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Abstract

Despite the recent success in probabilistic modeling and their applications, gen-
erative models trained using traditional inference techniques struggle to adapt to
new distributions, even when the target distribution may be closely related to the
ones seen during training. In this work, we present a doubly-amortized variational
inference procedure as a way to address this challenge. By sharing computation
across not only a set of query inputs, but also a set of different, related proba-
bilistic models, we learn transferable latent representations that generalize across
several related distributions. In particular, given a set of distributions over images,
we find the learned representations to transfer to different data transformations.
We empirically demonstrate the effectiveness of our method by introducing the
MetaVAE, and show that it significantly outperforms baselines on downstream
image classification tasks on MNIST (10-50%) and NORB (10-35%).

1 Introduction

A wide variety of problems in machine learning (ML) can be framed as probabilistic inference in
generative models. In particular, latent variable models learn representations of data that capture
salient characteristics of its underlying distribution, which can then be used for downstream tasks
such as classification [1]. While traditional inference techniques can be slow or even computationally
intractable, the advent of amortized (variational) inference allowed such methods to scale to large
datasets, bringing about significant progress in generative modeling applications such as image and
audio synthesis [2, 3], molecule generation [4], and more.

However, as the problem domains we face become increasingly more complex and multimodal, a
technical challenge arises: generative models trained using traditional inference techniques struggle
to adapt to new data distributions, even when these new distributions may be closely related to
distributions seen during training. For example, variational autoencoders (VAEs) trained on the
original image distributions have difficulty generalizing to small visual transformations such as
changing the position or quantity of objects in the scene. However, we would expect the true
generative model, such as those of humans [5], to be invariant to these slight modifications. Therefore,
we aim to address: how do we design an amortized inference algorithm that generalizes across
related distributions to learn transferable representations? Such features would capture the salient
characteristics necessary to allow for better generalization to related, unseen distributions at test time.

To address this question, we propose a doubly-amortized inference procedure that amortizes computa-
tion across not only a set of query inputs, but also a set of different, related target probabilistic models.
More precisely, we derive a new objective called the MetaELBO which serves as a variational lower
bound across multiple distributions, while also incorporating a prior regularization term encouraging
each generative model to match its respective data marginal. We note that this inference model is not
intended to be universal, but rather tailored to a specific family where each probabilistic model is
similar in structure. Inspired by meta-learning, we denote this "doubly-amortized" inference problem
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as meta-inference and let a meta-distribution refer to the probability distribution over the family of
probabilistic models.

As an instantiation of our method, we introduce the MetaVAE, a VAE trained with the MetaELBO.
Empirically, we first show three demonstrations to build intuition for meta-inference: 1) clustering, 2)
compiled inference, and 3) learning sufficient statistics on exponential families. Then, we study image
transformations (e.g. rotations, shearing) on MNIST digits where the MetaVAE learns representations
that transfer to unseen transformations, outperforming baselines by 10-50%. Finally, we showcase
similar improvements of 10-35% on real-world images (NORB). While the representations learned
from other generative models quickly decay in quality under more severe transformations, those of
the MetaVAE preserve relevant information about the image while abstracting away unnecessary
differences induced by visual manipulation.

2 Preliminaries

2.1 Exact and Approximate Inference

Let p(x, z) be a joint distribution over a set of latent variables z ∈ Z and observed variables x ∈ X .
An inference query involves computing posterior beliefs after incorporating evidence into the prior:
p(z|x) = p(x, z)/p(x). This quantity is often intractable to compute as the marginal likelihood
p(x) =

∫
z
p(x, z)dz requires integrating or summing over a potentially exponential number of

configurations for z. Thus, we are forced to seek approximations.

Approximate inference techniques such as Markov Chain Monte Carlo (MCMC) sampling [6, 7] and
variational inference (VI) [8, 9, 10] are widely used to approximate the posterior p(z|x). In VI, we
introduce a family of tractable distributions Q parameterized by ψ over the latent variables and find
the member (called the approximate posterior), qψ∗ ∈ Q that minimizes the Kullback-Leibler (KL)
divergence between itself and the exact posterior:

qψ∗(z) = argmin
qψ

DKL(qψ(z)||p(z|x)) (1)

This qψ∗(z) can serve as a proxy for the true posterior distribution. We note that the solution depends
on the specific value of the observed (evidence) variables x we are conditioning on. For notational
clarity, we rewrite the variational parameters as ψx to make explicit their dependence on x.

One commonly needs to solve multiple inference queries of the same kind, conditioning on different
values of the observed variables x (evidence). Let pD(x) be an empirical distribution over the
observed variables x ∈ X . Note pD(x) can be different from the marginal p(x) when the model is
mis-specified. The average quality of the variational approximations can then be quantified by:

EpD(x)

[
max
ψx

Eqψx (z) log
p(x, z)

qψx(z)

]
(2)

where qφx(z) can be viewed as an importance distribution. In practice, pD(x) is unknown but we
assume access to a training dataset D of examples i.i.d. sampled from pD(x) that can be used to
evaluate Eq. 2.

2.2 Amortized Variational Inference

An alternative formulation leverages a technique known as amortization [11], which reduces the
computational cost of Eq. 2 by casting the per-sample optimization process as a supervised regression
task. Rather than solving for an optimal qψ∗x(z) for every x, we learn a single deterministic mapping
fφ : X → Q to predict ψ∗x, or equivalently qψ∗x(z) ∈ Q, as a function of x. Often, we choose to
represent fφ as a conditional distribution, denoted by qφ(z|x) = fφ(x)(z) when scoring a value z.

This procedure introduces an amortization gap, in which the less flexible parameterization of the
inference model replaces the objective in Eq. 2 with the following lower bound:

max
φ

EpD(x)

[
Eqφ(z|x) log

p(x, z)

qφ(z|x)

]
(3)
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This gap refers to the suboptimality caused by amortizing the variational parameters over the entire
training set, as opposed to optimizing for each example individually (pulling the max out of the
expectation in Eq. 2). This tradeoff in expressiveness, however, enables significant speedups.

2.3 Learning Latent Variable Models

So far, we have assumed that the true generative model p(x, z) is given. However, we often only
possess a family of possible models, pθ(x, z) parameterized by θ and the data set of observations, D.
The challenge then, is to choose θ whose model best explains the evidence. To do so, we maximize
the log marginal likelihood of the data:

EpD(x) [log pθ(x)] = EpD(x)

[
log

∫
z

pθ(x, z)dz

]
(4)

As mentioned, Eq. 4 is intractable to evaluate. Instead, we derive the Evidence Lower Bound (ELBO)
to Eq. 4 using qφ(z|x) as a tractable amortized inference model:

EpD [log pθ(x)] ≥ EpD(x)

[
Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]]
(5)

With Eq. 5 as an objective, we jointly optimize the parameters of the inference and generative models:
φ and θ.

We may derive an alternative formulation of Eq. 5:

L(φ, θ) = −DKL(qφ(x, z)‖pθ(x, z)) (6)
= −DKL(pD(x)‖pθ(x))
− EpD [DKL(qφ(z|x)‖pθ(z|x))] (7)

where qφ(x, z) = fφ(x)(z)pD(x). Eq. 7 is comprised of a maximum likelihood term with a regular-
ization penalty that encourages the generative model to have posteriors that can be easily approximated
by the inference model. We will revisit this intuition once we introduce meta-amortization.

Often, pθ(x|z) and qφ(z|x) are parameterized by deep neural networks, which is known as a
variational autoencoder, or VAE [12]. The latent variables z are learned “features" inferred by
qφ(z|x) that can be used in downstream tasks, such as clustering or classification. The VAE is
popular in many real-world domains: in medical diagnosis, for example, one can infer the identity of
a disease (z) from observed symptoms (x). Given a set of symptoms from a population of patients,
we can fit a VAE tailored to a disease, e.g. thoracic disease [13].

3 Meta-Amortized Variational Inference

But in practice, physicians often work with several patient populations that vary across a wide range of
socioeconomic factors. For a new population, clinicians draw on prior experience from patients with
similar symptoms, lowering their chances of misdiagnosis. We can similarly construct a generative
model that captures this intuition. Instead of training a VAE on a new population, which would be
equivalent to the physician re-learning how to diagnose an illness, we aim to share statistical strength
between different patient groups to infer latent features that transfer to similar, but previously unseen
populations. We formalize this idea into a new algorithm that we call meta-amortized inference.

Recall a (singly)-amortized inference model for pθ(x, z)

max
φ

EpD(x)

[
Efφ(x) log

pθ(x, z)

fφ(x)(z)

]
(8)

which approximates pθ(z|x) for various choices of the observed variables, x ∼ pD(x). Unlike Eq. 3,
we have written qφ(z|x) in its alternate form, fφ(x)(z).

We are now interested in not one but a set of models, JI = {pθi(x, z), i ∈ I} where I is a
finite set of indices. Crucially, (like the example above) we make a few simplifying assumptions.
First, we assume that the random variables in each model have the same domains (e.g. X ,Z),

3



but the relationships between the random variables may be different. Second, we assume that for
each model, we care about the same inference query pθi(z|x). Finally, we assume to have some
knowledge of typical values of the observed variables for each model in JI : formally, we desire
a setMI = {pDi(x), i ∈ I} ⊆ M of marginal distributions over the observed variables. Here,
M denotes the set of all possible marginal distributions over X . Let pM :MI → [0, 1] denote a
distribution overMI . For example, pM may be uniform over a finite number of marginals. As pM
is a distribution over distributions, we refer to it as a meta-distribution.

The naive approach to amortize over a set of models is:

EpDi∼pM
[
max
φ

EpDi (x)
[
Efφ(x) log

pθi(x, z)

fφ(x)(z)

]]
(9)

where we separately fit an amortized inference model for each pθi(x, z). However, this approach is
prohibitively expensive as the size ofMI increases, and training across models is decoupled. We
instead propose to doubly-amortize the inference procedure as follows (we move the max out once
more):

max
φ

EpDi∼pM
[
EpDi (x)

[
Egφ(pDi ,x) log

pθi(x, z)

gφ(pDi ,x)(z)

]]
(10)

where the original regressor fφ(x) is replaced by a doubly-amortized regressor gφ(pDi ,x) that
takes both the marginal distribution pDi(x) and an observation x to return a posterior distribution.
Formally, we call such a mapping, gφ :M×X → Q, a meta-inference model. This doubly-amortized
inference procedure must be robust across varying marginals and evidence, generalizing overM: a
large set of sufficiently similar, previously unseen models.

We note that the choice of pDi(x) as input to gφ is critical in practice. As in Eq. 7, a successful
learning algorithm will learn generative models such as pθi(x) or pθi(x, z) that match pDi(x). But
similarly to the recent progress in wake-sleep [14, 15, 16], we found that using observations from
the true marginal pDi(x) led to significantly more stable training. One may also consider alternate
combinations of inputs for pDi(x), which we leave as future work.

Meta-Amortized Variational Bayes and Learning In certain settings, we are given a set of
generative models {pθ∗i (x, z), i ∈ I}, where each model pθ∗i (x, z) with known parameters captures
a marginal distribution, pi(x) ∈MI . We can then immediately optimize Eq. 10 to obtain the optimal
meta-inference model.

But in many cases the generative models are not known ahead of time, and therefore we must jointly
learn {θi, i ∈ I} along with the parameters of the meta-inference model, φ. To do so, we consider
the objective,

max
φ

EpDi∼pM
[
max
θi
Lφ,θi(pDi)

]
(11)

where the inner loss function is defined as:
Lφ,θi(pDi) = −DKL(pDi(x)gφ(pDi ,x)||p(z)pθi(x|z))

and pDi(x)gφ(pDi ,x) denotes the distribution defined implicitly by first sampling x ∼ pi(x), then
sampling z ∼ gφ(pDi ,x). We refer to this lower bound as the MetaELBO, and a VAE trained with
this objective as the MetaVAE.

Lastly, as we did in Eq. 7, we can rewrite the MetaELBO to a more interpretable form. Simi-
lar to fφ(x), our regressor gφ(pDi ,x) can be represented as a conditional distribution, denoted
qφ(z|pDi ,x) = gφ(pDi ,x)(z). Then,

Lφ,θ(pDi) = −DKL(pDi(x)qφ(z|pDi ,x)||p(z)pθi(x|z))
= −DKL(pDi(x)||pθi(x))
− Ex∼pDi (x)[DKL(qφ(z|pDi ,x)||pθi(z|x))].

This form has a penalty term for each distribution pDi(x), encouraging the meta-amortized inference
model to perform well across pDi(x) sampled from the meta-distribution pM. We note that if
M = {pD}, then gφ(pDi ,x) = fφ(x), and the MetaELBO is equivalent to ELBO.

Interestingly, we find that the MetaVAE’s learned representations transfer well to unseen downstream
tasks at test time. We provide some intuition as to why this is the case. Samples from the correspond-
ing marginal pDi help to lower the variance in the meta-inference network’s inferred z’s for each
query point x, regularizing the model’s behavior to yield more robust representations.
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3.1 Representing the Meta-Distribution

In Eq. 11, it is not clear how to represent a distribution pDi(x) as input if we parameterize gφ(pDi ,x)
as a neural network. One of the main insights from this work is to represent the marginal distribution
as a finite set of samples,

Di = {xj ∼ pDi(x)|j = 1, ..., N} (12)

or a data set. We can then use Di to define an empirical analogue to gφ(pi,x), denoted as ĝφ :
XN ×X → Q, which maps a data set with N samples and an observation to a posterior. Then, there
is an equivalent analogue of Eq. 11 where a marginal, pDi(x) is replaced by a data set, Di.

Implementation Details In practice, for some dataset Di and input x , we implement the meta-
inference model gφ(Di,x) = rφ2

(CONCAT(x, hφ1
(Di)) where φ = {φ1, φ2}. The “summary

network" hφ1
(·) is a two-layer perceptron (MLP) that ingests each element in Di independently and

computes a summary representation using the mean. The “aggregation network" rφ2
(·) is a second

two layer MLP that takes as input the concatenated summary and input. The corresponding i-th
generative model pθi(x|z) is parameterized by an MLP with identical architecture as rφ2(·). ReLU
nonlinearities were used between layers. For more complex image domains (such as NORB), we use
3 layer convolutional networks instead of MLPs.

4 Related work

Rapid Adaptation through Meta-Learning. Among the rich body of work on meta-learning
[17, 18, 19], a common goal is to train models such that they will rapidly adapt to new, unseen
classification tasks. Although the Neural Process (NP) [20, 21] is similar to our work in that it derives
predictions for new targets by conditioning the encoder network on a relevant context set, it models
uncertainty over a distribution of functions. Another line of research formulates proper initialization
as the workhorse of successful meta-learning [22, 23]. In many ways, our meta-amortized inference
procedure can be thought of as learning a good initialization for an inference model on a new
target distribution. However, these approaches are not directly comparable to ours because of their
supervised nature.
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Figure 1: Plate diagrams comparing the MetaVAE to existing generative models. Critically, MetaVAE
does not include a latent variable over models, c.

Few-shot Generative Modeling. This branch of research aims to train generative models such that
they will generalize to unseen distributions at test time given only a few examples. The focus has been
on few-shot density estimation, with approaches ranging from the use of conditioning [24] to nested
optimization [25]. Meta-inference however is not few-shot, and instead aims to learn transferable
representations for downstream tasks rather than density estimation alone.

The most relevant prior works include the Neural Statistician [26] (NS) and the Variational Homoen-
coder [27] (VHE), two very similar models that study inference over sets of observations. The VHE
optimizes the following objective,

Ex,D∼pD
[
Eqφ(c|D)[Eqφ(z|c,x)[log pθ(x|z, c)]]

−DKL(qφ(z|c,x)||p(z|x))−
1

N
DKL(qφ(c|D)||p(c))

(13)
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where D = {x1, ...,xN} is a set of N samples and c is a global latent variable. We note that if we
view D as an approximation for a marginal distribution, then NS and VHE also serve as baselines
that can perform doubly-amortized inference. Similar to our proposed inference model ĝφ(D,x),
the distribution q(c|D) in Eq. 13 ingests a data set. However, both the VHE and NS utilize a global
variable c (isotropic Gaussian). We believe this constraint is overly restrictive in settings which
require transferring to a diverse set of distributions, hurting generalization performance. Instead,
the MetaVAE does not impose a distributional assumption on the different generative models, and
shares a fixed meta-encoder network among separate decoders for each dataset. We find that this
semi-parametric approach yields consistently better performance.

5 Demo: Clustering Mixtures of Gaussians

First, we present a simple clustering example to build intuition for meta-inference. Consider a
standard VAE trained to capture a single mixture of two Gaussian (MoG) distributions pD(x). Each
component has isotropic covariance of 0.1 and mean drawn from the uniform distribution, U(−5, 5).
The two components are mixed evenly and assigned a label of 0 or 1. Then, inference qφ(z|x) with
z ∈ {0, 1} as a 1-D binary latent variable amounts to predicting which component x belongs to, of
which the true cluster label is recoverable up to a permutation.

Now we introduce meta-inference for this task. Given that an inference model qφ(z|x) of a VAE
can learn to cluster data from a specific MoG, a meta-inference model gφ(pDi ,x) should correspond
to a general-purpose clustering algorithm that can separate out the components of any related, but
previously unseen mixture distribution pDi .

Concretely, we let each distribution pDi(x) ∼ pM be a MoG and train a MetaVAE amortized over N
mixtures to assess how well it can predict z ∈ {0, 1} for a given x for an unseen test distribution. We
measure this clustering accuracy on 1000 unseen but related MoGs sampled from the same meta-train
distribution. While the VAE has a clustering error of 27.9% due to cases where there is extreme
overlap in mixture components, the MetaVAE has an error of 9.9% when N = 50. Moreover, larger
N improved the model’s performance (21.2% error with N = 10 and 15.8% error with N = 20) as
expected. We include more details and a second study on clustering MNIST digits in the Appendix2.

6 Demo: Inference for Classical Mechanics

For a second demonstration, we consider an introductory problem in classical mechanics: objects
sliding down inclined planes. Here, we are given a physics simulator that models a box that faces
friction with the plane. Each time the simulator runs, we see a new box with a different friction
coefficient. The simulator then records the time it takes for the box to descend to the bottom of the
plane. Each simulator has a different incline plane of length L and incline angle A, and our task
is to infer the coefficient of friction (z) from the observed descent time (x) given a new simulator.
Building on [28], we tackle this problem with “meta-compiled inference" and optimize:

(a)

(b) (c) (d)

Figure 2: (a,b) Examples of planes with two lengths and angles. MSE between true and inferred
friction for 304 simulators (lighter is better) using (c) MetaVAE and (d) VAE.

Lφ = Epθ∗
i
∼pMEx∼pθ∗

i
(x)

[
−gφ(z|pθ∗i ,x)

]
(14)

The meta-distributionM represents all possible simulators of planes with L ∈ [1, 20] and A ∈ [5, 85]
degrees, and pθ∗i (x, z) represents a fixed simulator. The marginal distribution, pθ∗i (x) is obtained

2https://arxiv.org/pdf/1902.01950.pdf
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by repeatedly simulating to build a data set Di = {x}. Thus the empirical meta-inference model
ĝφ(Di,x) takes the data set and the output of a single simulation x as input. We amortize over 25
simulators with L ∈ {2, 4, 6, 8, 10} and A ∈ {20, 30, 40, 50, 60}, and model z as a continuous 1-D
random variable (interpreted as friction). After training the MetaVAE, we measure the mean squared
error between the true and inferred friction for unseen simulators fromM. Despite seeing only 25
out of 304 simulators, the MetaVAE transfers well: we get less than 0.001 MSE for A ∈ [20, 70] and
L ∈ [2, 20]. A standard VAE trained on a single simulator (L = 10, A = 45) exhibits both much
worse generalization performance and greater error overall (notice the scale in the legends).

7 Demo: Learning Distribution Statistics

Next, we explore whether the MetaVAE is capable of "meta-learning" the concept of a sufficient
statistic for exponential families [9]. Given a set of random samples, a sufficient statistic is a function
that maps this set to a vector in Rd. For the exponential families, where each family member has the
form p(x) ∝ exp(θ · φ(x)) for some parameter θ, this vector can be used to estimate the parameters
of the distribution. In other words, the random samples (dataset) can be fully summarized by the
sufficient statistic, without any loss of information. Now consider a vector of random variables
(x1, · · · , xk), each distributed i.i.d from the same distribution with sufficient statistic φ(xi). For
exponential families, the sum

∑k
i=1 φ(xi) is a sufficient statistic for the random vector. As an

example, the number of successes is a sufficient statistic for a vector of i.i.d. Bernoulli, and the
sample mean and variance are for a vector of Gaussians. With this intuition, we ask the following:
having seen many realizations of random vectors from different exponential family distributions,
can we learn a sufficient statistic for a new random vector that will be sufficient for estimating the
parameters of its unseen, underlying distribution? We aim to use the MetaVAE’s meta-inference
network to learn this mapping. More precisely, the meta inference model gφ(pDi ,x) should act (as a
function of x) as a sufficient statistic for an unseen distribution pDi .

7.1 Data and Model Setup

In this experiment, we use Gaussian (fixed variance), log-normal (fixed variance), exponential,
symmetric beta, Laplace (fixed location), and Weibull (fixed scale) as exponential families. We then
construct a setMI of 20-D vectors of random variables where each component is i.i.d. distributed
according to the same distribution. By construction, a random variable in this set will have only one
free parameter, which can be found using the statistic learned by the meta-inference network. We
further restrictMI by bounding the free parameter to be within a range (e.g. Gaussians with mean
between -5 and 5). After training, we measure how well we can infer the distributional parameters
using the meta-inference model as a learned statistic for observations from unseen distributions. We
compute the mean squared error (MSE) between the inferred and true parameters. We refer the reader
to the Appendix3 for more details.

7.2 Experiment Results

Single Exponential Family Each pDi(x) ∈M is Gaussian with a mean sampled from U(−5, 5).
At test time, we measure inference quality on (1) new random vectors fromM whose entries are
distributed as Gaussians with unseen means sampled fromU(−5, 5), and (2) a larger meta-distribution
by sampling means from U(−20, 20). We find the MetaVAE successfully learns the mean of the
underlying Gaussians. Interestingly, in Fig. 3(a), we find that the inference quality only decays near
the boundary of the meta-distribution. We compare the MetaVAE to a VAE trained on one Gaussian
distribution and find that doubly-amortizing increases the inference quality dramatically. Then we
move to two new exponential families: we similarly construct 30 log-normal random vectors with
means from U(−2, 2) and 30 Exponential random vectors with rates sampled from U(0, 3). Like
above, Fig. 3(b,c) shows good performance of meta-inference overM in each case.

Many Exponential Families Finally, we amortize over many types of distributional families
simultaneously: we construct sets of 30 Gaussian, 30 log-normal, and 30 exponential random vectors
(same bounds as above) to train a MetaVAE. This setup raises an interesting question: can we do

3https://arxiv.org/pdf/1902.01950.pdf
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Figure 3: (a) MSE between the true and inferred mean as the true mean of pDi spans [−10, 10].
The green region shows the meta-distribution. The orange (dashed) line shows a singly-amortized
VAE trained on a single pDi(x) with mean [−1.2, 1.1] (randomly chosen) and the blue (solid) line
shows the MetaVAE. (b,c) show the MSE between the true and inferred parameters. The orange line
is a singly-amortized VAE trained on a randomly chosen distribution ([−0.5, 1.8] for log-normal;
[1.4, 2.8] for exponential).

inference for new random vectors comprised of unseen members of the exponential family (e.g.
Weibull)?

We compare the performance a MetaVAE amortized over the 90 random vectors to 3 different
(baseline) MetaVAEs, each of which is amortized over only 30 random vectors from one family
(e.g. Gaussian). Below, Fig. 4(a-c) plot the MSE of inferred and true parameters for Gaussian,
log-normal, and exponential (all of which are inM). Due to the double-amortization gap, the best
performing model is the MetaVAE amortized on random vectors only from that family. However,
the 90-amortized MetaVAE only performs slightly worse, beating the remaining two baselines
dramatically. Next, Fig. 4(d-f) show MSEs for three distributions not inM: Weibull, Laplace, and
Beta. The 90-amortized MetaVAE consistently outperforms all baselines.
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Figure 4: Comparison of a MetaVAE amortized over three members of the exponential family to
MetaVAEs amortized over only a single member. Each subplot shows an unseen distribution from
either the meta-distribution (b,c,d) or another exponential family (e,f,g).

8 Transformation-Invariance Experiments

To motivate the next set of experiments, imagine designing a scene understanding algorithm for
a self-driving car. The video datasets used to train deep learning agents are typically collected in
isolated settings, such as in large cities during favorable weather conditions. However, an agent
deployed in the real world may face a variety of new settings such as paved roads in poorly-lit
suburban areas. In such cases, we would hope the agent could abstract away unnecessary sources
of variation, such as different lighting conditions, and act upon more salient characteristics in the
scene (e.g. pedestrians) that it has seen previously during training. Inference in this scenario would
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mean learning representations that are "transferable," or invariant to nuisance transformations such as
time of day. We take a step towards this goal as we study the MetaVAE for image distributions with
explicit transformations, such as rotations or lighting.

(a) Interleaved (b) Sparse (c) Contiguous

Meta Test Set (Train Split)

Meta Test Set (Test Split)

Meta Training Set (Train Split)

g (D , x)i p (x|z)z ~ q (z|x)

D1 D1 D2 D3 D4

xi xi

2 3 4 5 6D D D D D

Meta Training Set (Test Split)

ϕ ϕ θ

(d) Meta-Inference Pipeline

Figure 5: (a-c) Three ways of defining the meta-training and meta-test splits; (b,c) pose a more
difficult generalization challenge. (d) Overview of the doubly-amortized inference procedure. The
meta-training set is used to train the MetaVAE (the test portion is to used to choose best parameters).
The meta-test set is for evaluating the learned features, where the training portion is used to fit a linear
classifier and the test portion is used to compute accuracy.

Datasets We study MNIST [29] and NORB [30], where we amortize over three axes of variation
each (e.g. a range of camera angles or background lighting). Further, we vary how different variations
are split into meta-training and meta-test sets, summarized in Fig. 5(a-c). For instance, we may train
the MetaVAE only on images with bright backgrounds and evaluate on darker images. We consider
three meta-splits: interleaved, where every other value in the range of possible transformations is
selected; sparse, where half the number of values are chosen as in interleaved; contiguous, where
we split the range in two “contiguous" halves and train only over the first half. Each meta-split is a
different measure of transfer-ability.

Evaluation Metric We evaluate the latent representations on a downstream classification task.
Having trained the empirical meta-inference model ĝφ(D,x) using the meta-train set, we then embed
observations from a meta-test set distribution. Each time we “embed" a test observation x, we feed in
a data set D of samples from the meta-test set. This way we construct a data set of latent features.

This feature set is split into a training and test subset. For both MNIST and NORB, each image has a
corresponding label (e.g. digit or object class). Using the training portion (darker red in Fig. 5d) , we
fit a logistic regression classifier on the representations to predict the labels and compute accuracy on
the test subset (lighter red in Fig. 5d). Critically, logistic regression seeks the best linear split between
classes in the latent space. For it to achieve good accuracy, such a linear division must already exist.
Thus, we treat a higher classification accuracy as a more transferable, invariant representation [31].

Baselines We compare the performance of MetaVAE against two baselines: the Neural Statistician
(NS), a hierarchical VAE which models sets of observations with a global latent variable; and the
Variational HomoEncoder (VHE), a more computationally-efficient variant of NS. To ensure a fair
comparison, we use the same hyperparameters and architectures across all models. See Appendix4

for details.

4https://arxiv.org/pdf/1902.01950.pdf
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Figure 6: Examples of interpolating across three transformations each for MNIST and Small NORB.
Notice that for NORB (unlike MNIST), other transformations are not held constant as we vary an
individual axis.
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Figure 7: Classification Accuracy on Transformed MNIST and Small NORB for three different splits:
interleaved, sparse, and contiguous. Each subfigure shows the prediction accuracy on the test set of
held out transformations — gaps represent the values used in training the amortized generative model.
We compare the performance of MetaVAE (black), the homoencoder (blue) and the statistician (red)
and find appealing results for our proposed model.

8.1 Transformed MNIST

Dataset Construction We artificially impose three axes of variations on MNIST digits. We
transform each image with 18 rotations (-180 to 180 by 20 degrees), 15 scales (50% to 200% original
size by 10%), and 18 skews (-180 to 180 by 20 degrees). See Fig. 6(a-c) for an example for a single
digit. For each axes of variation, the other two are held constant e.g. skew and size are constant when
varying rotation.

Results We find consistent evidence that MetaVAE features outperform both VHE and NS features
across all settings, often by a significant margin. In particular, VHE and NS have decaying perfor-
mance as scale increases to 2.0. Similarly, for extreme shear values near -80 and 80 degrees where
the image is nearly flat (see Fig. 6c), VHE and NS again suffer greatly in performance. However,
MetaVAE features transfer better: we do not notice a drop in accuracy as scale increases and the effect
of significant shearing is more gradual. This suggests that MetaVAE has learned some invariances to
transformations that NS and VHE lack.

8.2 Small NORB

Dataset Construction The NORB dataset contains grayscale images of real world toys belonging
to five classes: animals, humans, airplanes, trucks, and cars. The objects were imaged under 6
lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every
20 degrees). Unlike the MNIST dataset, extraneous transformations are not held constant as one
transformation is varied. For example, as Fig. 6(f) shows, the azimuth and elevation (randomly)
change as we vary lighting. This design, while more difficult to amortize, is more realistic in real
world datasets where it is too expensive to collect data holding all other variables constant.
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Results The MetaVAE representations outperform those of VHE and NS by 10 to 35% accuracy.
Overall, we notice accuracies are much lower in NORB than in MNIST, which is likely due to the
complexity of learning real world image distributions and randomness introduced by variations in
extraneous transformations. We note that the strong performance of the MetaVAE despite varying
transformations is promising support for our approach to meta-amortization, suggesting that the
MetaVAE is able to ignore irrelevant signals while capturing the principal axes of variation.

9 Discussion

9.1 Experimental Analysis

We aim to quantitatively measure the intuition that amortizing over a family of transformations
should yield representations that are invariant to that transformation. For example, how much does
the representation change as we alter the rotation in MNIST from -180 to 180, or interpolate the
background from dark to light in NORB?

To investigate, we use a MetaVAE amortized over a family of transformations (e.g. interleaved
rotations) and compare the average L2 distance between the learned representation of a base (default)
image and those of every rotated image. As a baseline, we compare this distance to the average L2

distance of a separate family of transformations (e.g. scale) that this MetaVAE was not amortized
over (e.g. having only seen different rotations during training). Table 1 shows the distances for
MNIST and NORB. Consistently, the lowest distances belong to the class of transformations that the
MetaVAE was amortized over, which supports the intuition about learning invariances.

Model Dataset Rotation Scale Skew

Rotated MNIST 1.65 4.44 4.09
Scaled MNIST 5.44 2.16 4.92

Skewed MNIST 3.79 4.89 1.47

Model Dataset Elevation Azimuth Lighting

NORB Elevation 0.39 1.16 1.27
NORB Azimuth 1.42 0.44 1.26
NORB Lighting 1.69 1.27 0.26

Table 1: L2 distances between MetaVAE representations. Each row indicates the datasets used for
training; each column indicates the datasets used to compute representations.

9.2 Role of Flexible Global Prior

Next, we investigate the hypothesis that a more flexible prior over the global latent variable may
give the model the expressivity necessary for better performance on downstream classification tasks.
Specifically, we compare the MetaVAE against the VHE equipped with the VampPrior (VP) [? ],
which is a learned prior p(c), on additional MNIST and NORB experiments. We use default settings
from the reference VP implementation (500 components, 0.05 mean, and 0.01 std)5:

Table 2 shows that while VHE+VP outperforms VHE, its performance is consistently lower than
MetaVAE. Additionally, we note that VP incurs a large computational cost – VHE+VP uses 5.1M
more parameters than the VHE due to parameterizing “pseudoinputs”, whereas the MetaVAE achieves
model flexibility with no additional parameters. This highlights our primary contribution: learning
without an explicit prior is important for the meta-inference problem where test tasks can be quite
different than training tasks.

10 Conclusion

In summary, we developed an inference algorithm for a family of probabilistic models. We intro-
duced a meta-amortized inference paradigm and a new generative model, the MetaVAE. Through

5https://github.com/jmtomczak/vae_vampprior
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Dataset MetaVAE VHE+VP VHE

Rotated MNIST 0.885 0.830 0.793
Scaled MNIST 0.893 0.767 0.463

Sheared MNIST 0.844 0.679 0.602
Dataset MetaVAE VHE+VP VHE

NORB Elevation 0.601 0.337 0.309
NORB Azimuth 0.592 0.313 0.286
NORB Lighting 0.548 0.357 0.306

Table 2: Downstream classification accuracy on MNIST and NORB datasets. The MetaVAE outper-
forms all relevant baselines, including the VHE with a learned prior, p(c).

experiments on MNIST and Small NORB, we showed that the MetaVAE learned transferable
representations that generalize well across similar data distributions in downstream tasks. We pro-
vide reference implementations in PyTorch, and the codebase for this work is open-sourced at
https://github.com/mhw32/meta-inference-public. Future work could consider applica-
tions of meta-inference in video prediction [32].
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