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1 Introduction

Bayesian interpretations of neural network have a long history, dating back to early work in the
1990’s [9} 10] and have recently regained attention [e.g.[2, 5] because of their desirable properties
like uncertainty estimation, model robustness and regularisation.

In this paper we concider the application of Bayesian models to knowledge sharing between neural
networks. Knowledge sharing comes in different facets, such as transfer learning, model distillation
and shared embeddings. All of these tasks have in common that learned "features" ought to be shared
across different networks.

Bayesian approaches offer a robust statistical framework to introduce prior knowledge into learning
procedures. However, the tasks introduced above can be challenging in practice since "information"
gained by one network such as learned features can be difficult to encode into prior distributions over
networks that do not share the same architecture or even the same output dimension. We introduce
here a Bayesian viewpoint that centres around features and describe a set of prior distributions
derived from the theory of Gaussian processes and deep kernel learning that facilitate a variety of
deep learning tasks in a unified way. In particular, we will show that our approach is applicable to
knowledge distillation, transfer learning and combining experts.

2 Bayesian Neural Networks

In the standard Bayesian interpretation, neural network weights, denoted w, are random variables
endowed with a prior distribution p(w). Let us denote the dataset D,, = {(z;,v;);¢ = 1,...,n}
consisting of independent observations (x;, y;), where z; € R™ is the input data and y; the labels or
output. The object of interest is the posterior distribution

n

p(w | Dy) o [] plas, yi | w)p(w) = L(w; Dn)p(w),

i=1

where we write £(w; D,,) for the likelihood function. Many tasks in deep learning naturally lend
themselves to a Bayesian approach where a teacher network provides prior knowledge which is
incorporated in the learning process of a student network. However, assigning a prior on the weights
directly is impractical as we are often interested in sharing information between networks with
different architectures. For this reason, we propose to distil features, denoted ¢, generated by the

teacher network, i.e.
p(¢ | Dn) < L(¢; Dn)p(),

where p(¢) is the prior for the features. For prior elicitation we draw from the theory of Gaussian
processes which arise naturally in the context of neural networks although other approaches are
possible. For a detailed introduction to Gaussian processes we refer the reader to [11]. In the
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following we will briefly review how feature spaces created by neural networks form Gaussian
processes.

2.1 Neural Networks as Gaussian Processes

The Gaussian process interpretation of neural networks originates from early work by [10] where it is
shown that an infinite width single layer neural network is equivalent to a Gaussian process. This line
of work has recently found renewed attention [4}, 8], where the authors consider deep networks. Let
2 € R be an input and for layers [ = 1, ..., L with width N; write

N
¢£(I) = bé + Z Wiljg(qsé‘_l(x))a
j=1

where bl denotes the bias of feature 7 in layer / and the weights Wilj analogously. Here g denotes some

activation function. An application of a central limit theorem under Gaussian weights ij shows
that N; — oo for all layers induces a zero mean Gaussian process over features ¢ with covariance
function

Cij (.T, .T/) = (SLJ‘E [¢z (J;)(bz (33‘/)] for all Z,j
For finite layer neural networks, we take

(Ky(x,2), ; = o7 ()¢ (2').

This is can also be viewed as an instance of a deep kernel GP, see e.g. [14], although we consider
degenerate linear kernels (also referred to as dot product kernels) in this inferred feature space rather
than RBF or spectral kernels.

2.2 Distance Priors and Kullback-Leibler Divergence

In order to pass the knowledge of a teacher network to a student, a good prior distribution places

high probability on features that are similar to features of the teacher network. Denote ¢? the features
generated by the teacher network. Following our argument, a natural choice for a prior is then based
on the distance between features

logp(¢) = —a - d(¢, ¢) + constant,

where d is a some non-negative function measuring similarity of features but not necessarily a metric
and a > 0 is a tuning parameter.

Approaches comparing features directly have been proposed in the past. Consider, for example, the
case of model distillation [3\,[7], covered in more detail in the next section. If we choose independent
priors for the features ¢; of the student network and d is taken as

d(¢i, ng) = H(U(QS/T)i,U(Qg/T)i%

for some temperature 7', binary cross-entropy H, and o the softmax function, we recover the approach
by Hinton [7]]. However, such approaches have limitations. As well as to the unrealistic independence
assumption, the above approach requires as many logits in the student model as we have in the teacher
model. Similarly, we can not easily share information of previous layers. We circumvent this by
comparing the distributions of the features on their induced function spaces using the KL divergence.
The new prior distribution for the student network now reads

log p(¢) = —aDi..(vg || v4) + constant.
Since the feature maps are Gaussian processes, the KL divergence has an analytic form,

Dy (GP(p1, K1) | GP(p2, K2))
1
2

_ _ K
(T3 K) + 2 oa) K5 ) — .+ 1og;:).
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In doing so the KL divergence places a probability distribution over the space of features using
the Gaussian processes, GP(0, K¢), parameterised by kernel Ky. Note that this alleviates the
requirement that the dimensionalities of the feature space (i.e. the number of neurons in the final



layer) of the teacher and student network have to match as both are seen as functions in the same
Hilbert space. The prior is then

p(6) ox exp (—Di (GP(0, K| GP(0, K ) )

Kyl 1
= _ITr(KT'K,) ).
o (3T )

Other alternative choices for d include Wasserstein distances, Hellinger distance, L2-distance (be-
tween the features) and many more. However, we found that choices other than the KL-divergence
did not improve our results. It is also worth noting that using KL-divergences in this way has clear
links to the popular sparse variational Gaussian process and other approximate methods [6].

3 Bayesian Knowledge Transfer

3.1 Model Distillation

Using our approach, the concept of model distillation merely becomes a Bayesian neural network
where the prior is (for example) our KL-prior derived from the features learned by the teacher model.
As already alluded to earlier, these priors describe the behaviour of the features in more detail than
a simple comparison of logits or a binary cross-entropy function. In addition, unlike traditional
model distillation the latent Hilbert space representation of the the model is not constrained by the
dimensionality of the output logits of the teacher model.

3.2 Transfer Learning

Transferring learned features from one model to another can be achieved similarly to the case of
model distillation. It is important to note that the term "features" is not limited to the final layer
logits. For example, in a convolutional neural network we could transfer the features learned by the
convolutional layers disregarding the fully connected layers.

3.3 Combining Experts

Suppose we have a set of m tasks 7, j = 1,...,m associated with a neural network that has learned
its respective task. We want to combine the knowledge of those "experts" into one model. In order to
do, we use the respective features ¢;,j = 1,...,m and combine them as independent priors

n

P& | Dn) o< [[p(@is i | b1, bm)p(d1 | 61) - - D(bm | D).

=1
4 Example Application: Fully Connected Networks for Fashion-MNIST

The first example application examines the benefit of using feature priors as a form of model
distillation. The dataset considered is Fashion-MNIST. A classic convolutional neural network with
two convolutional layers is composed of 3 x 3 filters and a dense layer with 128 nodes achieves an
accuracy of 92.7%. The goal of this exercise is to endeavour to train a fully dense network with two
hidden layers. Intuition would suggest that a dense network naively will not perform very well at
this task. However, by placing a prior on the output of the first dense layer to match the features
learned by the teacher network we see an improvement by over 7% in absolute terms. Both networks
received 25 epochs and had the same architecture, loss function (excluding the prior component) and
optimiser.

An important technical point to mention is how we dealt with the unknown tuning parameter «
outlined in section 2.2. To avoid manual tuning, we first maximised the likelihood of the features
agnostic of the training labels and then trained only remaining dense layers given the inferred features.
Hence, our training was broken into two parts; training the features to match the teacher network
followed by training the remaining layers to maximise the predictive performance.



Accuracy F’-score (Micro) F-score (Macro)
avg. std. error avg. std. error avg. std. error
Naive 80.65% 1.02 80.65% 1.02 77.45% 1.47
[l 83.51% 0.14 83.51% 0.13 83.47% 0.15
[71 86.61% 0.11 86.62% 0.11 86.60% 0.11
[13] 82.69% 0.12 82.68% 0.12 82.62% 0.14
[12] 88.51% 0.07 88.52% 0.07 88.55% 0.08
Proposed Approach  89.81% 0.05 89.81% 0.05 89.81% 0.04

Table 1: Performance comparison of model distillation approaches on Fashion-MNIST. The models
were both trained 30 times with random initialisation and the average and expected error on each
metric was reported.

T — (ﬁ(l‘) x — P(z)

Figure 1: A comparison of the parent network and student network. On the left is the parent network
composing of two convolutions layers followed by a dense layer and finally a softmax classification.
The student model on the right endeavours to compress the two convolutional layers into a single
dense layer.

5 Example Application: Multi-Level Priors for CIFAR-10

The second example application also inspects model distillation but compares the proposed approach
to that set out in Hinton et al. [7]. We purposefully chose a more complex network to demonstrate the
benefits of the proposed approach. The teacher network composes of 4 VGG-like convolutional layers
as depicted in Figure 2. As compressing multiple convolutional layers into a single dense layer would
be seemingly more difficult, we split the convolutional feature extraction into two parts; the first
two corresponding to low level features and the latter two corresponding to higher level features. A
dense layer of 8192 hidden node was used to infer each of these sets of features. Comparing accuracy
to the use of no parent model and even that of earlier approaches, which both did not significantly
outperform a random classifier, shows the unparalleled benefit of such Bayesian knowledge transfer.

No Parent Classic Distillation Proposed Approach Parent Model
Top-1 Accuracy 10.00% 10.00% 51.90% 65.60%
Top-2 Accuracy 19.98% 19.95% 71.64% 82.08%
Top-3 Accuracy 30.03% 30.68% 81.75% 89.77%

Table 2: The above table compares the accuracy of the CIFAR1O0 for the naive dense network (no
parent), utilising the method in [7]] and using the proposed approach.

Finally we note that this layer-wise distillation across architectures is not possible with [7] as the
number of outputs per intermediate layer do not generally match for different network architectures.
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Figure 2: A comparison of the parent network and student network used for CIFAR-10. Similar to
Figure 1, the figure shows a parent network composing of a CNN with 4 convolutional layers (left)
and a fully dense student network (right). The convolutional layers are grouped into 2 and each is
used in training the respective first two layers of the fully dense student network.
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