb ;µkb ,Σ
k
b ) where Dz is the dimension of the latent representation, and

µk and Σk are the k’th component of the output of a neural network with parameters η. Similarly,
xi denotes the i’th component of the observation vector x of size Dx. For optimization, we need an
unbiased estimate of the gradient of the SE-ELBO with respect to encoder parameters η and decoder
parameters θ:

BSE(η, θ) = 〈log p(X = x|Za, θ)〉q(Za|xa,η) + 〈log p(Za)〉q(Za|xa,η) + 〈log p(Zb)〉q(Zb|xb,η)

−γ
2
〈c(Za, Zb)〉q(Za,Zb|xa,xb,η) +H(q(Za, Zb|xa, xb, η))

Given x, we first select a fictive sample x′ via a selection mechanism, in this case as an adversarial
attack as explained in section 2.1.

Sample a latent representation and calculate the associated prediction

za ∼ q(Za|Xa = x, η) = N (Za;µa,Σa) x̄ = g(za; η)
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The terms of the SE-ELBO can be calculated as

〈log p(x|Za, θ)〉q(Za|Xa=x,η) ≈ −Dx

2
log 2πv − 1

2v

Dx∑
i=1

(xi − x̄i)2

〈log p(Za)〉q(Za|Xa=x,η) = −1

2

Dz∑
k=1

((µka)2 + Σka)− Dz

2
log 2π

〈log p(Zb)〉q(Zb|Xb=x′,η) = −1

2

Dz∑
k=1

((µkb )2 + Σkb )− Dz

2
log 2π

WD2,γ =
γ

2

〈
‖Za − Zb‖2

〉
q(Za,Zb|xa,xb,η)

−H(q(Za, Zb|xa, xb, η))

where

uγ(Σa,Σb) =
√

1 + 4γ2ΣbΣa

WD2,γ =
γ

2

Dz∑
k=1

(
‖µka − µka‖22 + Σka + Σkb

)
−1

2

Dz∑
k=1

(
(uγ(Σka,Σ

k
b )− 1)− log(uγ(Σka,Σ

k
b ) + 1) + log(2ΣkbΣka)

)
−Dz log(2π)−Dz

7 Experiment Details

In this appendix, we provide details about the simulation experiments to evaluate the robustness
of representations learned by smooth encoders. We run simulations on color MNIST and MNIST
datasets. The VAE and SE decoder and encoder architectures are standard and for both networks we
use a 4 layer multi layer perceptron (MLP) and convolutional network (ConvNET) architectures with
200 units of ReLU activations at each layer. We carried out experiments with latent space dimensions
of 32, 64 and 128, corresponding to an output sizes of an encoder with 64, 128 and 256 units, with
two units per dimensions to encode the mean and the log-variance parameters of a fully factorized
Gaussian condition distribution. The training is done using SGD. Each network (both the encoder
and decoder) are randomly initialized and trained for 300K iterations. The selection procedure
for SE training is implemented as a projected gradient descent optimization (a PGD attack) that is
allocated an iteration budget on L iterations to optimize the Wasserstein distance between q(Z|X =
x) and q(Z|X = x + δ) with respect to δ where ‖δ‖∞ < ε. Results are shown for a coupling
parameter of γ = 1.

We have trained the same decoder and encoder pair with the same architecture using the standard
VAE ELBO and the SE ELBO of the smooth encoder with γ = 1.0. Then, using only the mean
activations of the encoders and the same representation, we train two linear classifiers for solving
two downstream tasks: color detection and digit recognition. The results are shown in Figure 1.

We observe that arguably simpler color classification task, we are able to obtain close to perfect
adversarial test accuracy using representations learned by the VAE and SE. However, when the
classifiers are attacked using PGD, the adversarial accuracy quickly drops with increasing radius
size, while the accuracy degrades gracefully SE case. One interesting observation is that unlike
supervised adversarial training where accuracy quickly drops beyond the radius where the classifier
is trained on, we observe that a representation that is trained with small selection radius is still
adversarially robust against attacks with a larger radius. In the other set of experiments, we see
that, the convNET’s have a slightly better intrinsic robustness, that is increased significantly by our
smoothing technique.
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(a) (b)

(c) (d)

Figure 1: Simulation Results. Comparison of Adversarial accuracy of VAE representations with SE
representations as a function of allowed attack radius. Color MNIST results that show performance
on different tasks (a) on color classification (b) digit classification. MNIST results that show the
effect of different architectures (c) MLP and (d) Convnet. In all the examples, the SE is trained by a
selection radius of ε = 0.2 and a budget of L = 20 PGD iterations. The linear classifier is always
trained normally, by fixing the encoder parameters, hence the representation.

8


